
Under review as a conference paper at ICLR 2020

INSTANT QUANTIZATION OF NEURAL NETWORKS US-
ING MONTE CARLO METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Low bit-width integer weights and activations are very important for efficient
inference, especially with respect to lower power consumption. We propose to
apply Monte Carlo methods and importance sampling to sparsify and quantize
pre-trained neural networks without any retraining. We obtain sparse, low bit-width
integer representations that approximate the full precision weights and activations.
The precision, sparsity, and complexity are easily configurable by the amount of
sampling performed. Our approach, called Monte Carlo Quantization (MCQ),
is linear in both time and space, while the resulting quantized sparse networks
show minimal accuracy loss compared to the original full-precision networks. Our
method either outperforms or achieves results competitive with methods that do
require additional training on a variety of challenging tasks.

1 INTRODUCTION

Developing novel ways of increasing the efficiency of neural networks is of great importance due to
their widespread usage in today’s variety of applications. Reducing the network’s footprint enables
local processing on personal devices without the need for cloud services. In addition, such methods
allow for reducing power consumption - also in data centers. Very compact models can be fully
stored and executed on-chip in specialized hardware like for example ASICs or FPGAs. This reduces
latency, increases inference speed, improves privacy concerns, and limits bandwidth cost.

Quantization methods usually require re-training of the quantized model to achieve competitive
results. This leads to an additional cost and complexity. The proposed method, Monte Carlo
Quantization (MCQ), aims to avoid retraining by approximating the full-precision weight and
activation distributions using importance sampling. The resulting quantized networks achieve close
to the full-precision accuracy without any kind of additional training. Importantly, the complexity of
the resulting networks is proportional to the number of samples taken.

First, our algorithm normalizes the weights and activations of a given layer to treat them as probability
distributions. Then, we randomly sample from the corresponding cumulative distributions and count
the number of hits for every weight and activation. Finally, we quantize the weights and activations
by their integer count values, which form a discrete approximation of the original continuous values.
Since the quality of this approximation relies entirely on (quasi)random sampling, the accuracy of the
quantized model is directly dependent on the amount of sampling performed. Thus, accuracy may be
traded for higher sparsity and speed by adjusting the number of samples. On the challenging tasks of
image classification, language modeling, speech recognition, and machine translation, our method
outperforms or is competitive with existing quantization methods that do require additional training.

2 RELATED WORK

The computational cost of neural networks can be reduced by pruning redundant weights or neurons,
which has been shown to work well (Han et al., 2015; Mocanu et al., 2018; LeCun et al., 1990).
Alternatively, the precision of the network weights and activations may be lowered, potentially
introducing sparsity. Using low precision computations to reduce the cost and sparsity to skip
computations allows for efficient hardware implementations (Lin et al., 2015; Venkatesh et al., 2017).
This is the approach used in this paper.

1

Under review as a conference paper at ICLR 2020

BinaryConnect (Courbariaux et al., 2015) proposed training with binary weights, while XNOR-Net
(Rastegari et al., 2016) and BNN (Hubara et al., 2016) extended this binarization to activations as
well. TWN (Li et al., 2016) proposed ternary quantization instead, increasing model expressiveness.
Similarly, TTQ (Zhu et al., 2016) used ternary weights with a positive and negative scaling learned
during training. LR-Net (Shayer et al., 2017) made use of both binary and ternary weights by using
stochastic parameterization while INQ (Zhou et al., 2017) constrained weights to powers of two
and zero. FGQ (Mellempudi et al., 2017) categorized weights in different groups and used different
scaling factors to minimize the element-wise distance between full and low-precision weights. Wang
et al. (2019) used the hardware accelerator’s feedback to perform hardware-aware quantization
using reinforcement learning. Zhang et al. (2018) jointly trained quantized networks and respective
quantizers. Reagen et al. (2017) used Bloomier filters to compactly encode network weights.

Similarly, quantization techniques can also be applied in the backward pass. Therefore, some
previous work quantized not only weights and activations but also the gradients to augment training
performance (Zhou et al., 2016; Gupta et al., 2015; Courbariaux et al., 2014). In particular, RQ
(Louizos et al., 2018) propose a differentiable quantization procedure to allow for gradient-based
optimization using discrete values and Wu et al. (2018) recently proposed to discretize weights,
activations, gradients, and errors both at training and inference time.

These quantization techniques have great benefits and have shown to successfully reduce the compu-
tation requirements compared to full-precision models. However, all the aforementioned methods
require re-training of the quantized network to achieve close to full-precision accuracy, which can
introduce significant financial and environmental cost (Strubell et al., 2019). On the other hand, our
method instantly quantizes pre-trained neural networks with minimal accuracy loss as compared to
their full-precision counterparts without any kind of additional training.

3 NEURAL NETWORKS AND MONTE CARLO METHODS

Neural networks make extensive use of randomization and random sampling techniques. Examples
are random initialization of network weights, stochastic gradient descent (Robbins & Monro, 1951),
regularization techniques such as Dropout (Srivastava et al., 2014) and DropConnect (Wan et al.,
2013), data augmentation and data shuffling, recurrent neural networks’ regularization (Merity et al.,
2017a), or the generator’s noise input on generative adversarial networks (Goodfellow et al., 2014).

Many state-of-the-art networks use ReLU (Nair & Hinton, 2010), which has interesting properties
such as scale-invariance. This enables a scaling factor to be propagated through all network layers
without affecting the network’s original output. This principle can be used to normalize network
values, such as weights and activations, as further described in Section 3.1. After normalization, these
values can be treated as probabilities, which enables the simulation of discrete probability densities
to approximate the corresponding full-precision, continuous distributions (Section 3.2).

3.1 NETWORK NORMALIZATION

Assuming the exclusive use of the ReLU activation function in the hidden layers, the scale-invariance
property of the ReLU activation function allows for arbitrary scaling of the weights or activations with-
out affecting the network’s output. Given weights wl−1,i,j connecting the i-th neuron in layer l− 1 to
the j-th neuron in layer l, where i ∈ [0, Nl−1 − 1] and j ∈ [0, Nl − 1], with Nl−1 and Nl the number
of neurons of layer l−1 and l, respectively. Let al,j be the j-th activation in the l-th layer and f ∈ R+:

al,j = max

{
0,
∑Nl−1−1

i=0 wl−1,i,jal−1,i + bl,j

}
= f ·max

{
0,

∑Nl−1−1

i=0 wl−1,i,jal−1,i+bl,j
f

}
.

