
Equivalence of Equilibrium Propagation
and Recurrent Backpropagation

Benjamin Scellier and Yoshua Bengio*

MILA, Université de Montréal

June 15, 2018

Abstract
Recurrent Backpropagation and Equilibrium Propagation are
supervised learning algorithms for fixed point recurrent neu-
ral networks which differ in their second phase. In the first
phase, both algorithms converge to a fixed point which corre-
sponds to the configuration where the prediction is made. In
the second phase, Equilibrium Propagation relaxes to another
nearby fixed point corresponding to smaller prediction error,
whereas Recurrent Backpropagation uses a side network to
compute error derivatives iteratively.
In this work we establish a close connection between these
two algorithms. We show that, at every moment in the second
phase, the temporal derivatives of the neural activities in Equi-
librium Propagation are equal to the error derivatives com-
puted iteratively by Recurrent Backpropagation in the side
network. This work shows that it is not required to have a side
network for the computation of error derivatives, and supports
the hypothesis that, in biological neural networks, temporal
derivatives of neural activities may code for error signals.

1 Introduction
In Deep Learning, the backpropagation algorithm used to
train neural networks requires a side network for the propaga-
tion of error derivatives, which is widely seen as biologically
implausible [Crick, 1989]. One fascinating hypothesis, first
formulated by Hinton and McClelland [1988], is that, in bio-
logical neural networks, error signals could be encoded in the
temporal derivatives of the neural activities. This allows for
error signals to be propagated in the network via the neuronal
dynamics itself without the need for a side network. Neu-
ral computation would correspond to both inference and error
back-propagation. The work presented in this paper also sup-
ports this hypothesis.

*Y.B. is also a Senior Fellow of CIFAR

In section 2, we present the machine learning setting we are
interested in. The neurons of the network follow the gradi-
ent of an energy function. At prediction time, the network
relaxes to a fixed point corresponding to a local minimum of
the energy function. This corresponds to the first phase of the
algorithm. The goal of learning is that of minimizing the cost
at the fixed point, called objective.

In section 3 we present Recurrent Backpropagation [Almeida,
1987, Pineda, 1987], a two-phase learning algorithm which
computes the gradient of the objective function. In the second
phase of Recurrent Backpropagation, an iterative procedure
computes error derivatives.

In section 4 we present Equilibrium Propagation [Scellier and
Bengio, 2017], another two-phase algorithm which computes
the gradient of the objective. In the second phase of Equi-
librium Propagation the dynamics of the network is slightly
perturbed and the network starts a second relaxation phase to-
wards a second but nearby fixed point which corresponds to
slightly smaller prediction error. The gradient of the objective
can be computed based on a contrastive Hebbian learning rule
at the first fixed point and second fixed point.

In section 5 (the main contribution of the present work), we
establish a close connection between Recurrent Backpropa-
gation and Equilibrium Propagation. We show that at every
moment in the second phase of Equilibrium Propagation, the
temporal derivative of the neural activities code (i.e. are equal
to) intermediate error derivatives which Recurrent Backprop-
agation computes iteratively. Our work shows that one does
not require a special computational path for the computation
of the error derivatives in the second phase - the same infor-
mation is available in the temporal derivatives of the neural
activities. Furthermore we show that, in Equilibrium Prop-
agation, halting the second phase before convergence to the
second fixed point is equivalent to Truncated Recurrent Back-
propagation.

1



2 Machine Learning Setting
We consider the supervised setting in which we want to pre-
dict a target y given an input x. The model is a network spec-
ified by a state variable s and a parameter variable θ. The
dynamics of the network are determined by two differentiable
scalar functions Eθ(x, s) and Cθ(y, s) which we call energy
function and cost function respectively. In most of the paper,
to simplify the notations we omit the dependence on x and
y and simply write Eθ(s) and Cθ(s). Furthermore we write
∂Eθ

