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ABSTRACT

Although variational autoencoders (VAEs) represent a widely influential deep gen-
erative model, many aspects of the underlying energy function remain poorly un-
derstood. In particular, it is commonly believed that Gaussian encoder/decoder as-
sumptions reduce the effectiveness of VAEs in generating realistic samples. In this
regard, we rigorously analyze the VAE objective, differentiating situations where
this belief is and is not actually true. We then leverage the corresponding insights
to develop a simple VAE enhancement that requires no additional hyperparame-
ters or sensitive tuning. Quantitatively, this proposal produces crisp samples and
stable FID scores that are actually competitive with a variety of GAN models, all
while retaining desirable attributes of the original VAE architecture. The code for
our model is available at https://github.com/daib13/TwoStageVAE.

1 INTRODUCTION

Our starting point is the desire to learn a probabilistic generative model of observable variables x ∈
χ, where χ is a r-dimensional manifold embedded in Rd. Note that if r = d, then this assumption
places no restriction on the distribution of x ∈ Rd whatsoever; however, the added formalism is
introduced to handle the frequently encountered case where x possesses low-dimensional structure
relative to a high-dimensional ambient space, i.e., r � d. In fact, the very utility of generative
models of continuous data, and their attendant low-dimensional representations, often hinges on this
assumption (Bengio et al., 2013). It therefore behooves us to explicitly account for this situation.

Beyond this, we assume that χ is a simple Riemannian manifold, which means there exists a dif-
feomorphism ϕ between χ and Rr, or more explicitly, the mapping ϕ : χ 7→ Rr is invertible and
differentiable. Denote a ground-truth probability measure on χ as µgt such that the probability mass
of an infinitesimal dx on the manifold is µgt(dx) and

∫
χ µgt(dx) = 1.

The variational autoencoder (VAE) (Kingma & Welling, 2014; Rezende et al., 2014) attempts to
approximate this ground-truth measure using a parameterized density pθ(x) defined across all of Rd
since any underlying generative manifold is unknown in advance. This density is further assumed
to admit the latent decomposition pθ(x) =

∫
pθ(x|z)p(z)dz, where z ∈ Rκ serves as a low-

dimensional representation, with κ ≈ r and prior p(z) = N (z|0, I).

Ideally we might like to minimize the negative log-likelihood − log pθ(x) averaged across the
ground-truth measure µgt, i.e., solve minθ

∫
χ− log pθ(x)µgt(dx). Unfortunately though, the re-

quired marginalization over z is generally infeasible. Instead the VAE model relies on tractable
encoder qφ(z|x) and decoder pθ(x|z) distributions, where φ represents additional trainable param-
eters. The canonical VAE cost is a bound on the average negative log-likelihood given by

L(θ, φ) ,
∫
χ {− log pθ(x) + KL [qφ(z|x)||pθ(z|x)]}µgt(dx) ≥

∫
χ− log pθ(x)µgt(dx), (1)

where the inequality follows directly from the non-negativity of the KL-divergence. Here φ can be
viewed as tuning the tightness of bound, while θ dictates the actual estimation of µgt. Using a few
standard manipulations, this bound can also be expressed as

L(θ, φ) =
∫
χ
{
−Eqφ(z|x) [log pθ (x|z)] + KL [qφ(z|x)||p(z)]

}
µgt(dx), (2)

which explicitly involves the encoder/decoder distributions and is conveniently amenable to SGD
optimization of {θ, φ} via a reparameterization trick (Kingma & Welling, 2014; Rezende et al.,
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2014). The first term in (2) can be viewed as a reconstruction cost (or a stochastic analog of a
traditional autoencoder), while the second penalizes posterior deviations from the prior p(z). Addi-
tionally, for any realizable implementation via SGD, the integration over χ must be approximated
via a finite sum across training samples {x(i)}ni=1 drawn from µgt. Nonetheless, examining the true
objective L(θ, φ) can lead to important, practically-relevant insights.

At least in principle, qφ(z|x) and pθ(x|z) can be arbitrary distributions, in which case we could
simply enforce qφ(z|x) = pθ(z|x) ∝ pθ(x|z)p(z) such that the bound from (1) is tight. Un-
fortunately though, this is essentially always an intractable undertaking. Consequently, largely to
facilitate practical implementation, a commonly adopted distributional assumption for continuous
data is that both qφ(z|x) and pθ(x|z) are Gaussian. This design choice has previously been cited as
a key limitation of VAEs (Burda et al., 2015; Kingma et al., 2016), and existing quantitative tests of
generative modeling quality thus far dramatically favor contemporary alternatives such as genera-
tive adversarial networks (GAN) (Goodfellow et al., 2014). Regardless, because the VAE possesses
certain desirable properties relative to GAN models (e.g., stable training (Tolstikhin et al., 2018),
interpretable encoder/inference network (Brock et al., 2016), outlier-robustness (Dai et al., 2018),
etc.), it remains a highly influential paradigm worthy of examination and enhancement.

In Section 2 we closely investigate the implications of VAE Gaussian assumptions leading to a num-
ber of interesting diagnostic conclusions. In particular, we differentiate the situation where r = d,
in which case we prove that recovering the ground-truth distribution is actually possible iff the VAE
global optimum is reached, and r < d, in which case the VAE global optimum can be reached by
solutions that reflect the ground-truth distribution almost everywhere, but not necessarily uniquely
so. In other words, there could exist alternative solutions that both reach the global optimum and yet
do not assign the same probability measure as µgt.