Biases and incoming weights for neuron j in layer l may then be normalized by f = ‖wl−1,j‖1 =∑Nl−1−1
i=0 |wl−1,i,j |, enabling weights to be seen as a probability distribution over all connections to

a neuron. A similar procedure could be used to normalize all activations al,j of layer l.

Propagating these scaling factors forward layer by layer results in a single scalar (per output), which
converts the outputs of the normalized network to the same range as the original network. This
technique allows for the usage of integer weights and activations throughout the entire network
without requiring rescaling or conversion to floating point at every layer.

2

Under review as a conference paper at ICLR 2020

3.2 NETWORK QUANTIZATION

Taking advantage of the normalized network, we can simulate discrete probability densities by con-
structing a probability density function (PDF) and then sampling from the corresponding cumulative
density function (CDF). The number of references of a weight is then the quantized integer approx-
imation of the continuous value. For simplicity, the following discussion shows the quantization
procedure for weights; activations can be quantized in the same way at inference time.

Without loss of generality, given n weights, assuming
∑n−1

k=0 |wk| = ‖w‖1 = 1 and defining a
partition of the unit interval by Pm :=

∑m
k=1 |wk| we have the following partitions:

0 = P0 Pn−1 = 1P1 P2 Pn−2

|w1| |w2| |wn−1|

(1)

Then, given N uniformly distributed samples xi ∈ [0, 1), we can approximate the weight distribution
as follows:

n−1∑
j=0

wjaj ≈
1

N

N−1∑
i=0

sign(wji)︸ ︷︷ ︸
∈{−1,0,1}

×aji , (2)

where ji ∈ {0, . . . , n− 1} is uniquely determined by Pji−1 ≤ xi < Pji .

One can further improve this sampling process by using jittered equidistant sampling. Thus, given
a random variable ξ ∈ [0, 1), we generate N uniformly distributed samples xi ∈ [0, 1) such that

xi =
i+ ξ

N
, where i ∈ {0, . . . , N − 1}. The combination of equidistant samples and a random offset

improves the weight approximation, as the samples are more uniformly distributed. The variance of
different sampling seeds is discussed in the Appendix.

4 MONTE CARLO QUANTIZATION (MCQ)

Our approach builds on the aforementioned ideas of network normalization and quantization using
random sampling to quantize an entire pre-trained full-precision neural network. As before, we focus
on weight quantization; online activation quantization is discussed in Section 4.4. Our method, called
Monte Carlo Quantization (MCQ), consists of the following steps, which are executed layer by layer:

(1) Create a probability density function (PDF) for all Nl,w weights of layer l such that∑Nl,w−1
i=0 |wl,i| = 1 (Section 4.1).

(2) Perform importance sampling on the weights based on their magnitude by sampling from
the corresponding cumulative density function (CDF) and counting the number of hits per
weight (Section 4.2).

(3) Replace each weight with its quantized integer value, i.e. its hit count, to obtain a low
bit-width, integer weight representation (Section 4.3).

The pseudo-code for our method is shown in Algorithm 1 of the Appendix. Figure 1 illustrates both
the normalization and importance sampling processes for a layer with 10 weights and 1 sample per
weight, i.e. K = 1.0.

4.1 LAYER NORMALIZATION

Performing normalization neuron-wise, as introduced in Section 3.1 may result in an inferior ap-
proximation, especially when the number of weights to sample from is small, as for example in
convolutional layers with a small number of filters or input channels. To mitigate this, we propose to
normalize all neurons simultaneously in a layer-wise manner. This has the additional advantage that
samples can be redistributed from low-importance neurons to high-importance neurons (according to

3

Under review as a conference paper at ICLR 2020

0 1 2 3 4 5 6 7 8 9
Weight index

−1.0
−0.4

0.2
0.8
1.4
2.0

V
al

u
e

(a) Full-precision weights

8 7 1 9 6 5 2 0 4 3
Weight index

0.01
0.05

0.10
0.14
0.18

0.23

V
al

u
e

(b) Sorted PDF

8 7 1 9 6 5 2 0 4 3
Weight index

0.0

0.2

0.4

0.6

0.8

1.0

V
al

u
e

x0
x1
x2
x3
x4
x5
x6
x7
x8
x9

(c) Sampling on CDF

0 1 2 3 4 5 6 7 8 9
Weight index

−1

00

11

2

V
al

u
e

(d) Integer weights

Figure 1: Starting from full-precision weights (a), we create a PDF of the sorted absolute values (b)
and uniformly sample from the corresponding CDF (c). The sampling process produces quantized

integer network weights based on the number of hits per weight (d). Note that since weights 7, 8, and
9 were not hit, sparsity is introduced which can be exploited by hardware accelerators.

some metric), resulting in an increased level of sparsity. Additionally, there is more opportunity for
global optimization, so the overall weight distribution approximation improves as well.

We use the 1-norm of all weights of a given layer l as the scaling factor f used to perform weight
normalization. Thus, each normalized weight can be seen as a probability with respect to all
connections between layer l− 1 and layer l, instead of a single neuron. This layer-wise normalization
technique is similar to Weight Normalization (Salimans & Kingma, 2016), which decouples the
neuron weight vector magnitude from its direction.

4.2 IMPORTANCE SAMPLING

As introduced in Section 3.2, we generate ternary samples (hit positive weight, hit negative weight,
or no hit), and count such hits during the sampling process. Note that even though the individual
samples are ternary, the final quantized values may not be, because a single weight can be sampled
multiple times. For jittered sampling, we use one random offset per layer, with a number of samples
N = K ·Nvalues, where K ∈ R+ is a user-specified parameter to control the number of samples
and Nvalues represents the number of weights of a given layer. By varying K, the computational
cost of sampling can be traded off better approximation (more bits per weight) of the original weight
distribution, leading to higher accuracy. In our experiments, K is set the same for all network layers.

One simple modification to enhance the quality of the discrete approximation is to sort the continuous
values prior to creating the PDF. Applying sorting mechanisms to Monte Carlo schemes has been
shown to be beneficial in the past (L’Ecuyer et al., 2008; 2018). Sorting groups smaller values together
in the overall distribution. Since we are using a uniform sampling strategy, smaller weights are then
sampled less often, which results in both higher sparsity and a better quantized approximation of the
larger weights in practice. This effect is particularly significant on smaller layers with fewer weights.

Since the quantized integer weights span a different range of values than the original weights, and
biases remain unchanged, care must be taken to ensure the activations of each neuron are calculated
correctly. After the integer multiply-accumulate (MAC) operation, the result must then be scaled
by f

N before adding the bias. This requires the storage of one floating point scaling value per layer.
However, weights are stored as low bit-width integers and the computational cost is greatly reduced
since the MAC operations use low-precision integers only instead of floating point numbers.