∂θ (s) and ∂Eθ

∂s (s) the partial derivatives of (θ, s) 7→ Eθ(s)

with respect to θ and s, respectively. Similarly ∂Cθ

∂θ (s) and
∂Cθ

∂s (s) denote the partial derivatives of (θ, s) 7→ Cθ(s).
The state variable s is assumed to move spontaneously to-
wards low-energy configurations by following the gradient of
the energy function:

ds

dt
= −∂Eθ

∂s
(s). (1)

The state s eventually settles to a minimum of the energy
function, written s0θ and characterized by 1

∂Eθ
∂s

(
s0θ
)

= 0. (2)

Since the dynamics in Eq. 1 only depends on the input x
(through Eθ(x, s)) but not on the target y, we call this re-
laxation phase the free phase, and the energy minimum s0θ is
called free fixed point.
The goal of learning is to adjust θ so as to minimize the cost
value of the fixed point. We introduce the objective function
(for a single data sample (x, y))

J(θ) := Cθ
(
s0θ
)
. (3)

Note the distinction between the cost function and the objec-
tive function: the cost function Cθ(s) is defined for any state
s whereas the objective function J(θ) is the cost at the fixed
point.
Several methods have been proposed to compute the gradi-
ent of J with respect to θ. Early work by Almeida [1987],
Pineda [1987] have introduced an algorithm called Recurrent
Backpropagation, which we present in section 3. In Scellier
and Bengio [2017] we proposed another algorithm - at first
sight very different - which we present in section 4. In section
5 we will show that there is actually a profound connection
between these two algorithms.

1In general, the fixed point defined by Eq. 2 is not unique, unless further
assumptions are made on Eθ(s) (e.g. convexity). The fixed point depends
on the initial state of the dynamics (Eq. 1), and so does the objective function
of Eq. 3. However, for ease of presentation, we shall avoid delving into these
mathematical details here.

3 Recurrent Back-Propagation
In this section we present Recurrent Backpropagation, an al-
gorithm introduced by Almeida [1987], Pineda [1987] which
computes the gradient of J (Eq. 3). The original algorithm
was described in the discrete-time setting and for a general
state-to-state dynamics. Here we present it in the continuous-
time setting in the particular case of a gradient dynamics
(Eq. 1). A direct derivation based on the adjoint method can
also be found in LeCun et al. [1988].

3.1 Projected Cost Function
Let S0

θ (s, t) denote the state of the network at time t ≥ 0
when it starts from an initial state s at time t = 0 and follows
the free dynamics (Eq. 1). In the theory of dynamical systems
S0
θ (s, t) is called the flow. We introduce the projected cost

function
Lθ(s, t) := Cθ

(
S0
θ (s, t)

)
. (4)

This is the cost of the state projected a duration t in the fu-
ture, when the networks starts from s and follows the free
dynamics. For fixed s the process (Lθ(s, t))t≥0 represents the
successive cost values taken by the state of the network along
the free dynamics when it starts from the initial state s. For
t = 0, the projected cost is simply the cost of the current state:
Lθ(s, 0) = Cθ (s). As t → ∞ the dynamics converges to the
fixed point S0

θ (s, t) → s0θ, so the projected cost converges to
the objective Lθ(s, t) → J(θ). Under mild regularity condi-
tions on the functions Eθ(s) and Cθ(s), the gradient of the
projected cost function converges to the gradient of the objec-
tive function as t→∞, i.e.

∂Lθ
∂θ

(s, t)→ ∂J

∂θ
(θ). (5)

Therefore, if we can compute ∂Lθ

∂θ (s, t) for a particular value
of s and for any t ≥ 0, the desired gradient ∂J

∂θ (θ) can be
obtained by letting t→∞. We show next that this is what the
Recurrent Backpropagation algorithm does in the case where
the initial state s is the fixed point s0θ.

3.2 Process of Error Derivatives
We introduce the process of error derivatives (St,Θt)t≥0, de-
fined as

St :=
∂Lθ
∂s

(
s0θ, t

)
, t ≥ 0, (6)

Θt :=
∂Lθ
∂θ

(
s0θ, t

)
, t ≥ 0. (7)

2



The processes St and Θt take values in the state space (space
of the state variable s) and parameter space (space of the pa-
rameter variable θ) respectively. The Recurrent Backpropaga-
tion algorithm computes St and Θt iteratively for increasing
values of t.