Section 3 then further probes this non-uniqueness issue by inspecting necessary conditions of global
optima when r < d. This analysis reveals that an optimal VAE parameterization will provide an
encoder/decoder pair capable of perfectly reconstructing all x ∈ χ using any z drawn from qφ(z|x).
Moreover, we demonstrate that the VAE accomplishes this using a degenerate latent code whereby
only r dimensions are effectively active. Collectively, these results indicate that the VAE global
optimum can in fact uniquely learn a mapping to the correct ground-truth manifold when r < d, but
not necessarily the correct probability measure within this manifold, a critical distinction.

Next we leverage these analytical results in Section 4 to motivate an almost trivially-simple, two-
stage VAE enhancement for addressing typical regimes when r < d. In brief, the first stage just
learns the manifold per the allowances from Section 3, and in doing so, provides a mapping to a
lower dimensional intermediate representation with no degenerate dimensions that mirrors the r = d
regime. The second (much smaller) stage then only needs to learn the correct probability measure on
this intermediate representation, which is possible per the analysis from Section 2. Experiments from
Sections 5 and 6 empirically corroborate motivational theory and reveal that the proposed two-stage
procedure can generate high-quality samples, reducing the blurriness often attributed to VAE mod-
els in the past (Dosovitskiy & Brox, 2016; Larsen et al., 2015). And to the best of our knowledge,
this is the first demonstration of a VAE pipeline that can produce stable FID scores, an influential
recent metric for evaluating generated sample quality (Heusel et al., 2017), that are comparable to
GAN models under neutral testing conditions. Moreover, this is accomplished without additional
penalties, cost function modifications, or sensitive tuning parameters. Finally, an extended version
of this work can be found in (Dai & Wipf, 2019). There we include additional results, considera-
tion of disentangled representations, as well as a comparative discussion of broader VAE modeling
paradigms such as those involving normalizing flows or parameterized families for p(z).

2 HIGH-LEVEL IMPACT OF VAE GAUSSIAN ASSUMPTIONS

Conventional wisdom suggests that VAE Gaussian assumptions will introduce a gap between
L(θ, φ) and the ideal negative log-likelihood

∫
χ− log pθ(x)µgt(dx), compromising efforts to learn

the ground-truth measure. However, we will now argue that this pessimism is in some sense pre-
mature. In fact, we will demonstrate that, even with the stated Gaussian distributions, there exist
parameters φ and θ that can simultaneously: (i) Globally optimize the VAE objective and, (ii) Re-
cover the ground-truth probability measure in a certain sense described below. This is possible
because, at least for some coordinated values of φ and θ, qφ(z|x) and pθ(z|x) can indeed become

2



Published as a conference paper at ICLR 2019

arbitrarily close. Before presenting the details, we first formalize a κ-simple VAE, which is merely
a VAE model with explicit Gaussian assumptions and parameterizations:

Definition 1 A κ-simple VAE is defined as a VAE model with dim[z] = κ latent dimensions, the
Gaussian encoder qφ(z|x) = N (z|µz,Σz), and the Gaussian decoder pθ(x|z) = N (x|µx,Σx).
Moreover, the encoder moments are defined as µz = fµz (x;φ) and Σz = SzS

>
z with Sz =

fSz (x;φ). Likewise, the decoder moments are µx = fµx(z; θ) and Σx = γI . Here γ > 0 is a
tunable scalar, while fµz , fSz and fµx specify parameterized differentiable functional forms that
can be arbitrarily complex, e.g., a deep neural network.

Equipped with these definitions, we will now demonstrate that a κ-simple VAE, with κ ≥ r, can
achieve the optimality criteria (i) and (ii) from above. In doing so, we first consider the simpler case
where r = d, followed by the extended scenario with r < d. The distinction between these two
cases turns out to be significant, with practical implications to be explored in Section 4.

2.1 MANIFOLD DIMENSION EQUAL TO AMBIENT SPACE DIMENSION (r = d)

We first analyze the specialized situation where r = d. Assuming pgt(x) , µgt(dx)/dx exists
everywhere in Rd, then pgt(x) represents the ground-truth probability density with respect to the
standard Lebesgue measure in Euclidean space. Given these considerations, the minimal possible
value of (1) will necessarily occur if

KL [qφ(z|x)||pθ(z|x)] = 0 and pθ(x) = pgt(x) almost everywhere. (3)

This follows because by VAE design it must be that L(θ, φ) ≥ −
∫
pgt(x) log pgt(x)dx, and in the

present context, this lower bound is achievable iff the conditions from (3) hold. Collectively, this
implies that the approximate posterior produced by the encoder qφ(z|x) is in fact perfectly matched
to the actual posterior pθ(z|x), while the corresponding marginalized data distribution pθ(x) is
perfectly matched the ground-truth density pgt(x) as desired. Perhaps surprisingly, a κ-simple VAE
can actually achieve such a solution:

Theorem 1 Suppose that r = d and there exists a density pgt(x) associated with the ground-truth
measure µgt that is nonzero everywhere on Rd.1. Then for any κ ≥ r, there is a sequence of κ-simple
VAE model parameters {θ∗t , φ∗t } such that

lim
t→∞

KL
[
qφ∗t (z|x)||pθ∗t (z|x)

]
= 0 and lim

t→∞
pθ∗t (x) = pgt(x) almost everywhere. (4)

All the proofs can be found in (Dai & Wipf, 2019). So at least when r = d, the VAE Gaussian
assumptions need not actually prevent the optimal ground-truth probability measure from being
recovered, as long as the latent dimension is sufficiently large (i.e., κ ≥ r). And contrary to popular
notions, a richer class of distributions is not required to achieve this. Of course Theorem 1 only
applies to a restricted case that excludes d > r; however, later we will demonstrate that a key
consequence of this result can nonetheless be leveraged to dramatically enhance VAE performance.

2.2 MANIFOLD DIMENSION LESS THAN AMBIENT SPACE DIMENSION (r < d)

When r < d, additional subtleties are introduced that will be unpacked both here and in the sequel.
To begin, if both qφ(z|x) and pθ(x|z) are arbitrary/unconstrained (i.e., not necessarily Gaussian),
then infφ,θ L(θ, φ) = −∞. To achieve this global optimum, we need only choose φ such that
qφ(z|x) = pθ(z|x) (minimizing the KL term from (1)) while selecting θ such that all probability
mass collapses to the correct manifold χ. In this scenario the density pθ(x) will become unbounded
on χ and zero elsewhere, such that

∫
χ− log pθ(x)µgt(dx) will approach negative infinity.

But of course the stated Gaussian assumptions from the κ-simple VAE model could ostensibly
prevent this from occurring by causing the KL term to blow up, counteracting the negative log-
likelihood factor. We will now analyze this case to demonstrate that this need not happen. Before

1This nonzero assumption can be replaced with a much looser condition. Specifically, if there exists a
diffeomorphism between the set {x|pgt(x) 6= 0} and Rd, then it can be shown that Theorem 1 still holds even
if pgt(x) = 0 for some x ∈ Rd.
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proceeding to this result, we first define a manifold density p̃gt(x) as the probability density (as-
suming it exists) of µgt with respect to the volume measure of the manifold χ. If d = r then this
volume measure reduces to the standard Lebesgue measure in Rd and p̃gt(x) = pgt(x); however,
when d > r a density pgt(x) defined in Rd will not technically exist, while p̃gt(x) is still perfectly
well-defined. We then have the following:

Theorem 2 Assume r < d and that there exists a manifold density p̃gt(x) associated with the
ground-truth measure µgt that is nonzero everywhere on χ. Then for any κ ≥ r, there is a sequence
of κ-simple VAE model parameters {θ∗t , φ∗t } such that

(i) lim
t→∞

KL
[
qφ∗t (z|x)||pθ∗t (z|x)

]
= 0 and lim

t→∞

∫
χ− log pθ∗t (x)µgt(dx) = −∞, (5)

(ii) lim
t→∞

∫
x∈A pθ∗t (x)dx = µgt(A ∩ χ) (6)

for all measurable sets A ⊆ Rd with µgt(∂A ∩ χ) = 0, where ∂A is the boundary of A.

Technical details notwithstanding, Theorem 2 admits a very intuitive interpretation. First, (5) di-
rectly implies that the VAE Gaussian assumptions do not prevent minimization of L(θ, φ) from
converging to minus infinity, which can be trivially viewed as a globally optimum solution. Further-
more, based on (6), this solution can be achieved with a limiting density estimate that will assign
a probability mass to most all measurable subsets of Rd that is indistinguishable from the ground-
truth measure (which confines all mass to χ). Hence this solution is more-or-less an arbitrarily-good
approximation to µgt for all practical purposes.2

Regardless, there is an absolutely crucial distinction between Theorem 2 and the simpler case quan-
tified by Theorem 1. Although both describe conditions whereby the κ-simple VAE can achieve the
minimal possible objective, in the r = d case achieving the lower bound (whether the specific pa-
rameterization for doing so is unique or not) necessitates that the ground-truth probability measure
has been recovered almost everywhere. But the r < d situation is quite different because we have
not ruled out the possibility that a different set of parameters {θ, φ} could push L(θ, φ) to −∞ and
yet not achieve (6). In other words, the VAE could reach the lower bound but fail to closely ap-
proximate µgt. And we stress that this uniqueness issue is not a consequence of the VAE Gaussian
assumptions per se; even if qφ(z|x) were unconstrained the same lack of uniqueness can persist.

Rather, the intrinsic difficulty is that, because the VAE model does not have access to the ground-
truth low-dimensional manifold, it must implicitly rely on a density pθ(x) defined across all of Rd as
mentioned previously. Moreover, if this density converges towards infinity on the manifold during
training without increasing the KL term at the same rate, the VAE cost can be unbounded from
below, even in cases where (6) is not satisfied, meaning incorrect assignment of probability mass.

