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Abstract
This work provides theoretical and empirical ev-
idence that invariance-inducing regularizers can
increase predictive accuracy for worst-case spa-
tial transformations (spatial robustness). Eval-
uated on these adversarially transformed exam-
ples, we demonstrate that adding regularization
on top of standard or adversarial training reduces
the relative error by 20% for CIFAR10 with-
out increasing the computational cost. This out-
performs handcrafted networks that were explic-
itly designed to be spatial-equivariant. Further-
more, we observe for SVHN, known to have in-
herent variance in orientation, that robust train-
ing also improves standard accuracy on the test
set. We prove that this no-trade-off phenomenon
holds for adversarial examples from transforma-
tion groups in the infinite data limit.

1. Introduction
As deployment of machine learning systems in the real
world has steadily increased over recent years, the trust-
worthiness of these systems is of crucial importance. It
is for example important to understand the properties of
commonly used neural networks including invariances to
certain types of perturbations from both a security and in-
terpretability point of view.

As neural networks have been shown to be expressive both
theoretically [17, 4, 14] and empirically [38], in this work
we study to what extent standard neural networks predic-
tors can be made invariant to small rotations and transla-
tions. In contrast to enforcing conventional invariance on
entire group orbits, we weaken the goal to invariance on
smaller so-called transformation sets. During test time we
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assess transformation set invariance by computing the pre-
diction accuracy on the worst-case (adversarial) transfor-
mation in the (small) transformation set of each image in
the test data. The higher this worst-case prediction accu-
racy of a model is, the more spatially robust we say it is.

Recently, it was observed in [10, 12, 29, 19, 13, 2] that
worst-case prediction performance drops dramatically for
neural network classifiers obtained using standard training,
even for rather small transformation sets. In this context,
we examine the effectiveness of regularization that explic-
itly encourages the predictor to be constant for transformed
versions of the same image. Broadly speaking, there are
two approaches to encourage invariance of neural network
predictors. On the one hand, the relative simplicity of the
mathematical model for rotations and translations has led
to carefully hand-engineered architectures that incorporate
spatial invariance directly [18, 22, 7, 25, 35, 34, 11, 32].
On the other hand, augmentation-based methods [3, 37]
constitute an alternative approach to encourage desired in-
variances on transformation sets. Specifically, the idea is
to augment the training data by a random or smartly cho-
sen transformation of every image for which the predictor
output is enforced to be close to the output of the origi-
nal image. This invariance-inducing regularization term is
then added to the cross entropy loss for back-propagation.

In the empirical sections of this paper, we hence want to ex-
plore the following questions: (a) To what extent can aug-
mentation and regularization based methods improve spa-
tial robustness of common deep neural networks? (b) How
does augmentation-based invariance-inducing regulariza-
tion perform in case of small spatial transformations com-
pared to representative specialized architectures designed
to achieve invariance against entire transformation groups?

As a justification for employing this form of invariance-
inducing regularization, we prove in our theoretical section
in Appendix B that when perturbations come from trans-
formation groups, predictors that optimize the robust loss
are in fact invariant on the set of transformed images. Al-
though recent works show a fundamental trade-off between
robust and standard accuracy in constructed ℓp perturbation
settings [33, 39, 30], we additionally show that this is fun-
damentally different for spatial transformations due to their



group structure.

For the empirical study, we compare spatial robustness
for augmentation-based methods and specialized neural
network architectures on CIFAR-10 and SVHN. We find
that regularized methods can achieve ∼ 20% relative ad-
versarial error reduction compared to previously proposed
augmentation-based methods (including adversarial train-
ing) without requiring additional computational resources.
Furthermore, they outperform representative handcrated
networks that were explicitly designed for invariance.

2. Experimental setup
We now present the details of our methods that we compare
in terms of robustness against spatial transformations.