4.3 LAYER QUANTIZATION

The number of bits required for the weights BWl
∈ N, for layer l and its quantized weights Q(wl,i),

corresponds to the bit amount needed to represent the highest hit count during sampling, including its
sign: BWl

= 1 + blog2 (max0≤i≤Nw−1 |Q(wl,i)|)c+ 1. Alternatively, positive and negative weights
could be separated into two sets.

4.4 ONLINE QUANTIZATION

While weights are quantized offline, i.e. after training and before inference, activations are quantized
online during inference time using the same procedure as weight quantization previously described.
Thus, in the normalization step (Section 4.1), all Nl,a activations of a given layer l are treated

4

Under review as a conference paper at ICLR 2020

as a probability distribution over the output features, such that
∑Nl,a−1

j=0 |al,j | = 1. Then, in the
importance sampling step (Section 4.2), activations are sub-sampled using possibly different relative
sampling amounts, i.e. K, than the ones used for the weights (we use the sameK for both weights and
activations in all of our experiments). The required number of bits BAl

for the quantized activations
Q(al,j) can also be calculated similarly as described in Section 4.3, although no additional bit sign is
required when using ReLU since all activations are non-negative.

5 EXPERIMENTS

The proposed method is extensively evaluated on a variety of tasks: for image classification we use
CIFAR-10 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al., 2011), and ImageNet (Deng et al.,
2009), on multiple models each. We further evaluate MCQ on language modeling, speech recognition,
and machine translation, to assess the preformance of MCQ across different task domains.

Due to the automatic quantization done by MCQ, some layers may be quantized to lower or higher
levels than others. We indicate the quantization level for the whole network by the average number of
bits, e.g. ’8w-32a’ means that on average 8 bits were used for weights and 32 bits for activations on
each layer.

Many works note that quantizing the first or last network layer reduces accuracy significantly (Han
et al., 2015; Zhou et al., 2016; Li et al., 2016). We use footnotes 1, 2, and 3 to denote the special
treatment of first or last layers respectively. For MCQ we report the results with both quantized and
full-precision first layer. We do not quantize Batch Normalization layers as the parameters are fixed
after training and can be incorporated into the weights and biases (Wu et al., 2018).

Tables 1 to 4 show the accuracy difference ∆ between the quantized and full-precision models. For
other compared works this difference is calculated using the baseline models reported in each of the
respective works. We didn’t perform any search over random sampling seeds for MCQ’s results.

5.1 CIFAR-10

The best accuracies on VGG-7, VGG-14, and ResNet-20 produced by our method using K = 1.0
on CIFAR-10 are shown in Table 1. We refer to the Appendix for model and training details. MCQ
outperforms or shows competitive results showing minimal accuracy loss on all tested models against
the compared methods that require network re-training. The full-precision baselines for BNN (Hubara
et al., 2016) and XNOR-Net (Rastegari et al., 2016) are from BC (Courbariaux et al., 2015) as these
works use the same model. Similarly, BWN (Rastegari et al., 2016)’s results on VGG-7 are the ones
reported in TWN (Li et al., 2016) since they did not report the baseline in the original paper.

Figure 2 shows the effects of varying the amount of sampling, i.e. using K ∈ [0.1...2.0].The average
percentage of used weights/activations per layer and corresponding bit-widths of the final quantized
model is also presented on each graph. We observe a rapid increase of the accuracy even when
sparsity levels are high on all tested models.

5.2 SVHN

For SVHN, the tested models are identical to the compared methods. Models B, C, and D have the
same architecture as Model A but with a 50%, 75%, and 87.5% reduction in the number of filters in
each convolutional layer, respectively (Zhou et al., 2016). We refer to the Appendix for further model
and training details.

Table 2 shows MCQ’s results for several models on SVHN using K = 1.0. On bigger models, i.e.
VGG-7* and Model A, we see minimal accuracy loss when compared to the full-precision baselines.
For the smaller models, we observe a slight accuracy degradation as model size decreases due to the
reduction in the sample size, resulting in a poorer approximation. However, we used only about 4
bits per weight/activation for such models. Thus, increasing the number of samples would improve

1Not quantizing weights in the first layer.
2Not quantizing weights in the last layer.
3Using higher precision (8w-8a) for the first layer.

5

Under review as a conference paper at ICLR 2020

Table 1: Accuracy results on CIFAR-10 when quantizing either weights or activations or both.
Quantizing only the weights leads to an accuracy loss of ≈ 1.0% in the worst case. Quantizing both
weights and activations does not reduce accuracy on VGG-7 while ResNet-20’s accuracy decreases
by ≈ 1.0%. Quantizing the first layer results in an additional ≈ 0.5% accuracy loss on all models.

METHOD VGG-7 VGG-14 RESNET-20

FULL PRECISION (32W-32A) 91.23 92.49 95.02
∆ MCQ (QUANTIZED W) -0.48 (6.1W-32A) / +0.041 (6.1W-32A) -1.04 (6.7W-32A) / -0.501 (6.8W-32A) -0.84 (5.1W-32A) / -0.541 (5.1W-32A)
∆ MCQ (QUANTIZED A) -0.121 (32W-5.68A) -0.061(32W-5.51A) -0.281(32W-6.3A)
∆ MCQ (QUANTIZED W + A) -0.58 (6.1W-5.6A) / -0.131 (6.1W-5.6A) -1.08 (6.6W-5.3A) / -0.541 (6.8W-5.5A) -1.77 (5.1W-5.3A) / -1.211 (5.1W-5.3A)

∆ TTQ (2W-32A) - - -0.641

∆ DLAC (2W-32A) - -3.0 / -1.41 -
∆ TWNS (2W-32A) -0.06 - -
∆ BC (1W-32A) +0.74 - -
∆ BNN (1W-1A) +0.491 - -
∆ BWN (1W-32A) -0.36 / +0.761 - -
∆ XNOR-NET (1W-1A) +0.471 - -
∆ RQ (8W-8A)) +0.25 - -
∆ LR-NET (2W-32A) -0.112 - -

0.5 1.0 1.5 2.0
Number of samples per weight/activation

0.0

20.0

40.0

60.0

80.0

100.0

91.2

A
cc

u
ra

cy
(%

)

VGG-7 on CIFAR-10

Full precision model

Quantized model

Quantized model
(except first layer)

Weights

Activations

0.5 1.0 1.5 2.0
Number of samples per weight/activation

0.0

20.0

40.0

60.0

80.0

100.0
92.5

VGG-14 on CIFAR-10

Full precision model

Quantized model

Quantized model
(except first layer)

Weights

Activations

0.5 1.0 1.5 2.0
Number of samples per weight/activation

0.0

20.0

40.0

60.0

80.0

100.0
95.0

ResNet-20 on CIFAR-10

Full precision model

Quantized model

Quantized model
(except first layer)

Weights

Activations

Figure 2: Results of quantizing both weights and activations on CIFAR-10 using different sampling
amounts. The quantized models reach close to full-precision accuracy at around half the sample size
while using only around half the weights and one-third of the activations of the full-precision models.

accuracy while still maintaining a low bit-width. Figure 3 illustrates the consequences of varying
the number of samples. Less samples are required than on CIFAR-10 for bigger models to achieve
close to full-precision accuracy. Potentially this is because layers have a larger number of weights
and activations, so a larger sample size reduces quantization noise since the important values being
more likely to be better approximated.