To conclude, the key take-home message from this section is that, at least in principle, VAE Gaussian
assumptions need not actually be the root cause of any failure to recover ground-truth distributions.
Instead we expose a structural deficiency that lies elsewhere, namely, the non-uniqueness of solu-
tions that can optimize the VAE objective without necessarily learning a close approximation to µgt.
But to probe this issue further and motivate possible workarounds, it is critical to further disam-
biguate these optimal solutions and their relationship with ground-truth manifolds. This will be the
task of Section 3, where we will explicitly differentiate the problem of locating the correct ground-
truth manifold, from the task of learning the correct probability measure within the manifold.

Note that the only comparable prior work we are aware of related to the results in this section comes
from Doersch (2016), where the implications of adopting Gaussian encoder/decoder pairs in the
specialized case of r = d = 1 are briefly considered. Moreover, the analysis there requires addi-
tional much stronger assumptions than ours, namely, that pgt(x) should be nonzero and infinitely
differentiable everywhere in the requisite 1D ambient space. These requirements of course exclude
essentially all practical usage regimes where d = r > 1 or d > r, or when ground-truth densities
are not sufficiently smooth.

2Note that (6) is only framed in this technical way to accommodate the difficulty of comparing a measure
µgt restricted to χ with the VAE density pθ(x) defined everywhere in Rd. See (Dai & Wipf, 2019) for details.
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3 OPTIMAL SOLUTIONS AND THE GROUND TRUTH MANIFOLD

We will now more closely examine the properties of optimal κ-simple VAE solutions, and in partic-
ular, the degree to which we might expect them to at least reflect the true χ, even if perhaps not the
correct probability measure µgt defined within χ. To do so, we must first consider some necessary
conditions for VAE optima:

Theorem 3 Let {θ∗γ , φ∗γ} denote an optimal κ-simple VAE solution (with κ ≥ r) where the decoder
variance γ is fixed (i.e., it is the sole unoptimized parameter). Moreover, we assume that µgt is
not a Gaussian distribution when d = r.3 Then for any γ > 0, there exists a γ′ < γ such that
L(θ∗γ′ , φ

∗
γ′) < L(θ∗γ , φ

∗
γ).

This result implies that we can always reduce the VAE cost by choosing a smaller value of γ, and
hence, if γ is not constrained, it must be that γ → 0 if we wish to minimize (2). Despite this neces-
sary optimality condition, in existing practical VAE applications, it is standard to fix γ ≈ 1 during
training. This is equivalent to simply adopting a non-adaptive squared-error loss for the decoder
and, at least in part, likely contributes to unrealistic/blurry VAE-generated samples (Bousquet et al.,
2017). Regardless, there are more significant consequences of this intrinsic favoritism for γ → 0, in
particular as related to reconstructing data drawn from the ground-truth manifold χ:

Theorem 4 Applying the same conditions and definitions as in Theorem 3, then for all x drawn
from µgt, we also have that

lim
γ→0

fµx
[
fµz (x;φ∗γ) + fSz (x;φ∗γ)ε; θ∗γ

]
= lim
γ→0

fµx
[
fµz (x;φ∗γ); θ∗γ

]
= x, ∀ε ∈ Rκ. (7)

By design any random draw z ∼ qφ∗γ (z|x) can be expressed as fµz (x;φ∗γ) + fSz (x;φ∗γ)ε for some
ε ∼ N (ε|0, I). From this vantage point then, (7) effectively indicates that any x ∈ χ will be
perfectly reconstructed by the VAE encoder/decoder pair at globally optimal solutions, achieving
this necessary condition despite any possible stochastic corrupting factor fSz (x;φ∗γ)ε.

But still further insights can be obtained when we more closely inspect the VAE objective func-
tion behavior at arbitrarily small but explicitly nonzero values of γ. In particular, when κ = r
(meaning z has no superfluous capacity), Theorem 4 and attendant analyses in (Dai & Wipf, 2019)
ultimately imply that the squared eigenvalues of fSz (x;φ∗γ) will become arbitrarily small at a rate
proportional to γ, meaning 1√

γ fSz (x;φ∗γ) ≈ O(1) under mild conditions. It then follows that
the VAE data term integrand from (2), in the neighborhood around optimal solutions, behaves as
−2Eqφ∗γ (z|x)

[
log pθ∗γ (x|z)

]
=

2Eqφ∗γ (z|x)
[
1
γ

∥∥x− fµx [z; θ∗γ
]∥∥2

2

]
+d log 2πγ ≈ Eqφ∗γ (z|x) [O(1)]+d log 2πγ = d log γ+O(1).

(8)
This expression can be derived by excluding the higher-order terms of a Taylor series approxima-
tion of fµx

[
fµz (x;φ∗γ) + fSz (x;φ∗γ)ε; θ∗γ

]
around the point fµz (x;φ∗γ), which will be relatively

tight under the stated conditions. But because 2Eqφ∗γ (z|x)
[
1
γ

∥∥x− fµx [z; θ∗γ
]∥∥2

2

]
≥ 0, a theoret-

ical lower bound on (8) is given by d log 2πγ ≡ d log γ + O(1). So in this sense (8) cannot be
significantly lowered further.