2.1. Regularization based methods
Denoting by GX the perturbation (also called transforma-
tion invariant) set of images that result from translations of
maximally 3 pixels and rotations of at most 30 degrees, we
consider SGD applied to the following loss functions

min
f∈F

Lnat(f ;R, λ) := E ℓ(f(X), Y ) + λR(f,X, Y )

min
f∈F

Lrob(f ;R, λ) := E sup
x′∈GX

ℓ(f(x′), Y ) + λR(f,X, Y ).

where the expectation is with respect to the empirical distri-
bution and we consider the following different choices for
R that are encouraging invariance

• Rℓ2(f,X, Y ) = supx′∈GX ∥f(X)− f(x′)∥22

• RKL(f,X, Y ) = supx′∈GX DKL(f(x
′), f(X)) (same

as [39] for Lnat)

• RALP(f,X, Y ) = ∥f(x′)− f(X)∥22 with
x′ = argmaxu∈G(X) ℓ(f(u), Y ) (ALP[20])

We describe the different methods we used to calculate the
supremum over the perturbation set in Section C.1 under
defenses and refer to the maximizers of both regularizers
and cross entropy loss as adversarial examples.

2.2. Attacks and defenses

The attacks and defenses we choose largely follow the
setup in [10]. The defense refers to the (efficient) procedure
at training time which aims to make the resulting model ro-
bust to adversarial examples and generally differs from the
(extensive) attack mechanism performed at evaluation time
to assess the model’s robustness.

Grid search attack Following [10], during test time we
use grid search with 775 distinct combinations of transla-
tion and rotations to find the most adversarial example in

the perturbation set for each test image. Although projected
gradient descent methods are effective in increasing adver-
sarial test accuracy for ℓ∞ perturbations, we confirm previ-
ous observations [10] that they are worse than grid search
in this small dimensional perturbation set.

Defenses For the adversarial example which maximizes
either the loss or regularization function, we use the fol-
lowing defense mechanisms: (a) Wo-k: the worst of k ran-
domly drawn transformations; (b) S-PGD: Several steps of
Projected Gradient Descent with respect to the spatial trans-
formation parameters; (c) Random: A randomly drawn
transformation. More details about the attack and defense
methods can be found in Section C.1 in the Appendix.

For clarity of presentation we use a naming convention
consisting of the following components: (a) Reg : refers
to what regularizer was used (ALP, ℓ2, KL or AT) where
AT refers to standard unregularized adversarial training, (b)
batch: refers to using the gradient of the loss on the adver-
sarial examples (rob), natural examples (nat) or both (mix),
and (c) def: the mechanism used to find the adversarial ex-
ample, including random (rnd), worst-of-10 (Wo-10) and
spatial PGD (S-PGD) as described in Section C.1. Thus,
Reg (batch, def) corresponds to using Reg as a regu-
larizing function, the examples defined by batch in the
gradient of the loss and the defense def to find the inner
maximizer.

2.3. Spatial equivariant networks

We compare the robust prediction accuracies from the reg-
ularized networks with three specialized architectures G-
ResNet, ETN and STN, designed to be equivariant against
spatial transformations and translations (see Section C.2 in
the Appendix for more details).

3. Empirical Results
In this section we assess the invariance against small trans-
lations and rotations of estimators obtained by standard,
regularized (adversarial) training techniques and special-
ized spatial equivariant architectures. In order to measure
invariance, we evaluate the natural test accuracy (standard
accuracy on the test set) and robust accuracy

Lrob(f) := E X,Y sup
x′∈GX

ℓ(f(x′), Y ),

where GX are sets of small spatial transformations of X ,
defined rigorously in Section B, and the expectation is the
empirical distribution of the test set. Unless otherwise
noted, the inner maximization is implemented using grid
search (as defined in Section C.1).

In Table 1 we report results for a subset of the experiments
to facilitate comparisons. Results for a more complete set
of methods can be found in the Appendix, Tables 4–9. For



Table 1. Mean accuracies of models trained with various forms of regularized adversarial training as well as standard augmentation
techniques (top) and spatial equivariant networks (bottom). ⋆ denotes standard augmentation plus random rotations.

std std⋆ AT (rob,
Wo-10)

KL (rob,
Wo-10)

ℓ2 (rob,
Wo-10)

ALP (rob,
Wo-10)

KL-C (mix,
S-PGD)

ALP (rob,
S-PGD)

SVHN (nat) 95.48 93.97 96.03 96.13 96.53 96.30 96.14 96.11
(grid) 18.85 82.60 90.35 92.71 92.55 92.04 92.42 92.32

CIFAR (nat) 92.11 89.93 91.76 90.41 90.53 90.11 89.98 89.85
(grid) 9.52 58.29 71.17 77.47 77.06 75.9 78.93 77.80

GRN GRN⋆ ETN ETN⋆ STN STN⋆

SVHN (nat) 96.07 95.05 95.53 95.57 95.61 95.55
(grid) 25.12 84.9 13.15 84.21 36.68 79.28

CIFAR (nat) 93.39 93.08 – – – –
(grid) 16.85 71.64 – – – –

each method, we report averages (standard errors are con-
tained in Tables 4–9) computed over five training runs with
identical hyperparameter settings. We compare all meth-
ods by computing absolute and relative error reductions (de-
fined as absolute error drop

prior error ).