Theorem 1 (Recurrent Backpropagation). The process of er-
ror derivatives (St,Θt) satisfies

S0 =
∂Cθ
∂s

(
s0θ
)
, (8)

Θ0 =
∂Cθ
∂θ

(
s0θ
)
, (9)

d

dt
St = −∂

2Eθ
∂s2

(
s0θ
)
· St, (10)

d

dt
Θt = −∂

2Eθ
∂θ∂s

(
s0θ
)
· St. (11)

Theorem 1 offers us a two-phase method to compute the gra-
dient ∂J

∂θ (θ). In the first phase, the state variable s follows
the free dynamics (Eq. 1) and relaxes to the fixed point s0θ.
Reaching this fixed point is necessary for evaluating the Hes-
sian ∂2Eθ

∂s2

(
s0θ
)

which is required in the second phase. In the
second phase, St and Θt are computed iteratively for increas-
ing values of t thanks to Eq. 8, Eq. 9, Eq. 10 and Eq. 11. As a
consequence of Eq. 5, the desired gradient ∂J∂θ (θ) is obtained
as t→∞ since

Θt →
∂J

∂θ
(θ). (12)

From the point of view of biological plausibility, the require-
ment to run a new dynamics for St and Θt to compute the
gradient ∂J∂θ (θ) is not satisfying. It is not clear what the quan-
tities St and Θt would represent in a biological network. This
issue is adressed in sections 4 and 5.

4 Equilibrium Propagation
In this section, we present Equilibrium Propagation [Scel-
lier and Bengio, 2017], another algorithm which computes
the gradient of the objective function J (Eq. 3). At first
sight, Equilibrium Propagation and Recurrent Backpropaga-
tion share little in common. However in section 5 we will
show a profound connection between these algorithms.

4.1 Augmented Energy Function
The central idea of Equilibrium Propagation is to introduce
the augmented energy function

Eβθ (s) := Eθ(s) + β Cθ(s), (13)

where β ≥ 0 is a scalar which we call influence parameter.
The free dynamics (Eq. 1) is then replaced by the augmented
dynamics

ds

dt
= −

∂Eβθ
∂s

(s) (14)

= −∂Eθ
∂s

(s)− β ∂Cθ
∂s

(s). (15)

When β > 0, in addition to the usual term −∂Eθ

∂s (s), an ad-
ditional term −β ∂Cθ

∂s (s) nudges s towards configurations that
have lower cost values. As t → ∞ the augmented dynamics
converges to a fixed point sβθ , i.e. an energy minimum of Eβθ
characterized by

∂Eβθ
∂s

(
sβθ

)
= 0. (16)

Unlike the free fixed point s0θ which only depends on x

(through Eθ(x, s)) but not on y, the fixed point sβθ also de-
pends on y (through Cθ(y, s)).

4.2 Gradient Formula
The Equilibrium Propagation algorithm estimates the gradient
∂J
∂θ (θ) based on measures at the fixed points s0θ and sβθ .

Theorem 2 (Equilibrium Propagation). The gradient of the
objective function with respect to θ can be estimated thanks
to the formula

∂J

∂θ
(θ) = lim

β→0

1

β

(
∂Eβθ
∂θ

(
sβθ

)
− ∂E0

θ

∂θ

(
s0θ
))

. (17)

Theorem 2 offers another way to estimate the gradient of
J(θ). As in Recurrent Backpropagation, in the first phase (or
‘free phase’), the network follows the free dynamics (Eq. 1).
The network relaxes to the free fixed point s0θ, where ∂Eθ

∂θ

(
s0θ
)

is measured. In the second phase which we call nudged phase,
the influence parameter takes on a small positive value β & 0,
and the network relaxes to a new but nearby fixed point sβθ
where ∂Eβ

θ

∂θ

(
sβθ

)
is measured. The gradient of the objective

function is estimated thanks to the formula in Eq. 17.
At the beginning of the second phase, the network is initially
at the free fixed point s0θ. When the influence parameter takes
on a small positive value β & 0, the novel term −β ∂Cθ

∂s (s) in
the dynamics of the state variable perturbs the system. This
perturbation propagates in the layers of the network until con-
vergence to the new fixed point sβθ .
In the next section, we go beyond the analysis of fixed points
and we show that, at every moment t in the nudged phase, the
temporal derivative ds

dt encodes the error derivative of Eq. 6.