This observation is significant when we consider the inclusion of addition latent dimensions by
allowing κ > r. Clearly based on the analysis above, adding dimensions to z cannot improve the
value of the VAE data term in any meaningful way. However, it can have a detrimental impact on
the the KL regularization factor in the γ → 0 regime, where

2KL [qφ(z|x)||p(z)] ≡ trace [Σz] + ‖µz‖22 − log |Σz| ≈ −r̂ log γ +O(1). (9)

Here r̂ denotes the number of eigenvalues {λj(γ)}κj=1 of fSz (x;φ∗γ) (or equivalently Σz) that sat-
isfy λj(γ)→ 0 if γ → 0. r̂ can be viewed as an estimate of how many low-noise latent dimensions

3This requirement is only included to avoid a practically irrelevant form of non-uniqueness that exists with
full, non-degenerate Gaussian distributions.
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the VAE model is preserving to reconstruct x. Based on (9), there is obvious pressure to make r̂
as small as possible, at least without disrupting the data fit. The smallest possible value is r̂ = r,
since it is not difficult to show that any value below this will contribute consequential reconstruction
errors, causing 2Eqφ∗γ (z|x)

[
1
γ

∥∥x− fµx [z; θ∗γ
]∥∥2

2

]
to grow at a rate of Ω

(
1
γ

)
, pushing the entire

cost function towards infinity.4

Therefore, in the neighborhood of optimal solutions the VAE will naturally seek to produce perfect
reconstructions using the fewest number of clean, low-noise latent dimensions, meaning dimensions
whereby qφ (z|x) has negligible variance. For superfluous dimensions that are unnecessary for
representing x, the associated encoder variance in these directions can be pushed to one. This
will optimize KL [qφ(z|x)||p(z)] along these directions, and the decoder can selectively block the
residual randomness to avoid influencing the reconstructions per Theorem 4. So in this sense the
VAE is capable of learning a minimal representation of the ground-truth manifold χ when r < κ.

But we must emphasize that the VAE can learn χ independently of the actual distribution µgt within
χ. Addressing the latter is a completely separate issue from achieving the perfect reconstruction
error defined by Theorem 4. This fact can be understood within the context of a traditional PCA-
like model, which is perfectly capable of learning a low-dimensional subspace containing some
training data without actually learning the distribution of the data within this subspace. The central
issue is that there exists an intrinsic bias associated with the VAE objective such that fitting the
distribution within the manifold will be completely neglected whenever there exists the chance for
even an infinitesimally better approximation of the manifold itself.

Stated differently, if VAE model parameters have learned a near optimal, parsimonious latent map-
ping onto χ using γ ≈ 0, then the VAE cost will scale as (d − r) log γ regardless of µgt. Hence
there remains a huge incentive to reduce the reconstruction error still further, allowing γ to push
even closer to zero and the cost closer to −∞. And if we constrain γ to be sufficiently large so as
to prevent this from happening, then we risk degrading/blurring the reconstructions and widening
the gap between qφ(z|x) and pθ(z|x), which can also compromise estimation of µgt. Fortunately
though, as will be discussed next there is a convenient way around this dilemma by exploiting the
fact that this dominanting (d− r) log γ factor goes away when d = r.

4 FROM THEORY TO PRACTICAL VAE ENHANCEMENTS

Sections 2 and 3 have exposed a collection of VAE properties with useful diagnostic value in and
of themselves. But the practical utility of these results, beyond the underappreciated benefit of
learning γ, warrant further exploration. In this regard, suppose we wish to develop a generative
model of high-dimensional data x ∈ χ where unknown low-dimensional structure is significant
(i.e., the r < d case with r unknown). The results from Section 3 indicate that the VAE can partially
handle this situation by learning a parsimonious representation of low-dimensional manifolds, but
not necessarily the correct probability measure µgt within such a manifold. In quantitative terms,
this means that a decoder pθ(x|z) will map all samples from an encoder qφ(z|x) to the correct
manifold such that the reconstruction error is negligible for any x ∈ χ. But if the measure µgt on χ
has not been accurately estimated, then

qφ(z) ,
∫
χ qφ(z|x)µgt(dx) 6≈

∫
Rd pθ(z|x)pθ(x)dx =

∫
Rd pθ(x|z)p(z)dx = N (z|0, I), (10)

where qφ(z) is sometimes referred to as the aggregated posterior (Makhzani et al., 2016). In other
words, the distribution of the latent samples drawn from the encoder distribution, when averaged
across the training data, will have lingering latent structure that is errantly incongruous with the
original isotropic Gaussian prior. This then disrupts the pivotal ancestral sampling capability of the
VAE, implying that samples drawn from N (z|0, I) and then passed through the decoder pθ(x|z)
will not closely approximate µgt. Fortunately, our analysis suggests the following two-stage remedy:

1. Given n observed samples {x(i)}ni=1, train a κ-simple VAE, with κ ≥ r, to estimate the
unknown r-dimensional ground-truth manifoldχ embedded in Rd using a minimal number
of active latent dimensions. Generate latent samples {z(i)}ni=1 via z(i) ∼ qφ(z|x(i)). By
design, these samples will be distributed as qφ(z), but likely not N (z|0, I).

4Note that infγ>0
C
γ
+ log γ =∞ for any C > 0.

6



Published as a conference paper at ICLR 2019

2. Train a second κ-simple VAE, with independent parameters {θ′, φ′} and latent represen-
tation u, to learn the unknown distribution qφ(z), i.e., treat qφ(z) as a new ground-truth
distribution and use samples {z(i)}ni=1 to learn it.