5.3 IMAGENET

For ImageNet, we evaluate MCQ on AlexNet, ResNet-18, and ResNet-50 using the pre-trained models
provided by Pytorch’s model zoo (Paszke et al., 2017)). Table 3 shows the results on ImageNet with
K = 5.0 for the different models. The results shown for DoReFa, BWN, TWN (Zhou et al., 2016;
Rastegari et al., 2016; Li et al., 2016) are the ones reported in TTQ (Zhu et al., 2016).

Figure 4 shows the accuracy of the quantized model when using different sample sizes, i.e., K ∈
[0.25, ..., 5.0]. We observe that more sampling is required to achieve a close to full-precision model
accuracy on ImageNet. On this dataset, sorting the CDF before sampling didn’t result in any
improvements, so reported results are without sorting. All the quantized models achieve close to
full-precision accuracy, though more samples are required than for the previous datasets resulting in
a higher required bit-width.

5.4 EXPERIMENTS ON ADDITIONAL TASKS

To assess the robustness of MCQ, we further evaluate MCQ on several models in natural language
and speech processing. We evaluate language modeling on Wikitext-103 using a Transformer-based
model (Baevski & Auli, 2018) and Wikitext-2 using a 2-layer LSTM (Zhao et al., 2019), speech
recognition on VCTK using Deepspeech2 (Amodei et al., 2015), and machine translation on WMT-14
English-to-French using a Transformer (Ott et al., 2018). Additional details are provided in the
Appendix. Table 4 shows the comparison to full-precision models for these various tasks.

6

Under review as a conference paper at ICLR 2020

Table 2: Accuracy results on SVHN when quantizing weights, activations, or both. On VGG-7*,
MCQ shows minimal accuracy loss when quantizing both weights and activations and close to no

accuracy loss when not quantizing the first layer. For models A, B, C, and D the accuracy lowers as
the model size decreases. Quantizing only the activations barely lowers the baseline accuracy.

METHOD VGG-7* MODEL A MODEL B MODEL C MODEL D

FULL PRECISION (32W-32A) 94.06 96.01 95.03 94.08 91.08
∆ MCQ (QUANTIZED W) -0.30 (7.3W-32A) / -0.021 (7.0W-32A) -0.201 (5.1W-32A) -0.301 (4.8W-32A) -1.481 (4.1W-32A) -2.171 (4.1W-32A)
∆ MCQ (QUANTIZED A) -0.04 (32W-7.15A) +0.011 (32W-5.28A) -0.031 (32W-5.11A) -0.121 (32W-4.88A) -0.111 (32W-4.58A)
∆ MCQ (QUANTIZED W + A) -0.32 (7.2W-6.0A) / -0.061 (7.0W-5.5A) -0.401 (5.1W-4.2A) -0.561 (4.8W-4.1A) -2.131 (4.1W-3.9A) -3.721 (4.1W-3.7A)

∆ DOREFA (1W-1A) - -0.41,2 -1.21,2 -5.11,2 -10.91,2

∆ BC (1W-32A) +0.14 - - - -
∆ BNN (1W-1A) -0.091 - - - -

0.5 1.0 1.5 2.0
Number of samples per weight/activation

0.0

20.0

40.0

60.0

80.0

100.0
96.0

A
cc

u
ra

cy
(%

)

Model A on SVHN

Full precision model

Quantized model

Quantized model
(except first layer)

Weights

Activations

0.5 1.0 1.5 2.0
Number of samples per weight/activation

0.0

20.0

40.0

60.0

80.0

100.0
95.0

Model B on SVHN

Full precision model

Quantized model

Quantized model
(except first layer)

Weights

Activations

0.5 1.0 1.5 2.0
Number of samples per weight/activation

0.0

20.0

40.0

60.0

80.0

100.0
94.1

Model C on SVHN

Full precision model

Quantized model

Quantized model
(except first layer)

Weights

Activations

0.5 1.0 1.5 2.0
Number of samples per weight/activation

0.0

20.0

40.0

60.0

80.0

100.0

91.1

A
cc

u
ra

cy
(%

)

Model D on SVHN

Full precision model

Quantized model

Quantized model
(except first layer)

Weights

Activations

0

20

40

60

80

F
ra

ct
io

n
n

on
ze

ro
af

te
r

qu
an

ti
za

ti
on

(%
)

0

1

2

3

4

5

6

7

N
u

m
b

er
of

b
it

s

0.2 0.4 0.6 0.8 1.0
Number of samples per weight/activation

0.0

20.0

40.0

60.0

80.0

100.0
94.1

VGG-7 on SVHN

Full precision model

Quantized model

Quantized model
(except first layer)

Weights

Activations

0

5

10

15

20

25

30

F
ra

ct
io

n
n

on
ze

ro
af

te
r

qu
an

ti
za

ti
on

(%
)

0

2

4

6

8

10

N
u

m
b

er
of

b
it

s

Figure 3: Results of quantizing both weights and activations on SVHN using different sampling
amounts. The quantized VGG-7* model reaches close to full-precision accuracy using around 0.5
samples per weight/activation, requiring around 8 bits and using 22% of the weights of the original
model, with 22% nonzero activations. Model A, B, C, and D are less redundant models that require

more sampling to achieve close to full-precision accuracy.

6 DISCUSSION AND FUTURE WORK

The experimental results show the performance of MCQ on multiple models, datasets, and tasks,
demonstrated by the minimal loss of accuracy compared to the full-precision counterparts. MCQ
either outperforms or is competitive to other methods that require additional training of the quantized
network. Moreover, the trade-off between accuracy, sparsity, and bit-width can be easily controlled
by adjusting the number of samples. Note that the complexity of the resulting quantized network is
proportional to the number of samples in both space and time.