3



5 Temporal Derivatives Code for Er-
ror Derivatives

In this section we are interested in the dynamics of the net-
work in the second phase, from the free fixed point to the
nudged fixed point. Recall that S0

θ (s, t) is the state of the net-
work at time t ≥ 0 when it starts from an initial state s at time
t = 0 and follows the free dynamics (Eq. 1). Similarly we
define Sβθ (s, t) for any value of β when the network follows
the augmented dynamics (Eq. 14).
In Equilibrium Propagation, the state of the network at the
beginning of the nudged phase is the free fixed point s0θ. We
choose as origin of time t = 0 the moment when the second
phase starts: the network is in the state s0θ and the influence
parameter takes on a small positive value β & 0. With our
notations, the state of the network after a duration t in the
nudged phase is Sβθ

(
s0θ, t

)
. As t → ∞ the network’s state

converges to the nudged fixed point Sβθ
(
s0θ, t

)
→ sβθ .

5.1 Process of Temporal Derivatives
Now we are ready to introduce the process of temporal deriva-
tives (S̃t, Θ̃t)t≥0, defined by

S̃t := − lim
β→0

1

β

∂Sβθ
∂t

(
s0θ, t

)
, (18)

Θ̃t := lim
β→0

1

β

(
∂Eβθ
∂θ

(
Sβθ
(
s0θ, t

))
− ∂E0

θ

∂θ

(
s0θ
))

. (19)

Like St and Θt, the processes S̃t and Θ̃t take values in the
state space and parameter space respectively. The process
S̃t is simply the temporal derivative ds

dt in the second phase,
rescaled by 1

β (so that its value does not depend on the partic-
ular choice of β & 0).

Theorem 3 (Temporal Derivatives as Error Derivatives). The
processes of temporal derivatives and error derivatives are
equal: for every t ≥ 0 we have

St = S̃t, (20)

Θt = Θ̃t. (21)

In essence, Eq. 20 says that in the second phase of Equilib-
rium Propagation, the temporal derivative ds

dt (rescaled by 1
β )

encodes the error derivatives of Eq. 6.
Also, note that the formula of Eq. 21 entails the gradient for-
mula of Equilibrium Propagation (Theorem 2). As t→∞ in
Eq. 21, one gets the formula of Eq. 17. Interestingly, Eq. 21
shows that, in Equilibrium Propagation, halting the second
phase before convergence to the nudged fixed point corre-
sponds to Truncated Recurrent Backpropagation.

6 Conclusion
Our work establishes a close connection between two algo-
rithms for fixed point recurrent networks, namely Recurrent
Backpropagation and Equilibrium Propagation. The temporal
derivatives of the neural activities in the second phase of Equi-
librium Propagation are equal to the error derivatives which
Recurrent Backpropagation computes iteratively. Thereby,
our work supports the hypothesis that, in biological networks,
temporal changes in neural activities may represent error sig-
nals for supervised learning from a machine learning perspec-
tive.
Furthermore, we have shown that halting the second phase be-
fore convergence in Equilibrium Propagation is equivalent to
Truncated Recurrent Backpropagation. This provides a new
justification for saving time by stopping the second phase of
Equilibrium Propagation early.

Acknowledgments
The authors would like to thank NSERC, CIFAR, Samsung
and Canada Research Chairs for funding.

References
L. B. Almeida. A learning rule for asynchronous perceptrons

with feedback in a combinatorial environment. volume 2,
pages 609–618, San Diego 1987, 1987. IEEE, New York.

F. Crick. The recent excitement about neural networks. Na-
ture, 337(6203):129–132, 1989.

G. E. Hinton and J. L. McClelland. Learning representations
by recirculation. In D. Z. Anderson, editor, Neural Infor-
mation Processing Systems, pages 358–366. American In-
stitute of Physics, 1988.

Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski. A theo-
retical framework for back-propagation. In Proceedings of
the 1988 connectionist models summer school, pages 21–
28. CMU, Pittsburgh, Pa: Morgan Kaufmann, 1988.

F. J. Pineda. Generalization of back-propagation to recurrent
neural networks. 59:2229–2232, 1987.

B. Scellier and Y. Bengio. Equilibrium propagation: Bridg-
ing the gap between energy-based models and backpropa-
gation. Frontiers in computational neuroscience, 11, 2017.

4



Appendix
A Recurrent Backpropagation - Proof
Proof of Theorem 1. First of all, by definition of L (Eq. 4) we
have Lθ(s, 0) = Cθ(s). Therefore the initial conditions (Eq. 8
and Eq. 9) are satisfied:

S0 =
∂Lθ
∂s

(
s0θ, 0

)
=
∂Cθ
∂s

(
s0θ
)

(22)

and

Θ0 =
∂Lθ
∂θ

(
s0θ, 0

)
=
∂Cθ
∂θ

(
s0θ
)
. (23)

It remains to show Eq. 10 and Eq. 11. We omit temporarily
to write the dependence in θ to keep notations simple. As a
preliminary result, we show that for any initial state s and time
t we have 2

∂L

∂t
(s, t) +

∂L

∂s
(s, t) · ∂E

∂s
(s) = 0. (24)

To this end note that (by definition of L and S0) we have for
any t and u

L
(
S0(s, u), t

)
= L(s, t+ u). (25)

The derivatives of the right-hand side of Eq. 25 with respect
to t and u are clearly equal:

d

dt
L(s, t+ u) =

d

du
L(s, t+ u). (26)

Therefore the derivatives of the left-hand side of Eq. 25 are
equal too:

∂L

∂t

(
S0(s, u), t

)
=

d

du
L
(
S0(s, u), t

)
(27)

= −∂L
∂s

(
S0(s, u), t

)
· ∂E
∂s

(
S0(s, u)

)
.

(28)

Here we have used the differential equation of motion (Eq. 1).
Evaluating this expression for u = 0 we get Eq. 24.
Now we are ready to show that St = ∂L

∂s

(
s0, t

)
satisfies the

differential equation in Eq. 10. Differentiating Eq. 24 with
respect to s, we get

∂2L

∂t∂s
(s, t) +

∂2L

∂s2
(s, t) · ∂E

∂s
(s) +

∂L

∂s
(s, t) · ∂

2E

∂s2
(s) = 0.

(29)

2Eq. 24 is the Kolmogorov backward equation for deterministic processes.

Evaluating this expression at the fixed point s = s0 and using
the fixed point condition ∂E

∂s

(
s0
)

= 0 we get

d

dt

∂L

∂s

(
s0, t

)
= −∂

2E

∂s2
(
s0
)
· ∂L
∂s

(
s0, t

)
. (30)

Therefore St = ∂L
∂s

(
s0, t

)
satisfies Eq. 10.

We prove Eq. 11 similarly. Differentiating Eq. 24 with respect
to θ, we get

∂2Lθ
∂t∂θ

(s, t) +
∂2Lθ
∂s∂θ

(s, t) · ∂Eθ
∂s

(s)

+
∂Lθ
∂s

(s, t) · ∂
2Eθ
∂s∂θ

(s) = 0. (31)

Evaluating this expression at the fixed point s = s0θ we get

d

dt

∂Lθ
∂θ

(
s0θ, t

)
= −∂

2Eθ
∂θ∂s

(
s0θ
)
· ∂Lθ
∂s

(
s0θ, t

)
. (32)

Hence the result.

B Equilibrium Propagation - Proof
In this Appendix we prove Theorem 2. The same proof was
already provided in Scellier and Bengio [2017].
Since the data point (x, y) does not play any role, its depen-
dence is omitted in the notations. We assume that the energy
function Eθ(s) and the cost function Cθ(s) (and thus the aug-
mented energy function Eβθ (s)) are twice differentiable and
that the conditions of the implicit function theorem are satis-
fied so that the fixed point sβθ is a continuously differentiable
function of (θ, β).