3. Samples approximating the original ground-truth µgt can then be formed via the extended
ancestral process u ∼ N (u|0, I), z ∼ pθ′(z|u), and finally x ∼ pθ(x|z).

The efficacy of the second-stage VAE from above is based on the following. If the first stage was
successful, then even though they will not generally resemble N (z|0, I), samples from qφ(z) will
nonetheless have nonzero measure across the full ambient space Rκ. If κ = r, this occurs because
the entire latent space is needed to represent an r-dimensional manifold, and if κ > r, then the extra
latent dimensions will be naturally filled in via randomness introduced along dimensions associated
with nonzero eigenvalues of the decoder covariance Σz per the analysis in Section 3.

Consequently, as long as we set κ ≥ r, the operational regime of the second-stage VAE is effectively
equivalent to the situation described in Section 2.1 where the manifold dimension is equal to the
ambient dimension.5 And as we have already shown there via Theorem 1, the VAE can readily han-
dle this situation, since in the narrow context of the second-stage VAE, d = r = κ, the troublesome
(d− r) log γ factor becomes zero, and any globally minimizing solution is uniquely matched to the
new ground-truth distribution qφ(z). Consequently, the revised aggregated posterior qφ′(u) pro-
duced by the second-stage VAE should now closely resembleN (u|0, I). And importantly, because
we generally assume that d� κ ≥ r, we have found that the second-stage VAE can be quite small.

It should also be emphasized that concatenating the two VAE stages and jointly training does not
generally improve the performance. If trained jointly the few extra second-stage parameters can
simply be hijacked by the dominant influence of the first stage reconstruction term and forced to
work on an incrementally better fit of the manifold rather than addressing the critical mismatch
between qφ(z) and N (u|0, I). This observation can be empirically tested, which we have done in
multiple ways. For example, we have tried fusing the respective encoders and decoders from the
first and second stages to train what amounts to a slightly more complex single VAE model. We
have also tried merging the two stages including the associated penalty terms. In both cases, joint
training does not help at all as expected, with average performance no better than the first stage VAE
(which contains the vast majority of parameters). Consequently, although perhaps counterintuitive,
separate training of these two VAE stages is actually critical to achieving high quality results as will
be demonstrated next.

5 QUANTITATIVE COMPARISONS OF GENERATED SAMPLE QUALITY

We first present quantitative evaluation of novel generated samples using the large-scale testing pro-
tocol of GAN models from (Lucic et al., 2018). In this regard, GANs are well-known to dramatically
outperform existing VAE approaches in terms of the Fréchet Inception Distance (FID) score (Heusel
et al., 2017) and related quantitative metrics. For fair comparison, (Lucic et al., 2018) adopted a
common neutral architecture for all models, with generator and discriminator networks based on In-
foGAN (Chen et al., 2016a); the point here is standardized comparisons, not tuning arbitrarily-large
networks to achieve the lowest possible absolute FID values. We applied the same architecture to
our first-stage VAE decoder and encoder networks respectively for direct comparison. For the low-
dimensional second-stage VAE we used small, 3-layer networks contributing negligible additional
parameters beyond the first stage (see (Dai & Wipf, 2019) for further design details).

We evaluated our proposed VAE pipeline, henceforth denoted as 2-Stage VAE, against three baseline
VAE models differing only in the decoder output layer: a Gaussian layer with fixed γ, a Gaussian
layer with a learned γ, and a cross-entropy layer as has been adopted in several previous applica-
tions involving images (Chen et al., 2016b). We also tested the Gaussian decoder VAE model (with
learned γ) combined with an encoder augmented with normalizing flows (Rezende & Mohamed,
2015), as well as the recently proposed Wasserstein autoencoder (WAE) (Tolstikhin et al., 2018)
which maintains a VAE-like structure. All of these models were adapted to use the same neutral
architecture from (Lucic et al., 2018). Note also that the WAE includes two variants, referred to

5Note that if a regular autoencoder were used to replace the first-stage VAE, then this would no longer be
the case, so indeed a VAE is required for both stages unless we have strong prior knowledge such that we may
confidently set κ ≈ r.
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as WAE-MMD and WAE-GAN because different Maximum Mean Discrepancy (MMD) and GAN
regularization factors are involved. We conduct experiments using the former because it does not
involve potentially-unstable adversarial training, consistent with the other VAE baselines.6 Addi-
tionally, we present results from (Lucic et al., 2018) involving numerous competing GAN models,
including MM GAN (Goodfellow et al., 2014), WGAN (Arjovsky et al., 2017), WGAN-GP (Gulra-
jani et al., 2017), NS GAN (Fedus et al., 2017), DRAGAN (Kodali et al., 2017), LS GAN (Mao et al.,
2017) and BEGAN (Berthelot et al., 2017). Testing is conducted across four significantly different
datasets: MNIST (LeCun et al., 1998), Fashion MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky
& Hinton, 2009) and CelebA (Liu et al., 2015).