One limitation of MCQ, however, is that it often requires a higher number of bits to represent the
quantized values. On the other hand, this sampling-based approach directly translates to a good
approximation of the real full-precision values without any additional training. Recently Zhao et al.
(2019) proposed to outlier channel splitting, which is orthogonal work to MCQ and could be used to
reduce the bit-width required for the highest hit counts.

There are several paths that could be worth following for future investigations. In the importance
sampling stage, using more sophisticated metrics for importance ranking, e.g. approximation of the
Hessian by Taylor expansion could be beneficial (Molchanov et al., 2016). Automatically selecting
optimal sampling levels on each layer could lead to a lower cost since later layers seem to tolerate
more sparsity and noise. For efficient hardware implementation, it’s important that the quantized

7

Under review as a conference paper at ICLR 2020

Table 3: Accuracy results on ImageNet when quantizing weights, activations, or both. When
quantizing weights only, accuracy drops less than 1% in all tested models. Quantizing only the

activations generally leads to a lower accuracy loss compared to quantizing weights. Quantizing both
weights and activations leads to an additional accuracy loss of 0.6% in the worst case, i.e. ResNet-50.

METHOD ALEXNET RESNET-18 RESNET-50

FULL PRECISION (32W-32A) 56.52 69.76 76.13
∆ MCQ (QUANTIZED W) -0.99 (8.00W-32A) / -0.681 (8.00W-32A) -0.72 (8.00W-32A)/ -0.631 (8.00W-32A) -0.73 (8.28W-32A)/ -0.201 (8.28W-32A)
∆ MCQ (QUANTIZED A) +0.021 (32W-8.36A) -0.581 (32W-7.36A) -0.761 (32W-7.45A)
∆ MCQ (QUANTIZED W + A) -1.05 (7.88W-8.46A) / -0.751 (8.00W-7.2A) -1.13 (8.00W-7.35A) /-1.031 (8.00W-7.36A) -1.64 (8.26W-7.43A) / -1.211 (8.28W-7.45A)

∆ FGQ (2W-8A) -7.793 - -4.29
∆ TTQ (2W-32A) +0.31,2 -3.01,2 -
∆ TWNS (2W-32A) -2.71,2 -4.31,2 -
∆ BWN (1W-32A) +0.2 -8.51,2 -
∆ XNOR-NET (1W-1A) -12.4 -18.11,2 -
∆ DOREFA (1W-32A) -3.31,2 - -
∆ INQ (5W-32A) -0.15 -0.71 -1.59
∆ RQ (8W-8A) - +0.43 -
∆ LR-NET (2W-32A) - -6.071 -

1 2 3 4 5
Number of samples per weight/activation

0.0

10.0

20.0

30.0

40.0

50.0

60.0
56.5

A
cc

u
ra

cy
(%

)

AlexNet on ImageNet

Full precision model

Quantized model
(except first layer)

Weights

Activations

1 2 3 4 5
Number of samples per weight/activation

0.0

20.0

40.0

60.0

ResNet-18 on ImageNet

Full precision model

Quantized model
(except first layer)

Weights

Activations

1 2 3 4 5
Number of samples per weight/activation

0.0

20.0

40.0

60.0

80.0
76.1

ResNet-50 on ImageNet

Full precision model

Quantized model
(except first layer)

Weights

Activations

Figure 4: Results of quantizing both weights and activations on ImageNet using different sampling
amounts. All quantized models reach close to full-precision accuracy at K = 3.

Table 4: Evaluation of MCQ on language modeling, speech recognition, and machine translation. All
quantized models reach close to full precision performance. Note that, as opposed to the image

classification task, we did not study different sampling amounts nor the effect of quantization on
specific network layers. A more in-depth analysis could then help to achieve close to full-precision

accuracy at a lower bit-width on these additional models.

TASK DATASET MODEL METRIC FULL PRECISION (32W-32A) ∆ MCQ (QUANTIZED W)

LANGUAGE MODELING WIKITEXT-103 TRANSFORMER PERPLEXITY ↓ 18.7 +0.21 (8.21W-32A)
LANGUAGE MODELING WIKITEXT-2 LSTM 2X650 PERPLEXITY ↓ 71.05 +0.51 (7.17W-32A)
SPEECH RECOGNITION VCTK DEEPSPEECH2 CER ↓ 7.00 +0.09 (7.26W-32A)
MACHINE TRANSLATION WMT14 EN-FR TRANSFORMER BLEU ↑ 40.83 -0.23 (7.71W-32A)

network can be executed using integer operations only. Bias quantization and rescaling, activation
rescaling to prevent overflow or underflow, and quantization of errors and gradients for efficient
training leave room for future work.

7 CONCLUSION

In this work, we showed that Monte Carlo sampling is an effective technique to quickly and efficiently
convert floating-point, full-precision models to integer, low bit-width models. Computational cost
and sparsity can be traded for accuracy by adjusting the number of sampling accordingly.

Our method is linear in both time and space in the number of weights and activations, and is shown
to achieve similar results as the full-precision counterparts, for a variety of network architectures,
datasets, and tasks. In addition, MCQ is very easy to use for quantizing and sparsifying any pre-trained
model. It requires only a few additional lines of code and runs in a matter of seconds depending on
the model size, and requires no additional training. The use of sparse, low-bitwidth integer weights
and activations in the resulting quantized networks lends itself to efficient hardware implementations.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong
Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse H. Engel, Linxi Fan,
Christopher Fougner, Tony Han, Awni Y. Hannun, Billy Jun, Patrick LeGresley, Libby Lin, Sharan
Narang, Andrew Y. Ng, Sherjil Ozair, Ryan Prenger, Jonathan Raiman, Sanjeev Satheesh, David
Seetapun, Shubho Sengupta, Yi Wang, Zhiqian Wang, Chong Wang, Bo Xiao, Dani Yogatama, Jun
Zhan, and Zhenyao Zhu. Deep speech 2: End-to-end speech recognition in english and mandarin.
CoRR, abs/1512.02595, 2015. URL http://arxiv.org/abs/1512.02595.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling.
CoRR, abs/1809.10853, 2018. URL http://arxiv.org/abs/1809.10853.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks with
low precision multiplications. arXiv preprint arXiv:1412.7024, 2014.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information processing
systems, pp. 3123–3131, 2015.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 1737–1746, Lille, France, 07–09 Jul 2015. PMLR.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Advances in neural information processing systems, pp. 4107–4115, 2016.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

Pierre L’Ecuyer, Christian Lécot, and Bruno Tuffin. A randomized quasi-Monte Carlo simulation
method for Markov chains. Operations Research, 56(4):958–975, 2008.