The experiments are conducted choosing deep neural net-
works as the function space F and ℓ is the cross-entropy
loss. In the main paper we consider the datasets SVHN [28]
and CIFAR-10 [21]. For the regularized methods, we train
a ResNet-32 [15], implemented in TensorFlow [1]. The
precise training procedure is described in Sec. C.3. For
training with adversarial examples we augment the data us-
ing random left-right flips and add random translations of
±4px for non-adversarially trained models.

Effectiveness of regularization for adversarial training
In Table 1 (top), the three leftmost columns represent unreg-
ularized methods which all perform worse in grid accuracy
than regularized methods. When considering the three regu-
larizers with the same batch and def (here chosen to be
“rob” and Wo-10) regularized adversarial training improves
the grid accuracy from 71.17% to 77.47% on CIFAR-10
and 90.35% to 92.71% on SVHN, corresponding to a rela-
tive error reduction of 22% and 24% respectively.

Computational considerations In Figure 1, we plot the
grid accuracy vs. the runtime (in hours) for a subset of reg-
ularizers and defense mechanisms on CIFAR-10 for clarity
of presentation. How much overhead is needed to obtain
the reported gains? Comparing AT(rob, Wo-k) (green line)
and ALP(rob, Wo-k) (red line) shows that significant im-
provements in grid accuracy can be achieved by regulariza-
tion with only a small computational overhead. What if
we make the defense stronger? While the leap in robust
accuracy from Wo-1 (also referred to as rnd) to Wo-10 is
quite large, increasing k to 20 only gives diminishing re-
turns while requiring ∼ 3× more training time. Further-
more, for any fixed training time, regularized methods ex-

hibit higher robust accuracies where the gap varies with the
particular choice of regularizer and defense mechanism.
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Figure 1. Mean runtime for different methods on CIFAR-10.
The connected points correspond to Wo-k defenses with k ∈
{1, 10, 20}.

Comparison with spatial equivariant networks Al-
though the rotation-augmented G-ResNet44 obtains higher
grid (SVHN: 84.9%, CIFAR-10: 71.64%) and natural accu-
racies (SVHN: 95%, CIFAR-10: 93.08%) than the rotation-
augmented Resnet-32 on both SVHN (grid: 82.60%, nat:
93.97%) and CIFAR10 (grid: 58.29%, nat: 89.93%), regu-
larizing standard data augmentation (i.e. regularizers with
“rnd”, see Table 2 (right)) using both the ℓ2 distance and
the KL divergence matches the G-ResNet44 on CIFAR10
(ℓ2: 71.60%, KL: 73.50%) and surpasses it on SVHN
on grid (ℓ2: 90.51%, KL: 90.69%) and natural accura-
cies by a relative grid error reduction of ∼ 37%. The
same phenomenon is observed for the augmented ETN and
STN on SVHN.1 In conclusion, regularized augmentation
based methods match or outperform representative end-to-
end networks handcrafted to be equivariant to spatial trans-
formations.

1We had difficulties to train both ETN and STN to higher than
86% natural accuracy for CIFAR10 even after an extensive learn-
ing rate and schedule search so we do not report the numbers here.



Table 2. Mean accuracies of models trained with various forms of regularized adversarial training. Left: All adversarial examples were
found via Wo-10; right: data augmentation setting.