For each dataset we executed 10 independent trials and report the mean and standard deviation of
the FID scores in Table 1.7 No effort was made to tune VAE training hyperparameters (e.g., learning
rates, etc.); rather a single generic setting was first agnostically selected and then applied to all
VAE-like models (including the WAE-MMD). As an analogous baseline, we also report the value
of the best GAN model for each dataset when trained using suggested settings from the authors; no
single model was optimal across all datasets, so these values represent the best performance from
different, dataset-dependent GANs. Even so, our single 2-Stage VAE is still better on two of four
datasets, and in aggregate, better than any individual GAN model. For example, when averaged
across datasets, the mean FID score for any individual GAN trained with suggested settings was
always approximately 45 or higher (see (Lucic et al., 2018)[Figure 4]), while our analogous 2-Stage
VAE maintained a mean below 40. The other VAE baselines were not competitive. Note also that
the relatively poor performance of the WAE-MMD on MNIST and Fashion MNIST data can be
attributed to the sensitivity of this approach to the value of κ, which for consistency with other
models was fixed at κ = 64 for all experiments. This value is likely much larger than actually
needed for these simpler data types (meaning r � 64), and the WAE-MMD model can potentially
be more reliant on having some κ ≈ r. For head-to-head empirical tests of robustness to κ, please
see (Dai & Wipf, 2019).

Table 1 also displays FID scores from GAN models evaluated using hyperparameters obtained from
a large-scale search executed independently across each dataset to achieve the best results; 100
settings per model per dataset, plus an optimal, data-dependent stopping criteria as described in
(Lucic et al., 2018). Within this broader paradigm, cases of severe mode collapse were omitted
when computing final GAN FID averages. Despite these considerable GAN-specific advantages,
the FID performance of the default 2-Stage VAE is well within the range of the heavily-optimized
GAN models for each dataset unlike the other VAE baselines. Overall then, these results represent
the first demonstration of a VAE pipeline capable of competing with GANs in the arena of generated
sample quality. Additionally, representative samples produced using our 2-Stage VAE model can be
found in (Dai & Wipf, 2019).

Beyond the neutral testing platform from (Lucic et al., 2018), we also consider additional compar-
isons using the architecture and experimental setup from (Tolstikhin et al., 2018) explicitly designed
for applying WAE models to CelebA data. In particular, we adopt the exact same encoder-decoder
networks as the WAE models, and train using the same number of epochs. We do not tune any
hyperparameters whatsoever, and apply the same small second-stage VAE as used in previous ex-
periments. As before, the second-stage size is a small fraction of the first stage, so any benefit is
not simply the consequence of a larger network structure. Results are reported in Table 2, where
the 2-Stage VAE even outperforms the WAE-GAN model, which has the advantage of adversarial
training tuned for this combination of data and network architecture.

6 EXPERIMENTAL CORROBORATION OF THEORETICAL RESULTS

The true test of any theoretical contribution is the degree to which it leads to useful, empirically-
testable predictions about behavior in real-world settings. In the present context, although our theory
from Sections 2 and 3 involves some unavoidable simplifying assumptions, it nonetheless makes
predictions that can be tested under practically-relevant conditions where these assumptions may

6Later we compare against both WAE-MMD and WAE-GAN using the setup from (Tolstikhin et al., 2018).
7All reported FID scores for VAE and GAN models were computed using TensorFlow (https://

github.com/bioinf-jku/TTUR). We have found that alternative PyTorch implementations (https:
//github.com/mseitzer/pytorch-fid) can produce different values in some circumstances.
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MNIST Fashion CIFAR-10 CelebA
MM GAN 9.8± 0.9 29.6± 1.6 72.7± 3.6 65.6± 4.2
NS GAN 6.8± 0.5 26.5± 1.6 58.5± 1.9 55.0± 3.3

optimized, LSGAN 7.8± 0.6 30.7± 2.2 87.1± 47.5 53.9± 2.8
data-dependent WGAN 6.7± 0.4 21.5± 1.6 55.2± 2.3 41.3± 2.0

settings WGAN GP 20.3± 5.0 24.5± 2.1 55.8± 0.9 30.3± 1.0
DRAGAN 7.6± 0.4 27.7± 1.2 69.8± 2.0 42.3± 3.0
BEGAN 13.1± 1.0 22.9± 0.9 71.4± 1.6 38.9± 0.9

Best GAN ∼ 10 ∼ 32 ∼ 70 ∼ 49
VAE (cross-entr.) 16.6± 0.4 43.6± 0.7 106.0± 1.0 53.3± 0.6

default VAE (fixed γ) 52.0± 0.6 84.6± 0.9 160.5± 1.1 55.9± 0.6
settings VAE (learned γ) 54.5± 1.0 60.0± 1.1 76.7± 0.8 60.5± 0.6

VAE + Flow 54.8± 2.8 62.1± 1.6 81.2± 2.0 65.7± 2.8
WAE-MMD 115.0± 1.1 101.7± 0.8 80.9± 0.4 62.9± 0.8

2-Stage VAE (ours) 12.6± 1.5 29.3± 1.0 72.9± 0.9 44.4± 0.7

Table 1: FID score comparisons using neutral architecture. For all GAN-based models listed in
the top section of the table, reported values represent the optimal FID obtained across a large-scale
hyperparameter search conducted separately for each dataset (Lucic et al., 2018). Outlier cases (e.g.,
severe mode collapse) were omitted, which would have otherwise increased these GAN FID scores.
In the lower section of the table, the label Best GAN indicates the lowest FID produced across
all GAN approaches for each dataset when trained using settings suggested by original authors;
these approximate values were extracted from (Lucic et al., 2018)[Figure 4]. For the VAE results
(including WAE), only a single default setting was adopted across all datasets and models (no tuning
whatsoever), and no cases of mode collapse were removed. Note that specialized architectures
and/or random seed optimization can potentially improve the FID for all models reported here.