Pierre L’Ecuyer, David Munger, Christian Lécot, and Bruno Tuffin. Sorting methods and convergence
rates for Array-RQMC: some empirical comparisons. Mathematics and Computers in Simulation,
143:191–201, 2018.

Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint arXiv:1605.04711,
2016.

Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio. Neural networks with
few multiplications. arXiv preprint arXiv:1510.03009, 2015.

Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling.
Relaxed quantization for discretized neural networks. arXiv preprint arXiv:1810.01875, 2018.

9

http://arxiv.org/abs/1512.02595
http://arxiv.org/abs/1809.10853

Under review as a conference paper at ICLR 2020

Matous Machacek and Ondrej Bojar. Results of the wmt14 metrics shared task. In Proceedings of
the Ninth Workshop on Statistical Machine Translation, pp. 293–301, 2014.

Naveen Mellempudi, Abhisek Kundu, Dheevatsa Mudigere, Dipankar Das, Bharat Kaul, and Pradeep
Dubey. Ternary neural networks with fine-grained quantization. arXiv preprint arXiv:1705.01462,
2017.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. CoRR, abs/1708.02182, 2017a. URL http://arxiv.org/abs/1708.
02182.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. CoRR, abs/1708.02182, 2017b. URL http://arxiv.org/abs/1708.
02182.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9(1):2383, 2018.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. Neural Information Processing Systems,
2011.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation.
CoRR, abs/1806.00187, 2018. URL http://arxiv.org/abs/1806.00187.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pp. 525–542. Springer, 2016.

Brandon Reagen, Udit Gupta, Robert Adolf, Michael M Mitzenmacher, Alexander M Rush, Gu-Yeon
Wei, and David Brooks. Weightless: Lossy weight encoding for deep neural network compression.
arXiv preprint arXiv:1711.04686, 2017.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. CoRR, abs/1602.07868, 2016. URL http://
arxiv.org/abs/1602.07868.

Oran Shayer, Dan Levi, and Ethan Fetaya. Learning discrete weights using the local reparameteriza-
tion trick. arXiv preprint arXiv:1710.07739, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
deep learning in NLP. CoRR, abs/1906.02243, 2019. URL http://arxiv.org/abs/1906.
02243.

10

http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1806.00187
http://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/1906.02243

Under review as a conference paper at ICLR 2020

Christophe Veaux, Junichi Yamagishi, Kirsten MacDonald, et al. Cstr vctk corpus: English multi-
speaker corpus for cstr voice cloning toolkit. University of Edinburgh. The Centre for Speech
Technology Research (CSTR), 2017.

Ganesh Venkatesh, Eriko Nurvitadhi, and Debbie Marr. Accelerating deep convolutional networks
using low-precision and sparsity. In 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 2861–2865. IEEE, 2017.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In International conference on machine learning, pp. 1058–1066,
2013.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated
quantization with mixed precision. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 8612–8620, 2019.

Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and inference with integers in deep neural
networks. CoRR, abs/1802.04680, 2018. URL http://arxiv.org/abs/1802.04680.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned quantization for
highly accurate and compact deep neural networks. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 365–382, 2018.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Improving neural
network quantization without retraining using outlier channel splitting. CoRR, abs/1901.09504,
2019. URL http://arxiv.org/abs/1901.09504.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization:
Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044, 2017.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. arXiv
preprint arXiv:1612.01064, 2016.

11

http://arxiv.org/abs/1802.04680
http://arxiv.org/abs/1901.09504

Under review as a conference paper at ICLR 2020

A ALGORITHM

An overview of the proposed method is given in Algorithm 1.

Input: Pre-trained full-precision network
Output: Quantized network with integer weights
for K=0 to L-1 do

unsortedidxs ← argsort(WK);
Wsorted ← sort(WK);
Wabs ← abs(Wsorted);
// Create PDF

WPDF ←
Wabs

‖WK‖1
;

// Create CDF

WCDF ←
∑|WPDF |

i=1 WPDFi ;
N ← ceil(|WK | ∗K);
startidx ← 0;
ξ ← random(0, 1) ;
// Initialize discrete weights with zeros
W ′K ← [0]× |WK |;
// Start subsampling
for i=0 to N − 1 do

xi ←
i+ ξ

N
;

hitidx ← argmax(WCDF [startidx :] ≥ xi) + startidx;
startidx ← hitidx;
unsortedidx ← unsortedidxs[hitidx]
// Update counter
if WK [unsortedidx] > 0 then

W ′K [unsortedidx]++;
else

W ′K [unsortedidx]--;
end

end
// Update to integer weights
WK ←W ′K ;
// Update layer’s precision
BWK

← 1 + floor(log2(max(abs(W ′K)))) + 1 ;
end
Algorithm 1: Monte Carlo Quantization (MCQ) on network weights. L represents the number of
trainable layers, K indicates the percentage of samples to be sampled per weight. The process is
performed equivalently for quantizing activations at inference time. Our algorithm is linear in both
time and space in the number of weights and activations.

B AVOIDING EXPLODING ACTIVATIONS

When using integer weights, care has to be taken to avoid overflows in the activations. For that,
activations can be scaled using a dynamically computed shifting factor as in Wu et al. (2018). With
Monte Carlo sampling, since we know the expected value of the next-layer activations, we can scale
accordingly.

E(I0,i) =
NsamplesI

NI
E(W0,j) =

NsamplesW0

NI ·NL1

(3)

With the activation equation presented in Section 3.1 and NI connections from the input layer to
every neuron in the second layer:

12

Under review as a conference paper at ICLR 2020

E(|al,j |) =

NI−1∑
i=0

E(W0,j) ·E(I0,i) (4)

With NsamplesW0
= Kw · (NI ·NL1) and NsamplesI = Ka ·NI :

E(|al,j |) = NI ·
Kw · (NI ·NL1

) ·Ka ·NI

NI ·NL1
·NI

= NI ·Kw ·Ka (5)

The activations of a neuron need to be scaled by its number of inputs (the receptive field Fin),
multiplied with the number of samples per weight and the number of samples per activation. This is
also valid for neurons in convolutional layers, where the receptive field is 3D, e.g. 3× 3× 128.

Moreover, care must be taken to scale biases correctly, by taking both the scaling of weights and
activations into account:

biasscaled = bias · Nsamples

‖Worig‖1
· 1

Fin
(6)

C FULL-PRECISION MODELS TRAINING DETAILS

The architectures and training details of all tested models for CIFAR-10, SVHN, and ImageNet are
presented in Sections C.1, C.2, and C.3, respectively. Details of the additional experiments presented
in Section 5.4 are shown in Sections C.4, C.5, and C.6.