Proof of Theorem 2. Recall that we want to show the "gradi-
ent formula"

∂J

∂θ
(θ) = lim

β→0

1

β

(
∂Eβθ
∂θ

(
sβθ

)
− ∂E0

θ

∂θ

(
s0θ
))

. (33)

The gradient formula Eq. 33 is a particular case of the follow-
ing formula 3, when evaluated at the point β = 0:

d

dθ

∂Eβθ
∂β

(
sβθ

)
=

d

dβ

∂Eβθ
∂θ

(
sβθ

)
. (34)

3The notations
∂E

β
θ

∂θ
and

∂E
β
θ

∂β
are used to mean the partial derivatives

with respect to the arguments of Eβθ , whereas d
dθ

and d
dβ

represent the total
derivatives with respect to θ and β respectively (which include the differen-
tiation path through sβθ ). The total derivative d

dθ
(resp. d

dβ
) is performed for

fixed β (resp. fixed θ).

5



Therefore, in order to prove Eq. 33, it is sufficient to prove
Eq. 34.

First, the cross-derivatives of (θ, β) 7→ Eβθ

(
sβθ

)
are equal:

d

dθ

d

dβ
Eβθ

(
sβθ

)
=

d

dβ

d

dθ
Eβθ

(
sβθ

)
. (35)

Second, by the chain rule of differentiation we have

d

dβ
Eβθ

(
sβθ

)
=
∂Eβθ
∂β

(
sβθ

)
+
∂Eβθ
∂s

(
sβθ

)
·
∂sβθ
∂β

(36)

=
∂Eβθ
∂β

(
sβθ

)
. (37)

Here we have used the fixed point condition

∂Eβθ
∂s

(
sβθ

)
= 0. (38)

Similarly we have

d

dθ
Eβθ

(
sβθ

)
=
∂Eβθ
∂θ

(
sβθ

)
. (39)

Plugging Eq. 37 and Eq. 39 in Eq. 35, we get Eq. 34. Hence
the result.

C Temporal Derivatives Code For Er-
ror Derivatives - Proof

Proof of Theorem 3. In order to prove Theorem 3, we have to
show that the process (S̃t, Θ̃t) satisfies the same differential
equations as (St,Θt), namely Eq. 8, Eq. 9, Eq. 10 and Eq. 11
(Theorem 1). We will conclude by using the uniqueness of
the solution to the differential equation with initial condition.
First of all, note that

∂2Sβθ
∂β∂t

∣∣∣∣∣
β=0

(
s0θ, t

)
= lim
β→0

1

β

(
∂Sβθ
∂t

(
s0θ, t

)
− ∂S0

θ

∂t

(
s0θ, t

))
(40)

= lim
β→0

1

β

∂Sβθ
∂t

(
s0θ, t

)
. (41)

The latter equality comes from the fact that S0
θ

(
s0θ, t

)
= s0θ

for every t ≥ 0, implying that ∂S
0
θ

∂t

(
s0θ, t

)
= 0 at every mo-

ment t ≥ 0. Furthermore

d

dβ

∣∣∣∣
β=0

∂Eβθ
∂θ

(
Sβθ
(
s0θ, t

))
= lim
β→0

1

β

(
∂Eβθ
∂θ

(
Sβθ
(
s0θ, t

))
− ∂E0

θ

∂θ

(
S0
θ

(
s0θ, t

)))
(42)

= lim
β→0

1

β

(
∂Eβθ
∂θ

(
Sβθ
(
s0θ, t

))
− ∂Eθ

∂θ

(
s0θ
))

. (43)

Again the latter equality comes from the fact that S0
θ

(
s0θ, t

)
=

s0θ for every t ≥ 0. Therefore

S̃t = −
∂2Sβθ
∂β∂t

∣∣∣∣∣
β=0

(
s0θ, t

)
, ∀t ≥ 0, (44)

Θ̃t =
d

dβ

∣∣∣∣
β=0

∂Eβθ
∂θ

(
Sβθ
(
s0θ, t

))
, ∀t ≥ 0. (45)