VAE WAE-MMD WAE-GAN 2-Stage VAE (ours)
CelebA FID 63 55 42 34

Table 2: FID scores on CelebA data obtained using the network structure and training protocol from
(Tolstikhin et al., 2018). For the 2-Stage VAE, we apply the exact same architecture and training
epochs without any tuning of hyperparameters.

not strictly hold. We now present the results of such tests, which provide strong confirmation of
our previous analysis. In particular, after providing validation of Theorems 3 and 4, we explicitly
demonstrate that the second stage of our 2-Stage VAE model can reduce the gap between q(z) and
p(z).

Validation of Theorem 3: This theorem implies that γ will converge to zero at any global minimum
of the stated VAE objective under consideration. Figure 1a presents empirical support for this result,
where indeed the decoder variance γ does tend towards zero during training (red line). This then
allows for tighter image reconstructions (dark blue curve) with lower average squared error, i.e., a
better manifold fit as expected.

Validation of Theorem 4: Figure 1b bolsters this theorem, and the attendant analysis which follows
in Section 3, by showcasing the dissimilar impact of noise factors applied to different directions in
the latent space before passage through the decoder mean network fµx . In a direction where an
eigenvalue λj of Σz is large (i.e., a superfluous dimension), a random perturbation is completely
muted by the decoder as predicted. In contrast, in directions where such eigenvalues are small (i.e.,
needed for representing the manifold), varying the input causes large changes in the image space
reflecting reasonable movement along the correct manifold.

Reduced Mismatch between qφ(z) and p(z): Although the VAE with a learnable γ can achieve
high-quality reconstructions, the associated aggregated posterior is still likely not close to a standard
Gaussian distribution as implied by (10). This mismatch then disrupts the critical ancestral sampling
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(a) Validation of Theorem 3.

𝜆𝑗 = 1.00, Image Variance = 0

𝜆𝑗 = 0.02, Image Variance = 37.7

𝜆𝑗 = 0.01, Image Variance = 357

(b) Validation of Theorem 4.

Figure 1: (a) The red line shows the evolution of log γ, converging close to 0 during training as
expected. The two blue curves compare the associated pixel-wise reconstruction errors with γ fixed
at 1 and with a learnable γ respectively. (b) The j-th eigenvalue of Σz , denoted λj , should be
very close to either 0 or 1 as argued in Section 3. When λj is close to 0, injecting noise along
the corresponding direction will cause a large variance in the reconstructed image, meaning this
direction is an informative one needed for representing the manifold. In contrast, if λj is close to 1,
the addition of noise does not make any appreciable difference in the reconstructed image, indicating
that the corresponding dimension is a superfluous one that has been ignored/blocked by the decoder.

0 10 20 30 40 50 60
300

350

400

450

500

550

Singular Value Index

V
al

ue

 

 

First Stage VAE
Second Stage VAE
Standard Gaussian

Figure 2: Singular value spectrums of latent sam-
ple matrices drawn from qφ(z) (first stage) and
qφ′(u) (enhanced second stage).

First Stage Second Stage
MNIST 2.85 0.43
Fashion 1.37 0.40
Cifar10 1.08 0.00
CelabA 7.42 0.29

Table 3: Maximum mean discrepancy be-
tween N (0, I) and qφ(z) (first stage); like-
wise for qφ′(u) (second stage).

process. As we have previously argued, the proposed 2-Stage VAE has the ability to overcome this
issue and achieve a standard Gaussian aggregated posterior, or at least nearly so. As empirical
evidence for this claim, Figure 2 displays the singular value spectrum of latent sample matricesZ =
{z(i)}ni=1 drawn from qφ(z) (first stage), andU = {u(i)}ni=1 drawn from qφ′(u) (enhanced second
stage). As expected, the latter is much closer to the spectrum from an analogous i.i.d. N (0, I)
matrix. We also used these same sample matrices to estimate the MMD metric (Gretton et al.,
2007) betweenN (0, I) and the aggregated posterior distributions from the first and second stages in
Table 3. Clearly the second stage has dramatically reduced the difference fromN (0, I) as quantified
by the MMD. Overall, these results indicate a superior latent representation, providing high-level
support for our 2-Stage VAE proposal.

7 DISCUSSION

It is often assumed that there exists an unavoidable trade-off between the stable training, valuable
attendant encoder network, and resistance to mode collapse of VAEs, versus the impressive visual
quality of images produced by GANs. While we certainly are not claiming that our two-stage
VAE model is superior to the latest and greatest GAN-based architecture in terms of the realism
of generated samples, we do strongly believe that this work at least narrows that gap substantially
such that VAEs are worth considering in a broader range of applications. For further results and
discussion, including consideration of broader VAE modeling paradigms and the identifiability of
disentangled representations, please see (Dai & Wipf, 2019).
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