C.1 CIFAR-10

We trained our full-precision baseline models on the CIFAR-10 dataset Krizhevsky & Hinton (2009),
consisting of 50000 training samples. We evaluated both our full-precision and quantized models
similarly on the rest of the 10000 testing samples. The full-precision VGG-7 (2×128C3−MP2−2×
256C3−MP2−2×512C3−MP2−1024FC−Softmax) and VGG-14 (2×64C3−MP2−2×
128C3−MP2−3×256C3−MP2−3×512C3−MP2−3×512C3−MP2−1024FC−Softmax)
models were trained using the code at https://github.com/bearpaw/pytorch-classification. Each was
trained for 300 epochs with the Adam optimizer, with a learning rate starting at 0.1 and decreased by
factor 10 at epochs 150 and 225, batch size of 128, and weights decay of 0.0005. The ResNet-20
model uses the standard configuration described He et al. (2016), with 64, 128 and 256 filters in the
respective residual blocks. We used more filters to increase the number of available weights in the
first block to sample from. This could be similarly performed by sampling more on this specific
model to reduce the accuracy loss. The ResNet-20 model is trained using the same hyperparameter
settings as the VGG models.

C.2 SVHN

We trained our full-precision baseline models on the Street View House Numbers (SVHN) dataset
Netzer et al. (2011), consising of 73257 training samples. We evaluated both our full-precision
and quantized models similarly using the 26032 testing samples provided in this dataset. The full-
precision VGG-7* model (2 × 64C3 − MP2 − 2 × 128C3 − MP2 − 2 × 256C3 − MP2 −
1024FC − Softmax) was trained for 164 epochs, using the Adam optimizer with learning rate
starting at 0.001 and divided by 10 at epochs 80 and 120, weight decay 0.001, and batch size 200.
Models A (48C3−MP2− 2× 64C3−MP2− 3× 128C3−MP2− 512C3− Softmax), B,
C, and D were trained using the code at https://github.com/aaron-xichen/pytorch-playground and the
same hyperparameter settings as VGG-7* but trained for 200 epochs.

C.3 IMAGENET

We evaluated both our full-precision and quantized models similarly on the validation
set of the ILSVRC12 classification dataset Deng et al. (2009), consisting of 50K valida-

13

https://github.com/bearpaw/pytorch-classification
https://github.com/aaron-xichen/pytorch-playground

Under review as a conference paper at ICLR 2020

tion images. The full-precision pre-trained models are taken from Pytorch’s model zoo
https://pytorch.org/docs/stable/torchvision/models.html (Paszke et al., 2017).

C.4 VCTK

CSTR’s VCTK Corpus (Centre for Speech Technology Voice Cloning Toolkit) includes speech
data uttered by 109 native speakers of English with various accents, where each speaker reads
out about 400 sentences, most of which were selected from a newspaper. The evaluated
model uses 2 convolutional layers and 5 GRU layers of 768 hidden units, using code from
https://github.com/SeanNaren/deepspeech.pytorch (Veaux et al., 2017).

C.5 WIKITEXT

The WikiText language modeling dataset is a collection of over 100 million tokens extracted from
the set of verified Good and Featured articles on Wikipedia. Compared to the preprocessed ver-
sion of Penn Treebank (PTB), WikiText-2 is over 2 times larger and WikiText-103 is over 110
times larger. The WikiText dataset also features a far larger vocabulary and retains the origi-
nal case, punctuation and numbers - all of which are removed in PTB. As it is composed of
full articles, the dataset is well suited for models that can take advantage of long term depen-
dencies. The WikiText-2 model was a 2-layer LSTM with 650 hidden neurons, and an embed-
ding size of 400. It was trained using the setup and code at https://github.com/salesforce/awd-
lstm-lm (Merity et al., 2017b). The WikiText-102 model was a pretrained model available at
https://github.com/pytorch/fairseq/tree/master/examples/language model, along with evaluation code
(Baevski & Auli, 2018).

C.6 NMT

The dataset is WMT14 English-French, cmobining data from several other corpuses, amongst
others the Europarl corpus, the News Commentary corpus, and the Common Crawl
corpus (Machacek & Bojar, 2014). The model was a pretrained model available at
https://github.com/pytorch/fairseq/tree/master/examples/scaling nmt, along with evaluation code
(Ott et al., 2018).

D QUANTIZING WEIGHTS ONLY

Figures 5, 6, and 7 show the effects of varying the amounts of sampling when quantizing only the
weights.

0.5 1.0 1.5 2.0
Number of samples per weight

0.0

20.0

40.0

60.0

80.0

100.0

91.2

A
cc

u
ra

cy
(%

)

VGG-7 on CIFAR-10

Full precision model

Quantized model

Quantized model
(except first layer)

Fraction of nonzero weights (%)

Number of bits/weight

0.5 1.0 1.5 2.0
Number of samples per weight

0.0

20.0

40.0

60.0

80.0

100.0
92.5

VGG-14 on CIFAR-10

Full precision model

Quantized model

Quantized model
(except first layer)

Fraction of nonzero weights (%)

Number of bits/weight

0.5 1.0 1.5 2.0
Number of samples per weight

0.0

20.0

40.0

60.0

80.0

100.0
95.0

ResNet-20 on CIFAR-10

Full precision model

Quantized model

Quantized model
(except first layer)

Fraction of nonzero weights (%)

Number of bits/weight

Figure 5: Quantized weights on CIFAR-10.

E QUANTIZING ACTIVATIONS ONLY

Figures 8, 9, and 10 show the effects of varying the amounts of sampling when quantizing only the
activations. We observe less sampling is required to achieve full-precision accuracy when quantizing
only the activations when compared to quantizing the weights only.