Now we prove that S̃t is the solution of Eq. 8 and Eq. 10. We
omit to write the dependence in θ to keep notations simple.
The process

(
Sβ
(
s0, t

))
t≥0 is the solution of the differential

equation

∂Sβ

∂t

(
s0, t

)
= −∂E

β

∂s

(
Sβ
(
s0, t

))
. (46)

with initial condition Sβ
(
s0, 0

)
= s0. Differentiating Eq. 46

with respect to β, we get

d

dt

∂Sβ

∂β

(
s0, t

)
=− ∂2Eβ

∂s∂β

(
Sβ
(
s0, t

))
− ∂2Eβ

∂s2
(
Sβ
(
s0, t

))
· ∂S

β

∂β

(
s0, t

)
.

(47)

Evaluating at β = 0 and using the fact that S0
(
s0, t

)
= s0,

we get

d

dt

∂Sβ

∂β

∣∣∣∣
β=0

(
s0, t

)
=− ∂C

∂s

(
s0
)

− ∂2E

∂s2
(
s0
)
· ∂S

β

∂β

∣∣∣∣
β=0

(
s0, t

)
.

(48)

Since at time t = 0 the initial state of the network
Sβ
(
s0, 0

)
= s0 is independent of β, we have

∂Sβ

∂β

(
s0, 0

)
= 0. (49)

6



Therefore, evaluating Eq. 48 at t = 0, we get the initial con-
dition (Eq. 8)

S̃0 = − ∂2Sβ

∂t∂β

∣∣∣∣
β=0

(
s0, 0

)
=
∂C

∂s

(
s0
)
. (50)

Moreover, differentiating Eq. 48 with respect to time we get

d

dt

∂2Sβ

∂t∂β

∣∣∣∣
β=0

(
s0, t

)
= −∂

2E

∂s2
(
s0
)
· ∂

2Sβ

∂t∂β

∣∣∣∣
β=0

(
s0, t

)
.

(51)
Hence Eq. 10:

d

dt
S̃t = −∂

2E

∂s2
(
s0
)
· S̃t. (52)

Now we prove the result for Θ̃t (Eq. 9 and Eq. 11). First we

differentiate ∂Eβ
θ

∂θ

(
Sβθ
(
s0θ, t

))
with respect to β:

d

dβ

∂Eβθ
∂θ

(
Sβθ
(
s0θ, t

))
=

∂Eβθ
∂θ∂β

(
Sβθ
(
s0θ, t

))
+
∂Eβθ
∂θ∂s

(
Sβθ
(
s0θ, t

))
·
∂Sβθ
∂β

(
s0θ, t

)
.

(53)

Again we evaluate at β = 0 and we use the fact that
S0
θ

(
s0θ, t

)
= s0θ. We get

d

dβ

∣∣∣∣
β=0

∂Eβθ
∂θ

(
Sβθ
(
s0θ, t

))
=
∂Cθ
∂θ

(
s0θ
)

+
∂Eθ
∂θ∂s

(
s0θ
)
·
∂Sβθ
∂β

∣∣∣∣∣
β=0

(
s0θ, t

)
.

(54)

Evaluating Eq. 54 at time t = 0 and using Eq. 49 we get the
initial condition (Eq. 9)

Θ̃0 =
d

dβ

∣∣∣∣
β=0

∂Eβθ
∂θ

(
Sβθ
(
s0θ, 0

))
=
∂Cθ
∂θ

(
s0θ
)
. (55)

Moreover, differentiating Eq. 54 with respect to time we get

d

dt

d

dβ

∣∣∣∣
β=0

∂Eβθ
∂θ

(
Sβθ
(
s0θ, t

))
=

∂Eθ
∂θ∂s

(
s0θ
)
·
∂2Sβθ
∂t∂β

∣∣∣∣∣
β=0

(
s0θ, t

)
.

(56)
Hence Eq. 11:

d

dt
Θ̃t = − ∂Eθ

∂θ∂s

(
s0θ
)
· S̃t. (57)

This completes the proof.

7