14

https://pytorch.org/docs/stable/torchvision/models.html
https://github.com/SeanNaren/deepspeech.pytorch
https://github.com/salesforce/awd-lstm-lm
https://github.com/salesforce/awd-lstm-lm
https://github.com/pytorch/fairseq/tree/master/examples/language_model
https://github.com/pytorch/fairseq/tree/master/examples/scaling_nmt

Under review as a conference paper at ICLR 2020

0.5 1.0 1.5 2.0
Number of samples per weight

0.0

20.0

40.0

60.0

80.0

100.0
94.1

A
cc

u
ra

cy
(%

)

Model A on SVHN

Full precision model

Quantized model

Quantized model
(except first layer)

Fraction of nonzero weights (%)

Number of bits/weight

0.5 1.0 1.5 2.0
Number of samples per weight

0.0

20.0

40.0

60.0

80.0

100.0
94.1

Model B on SVHN

Full precision model

Quantized model

Quantized model
(except first layer)

Fraction of nonzero weights (%)

Number of bits/weight

0.5 1.0 1.5 2.0
Number of samples per weight

0.0

20.0

40.0

60.0

80.0

100.0
94.1

Model C on SVHN

Full precision model

Quantized model

Quantized model
(except first layer)

Fraction of nonzero weights (%)

Number of bits/weight

0.5 1.0 1.5 2.0
Number of samples per weight

0.0

20.0

40.0

60.0

80.0

100.0
94.1

A
cc

u
ra

cy
(%

)

Model D on SVHN

Full precision model

Quantized model

Quantized model
(except first layer)

Fraction of nonzero weights (%)

Number of bits/weight

0

20

40

60

80

F
ra

ct
io

n
of

n
on

ze
ro

w
ei

gh
ts

(%
)

0

1

2

3

4

5

6

7

N
u

m
b

er
of

b
it

s

0.5 1.0 1.5 2.0
Number of samples per weight

0.0

20.0

40.0

60.0

80.0

100.0
94.1

VGG-7 on SVHN

Full precision model

Quantized model

Quantized model
(except first layer)

Fraction of nonzero weights (%)

Number of bits/weight

0

5

10

15

20

25

30

F
ra

ct
io

n
of

n
on

ze
ro

w
ei

gh
ts

(%
)

0

2

4

6

8

10

N
u

m
b

er
of

b
it

s

Figure 6: Quantized weights on SVHN.

1 2 3 4 5
Number of samples per weight

0.0

10.0

20.0

30.0

40.0

50.0

60.0
56.5

A
cc

u
ra

cy
(%

)

AlexNet on ImageNet

Full precision model

Quantized model

Quantized model
(except first layer)

Fraction of nonzero weights (%)

Number of bits/weight

1 2 3 4 5
Number of samples per weight

0.0

20.0

40.0

60.0

80.0

69.8

ResNet-18 on ImageNet

Full precision model

Quantized model

Quantized model
(except first layer)

Fraction of nonzero weights (%)

Number of bits/weight

1 2 3 4 5
Number of samples per weight

0.0

20.0

40.0

60.0

80.0
76.1

ResNet-50 on ImageNet

Full precision model

Quantized model

Quantized model
(except first layer)

Fraction of nonzero weights (%)

Number of bits/weight

Figure 7: Quantized weights on ImageNet.

F EFFECTS OF DIFFERENT SAMPLING SEEDS

In a small experiment on CIFAR-10, we observe that using different sampling seeds can result in
up to a ≈ 0.5% absolute variation in accuracy of the different quantized networks (Figure 11). Grid
searching over several sampling seeds may then be beneficial to achieve a better quantized model in
the end, depending on the use-case.

15

Under review as a conference paper at ICLR 2020

0.5 1.0 1.5 2.0
Number of samples per activation

0.0

20.0

40.0

60.0

80.0

100.0

91.2

A
cc

u
ra

cy
(%

)
VGG-7 on CIFAR-10

Quantized model

Activations

0.5 1.0 1.5 2.0
Number of samples per activation

0.0

20.0

40.0

60.0

80.0

100.0
92.5

VGG-14 on CIFAR-10

Quantized model

Activations

0.5 1.0 1.5 2.0
Number of samples per activation

0.0

20.0

40.0

60.0

80.0

100.0
95.0

ResNet-20 (64 filters) on CIFAR-10

Quantized model

Activations

Figure 8: Quantized activations on CIFAR-10.

0.5 1.0 1.5 2.0
Number of samples per activation

0.0

20.0

40.0

60.0

80.0

100.0
96.0

A
cc

u
ra

cy
(%

)

Model A on SVHN

Full precision model

Quantized model

Activations

0.5 1.0 1.5 2.0
Number of samples per activation

0.0

20.0

40.0

60.0

80.0

100.0
95.0

Model B on SVHN

Full precision model

Quantized model

Activations

0.5 1.0 1.5 2.0
Number of samples per activation

0.0

20.0

40.0

60.0

80.0

100.0
94.1

Model C on SVHN

Full precision model

Quantized model

Activations

0.5 1.0 1.5 2.0
Number of samples per activation

0.0

20.0

40.0

60.0

80.0

100.0

91.1

A
cc

u
ra

cy
(%

)

Model D on SVHN

Full precision model

Quantized model

Activations

0

20

40

60

80

F
ra

ct
io

n
n

on
ze

ro
af

te
r

qu
an

ti
za

ti
on

(%
)

0

1

2

3

4

5

6

7

N
u

m
b

er
of

b
it

s

0.5 1.0 1.5 2.0
Number of samples per activation

0.0

20.0

40.0

60.0

80.0

100.0
94.1

VGG-7 on SVHN

Full precision model

Quantized model

Activations

0

5

10

15

20

25

30

F
ra

ct
io

n
n

on
ze

ro
af

te
r

qu
an

ti
za

ti
on

(%
)

0

2

4

6

8

10

N
u

m
b

er
of

b
it

s

Figure 9: Quantized activations on SVHN.

1 2 3 4 5
Number of samples per activation

0.0

10.0

20.0

30.0

40.0

50.0

60.0
56.5

A
cc

u
ra

cy
(%

)

AlexNet on ImageNet

Full precision model

Quantized model

Activations

1 2 3 4 5
Number of samples per activation

0.0

20.0

40.0

60.0

ResNet-18 on ImageNet

Full precision model

Quantized model

Activations

1 2 3 4 5
Number of samples per activation

0.0

20.0

40.0

60.0

80.0
76.1

ResNet-50 on ImageNet

Full precision model

Quantized model

Activations

Figure 10: Quantized activations on ImageNet.

16

Under review as a conference paper at ICLR 2020

(a) Quantized weights (b) Quantized weights and activations

Figure 11: Different sampling seeds on CIFAR-10 with K = 1.0.

17

	Introduction
	Related Work
	Neural Networks and Monte Carlo Methods
	Network Normalization
	Network Quantization

	Monte Carlo Quantization (MCQ)
	Layer Normalization
	Importance Sampling
	Layer Quantization
	Online Quantization

	Experiments
	CIFAR-10
	SVHN
	ImageNet
	Experiments on additional tasks

	Discussion and Future Work
	Conclusion
	Algorithm
	Avoiding Exploding Activations
	Full-Precision Models Training Details
	CIFAR-10
	SVHN
	ImageNet
	VCTK
	Wikitext
	NMT

	Quantizing Weights Only
	Quantizing Activations Only
	Effects of Different Sampling Seeds