KL (nat,
Wo-10)

ℓ2 (nat,
Wo-10)

ALP (nat,
Wo-10)

SVHN (nat) 96.00 96.05 96.39
(grid) 92.27 92.16 91.98

CIFAR (nat) 90.83 88.32 88.78
(grid) 77.34 75.64 75.43

ℓ2 (nat,
rnd)

KL (nat,
rnd)

ℓ2 (rob,
rnd)

KL (rob,
rnd)

96.34 96.16 96.09 96.23
90.51 90.69 90.48 90.92
87.80 89.33 88.75 89.47
71.60 73.50 71.49 73.22

Trade-off natural vs. adversarial accuracy SVHN is one
of the main datasets (without artificial augmentation like in
rot-MNIST [23]) where spatial equivariant networks have
reported improvements on natural accuracy. This is due to
the inherent orientation variance in the data. In our math-
ematical framework, this corresponds to the assumption in
Theorem 2 of the distribution on the transformation sets
having support Gz . Furthermore, as all numbers in SVHN
have the same label irrespective of small rotations of at
most 30 degrees, the first assumption in Theorem 2 is also
fulfilled. Table 1 and 2 confirm the statement in the The-
orem that improving robust accuracy may not hurt natural
accuracy or even improve it: For SVHN, adding regulariza-
tion to samples obtained both via Wo-10 adversarial search
or random transformation (rnd) consistently not only helps
robust but also standard accuracy.

Comparing the effects of different regularization pa-
rameters on test grid accuracy We study Tables 1 and 2
and attempt to disentangle the effects by varying only one
parameter. For example we can observe that fixing any
regularizer defense to Wo-10, the robust regularized loss
Reg (rob, Wo-10) (i.e., Lrob(f ;R)) does better (or not sta-
tistically significantly worse) than Reg (nat, Wo-10) (i.e.,
Lnat(f ;R)). Furthermore, the KL regularizer generally per-
forms better than ℓ2 for a large number of settings. A
possible explanation for the latter could be that DKL upper
bounds the squared ℓ2 loss on the probability simplex and
is hence more restrictive.

Choice of λ The different regularization methods peak at
different λ in terms of grid accuracy. However, they outper-
form unregularized methods in a large range of λ values,
suggesting that well-performing values of λ are not diffi-
cult to find in practice. These can be seen in Figures 4
and 5 in the Appendix.

Many more insightful experiments can be found in Sec-
tion C.8.

4. Related work
Group equivariant networks There are in general two
types of approaches to incorporate spatial invariance into
the network. In one of the earlier works in the neural net
era, Spatial Transformer Networks were introduced [18]

which includes of a transformer module that predicts trans-
formation parameters followed by a transformer. Later on,
one line of work proposed multiple filters that are discrete
group transformations of each other [22, 25, 7, 41, 35]. For
continuous transformations, steerability [34, 8] and coordi-
nate transformation [11, 32] based approaches have been
suggested.

Regularized training Using penalty regularization to en-
courage robustness and invariance when training neural net-
works has been studied in different contexts: for distribu-
tional robustness [16], domain generalization [26], ℓp ad-
versarial training [27, 20, 39], robustness against simple
transformations [6] and semi-supervised learning [40, 36].
These approaches are based on augmenting the training
data either statically [16, 26, 6, 36], ie. before fitting the
model, or adaptively in the sense of adversarial training,
with different augmented examples per training image gen-
erated in every iteration [20, 27, 39].

Robustness against simple transformations Approaches
targeting adversarial accuracy for simple transformations
have used attacks and defenses in the spirit of PGD (either
on transformation space [10] or on input space projecting
to transformation manifold [19]) and simple random or grid
search [10, 29]. Recent work [9] has also evaluated some
rotation-equivariant networks with different training and at-
tack settings which reduces direct comparability with e.g.
adversarial based defenses [10].

5. Conclusion
In this work, we have explored how regularized augmented
and adversarial training compares against specialized spa-
tial equivariant networks in terms of robustness against spa-
tial transformations consisting of translations and rotations.
Strikingly, even though the method of augmentation can
be applied to encourage any desired invariance, the regu-
larized methods adapt well and perform similarly or better
than specialized networks. We showed that for transfor-
mation invariances and under certain practical assumptions
on the distribution, there is no trade-off between natural
and adversarial accuracy which stands in contrast to the
debate around ℓp-perturbation sets. In summary, it is ad-
vantageous to replace unregularized with regularized aug-
mented/adversarial training in a large variety of setings.
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A. Supplementary material

B. Theoretical results for invariance-inducing regularization
In this section, we first introduce our notion of transformation sets and formalize robustness against a small range of
translations and rotations. We then prove that, on a population level, constraining or regularizing for transformation
set invariance yields models that minimize the robust loss. Moreover, when the label distribution is constant on each
transformation set, we show that the set of robust minimizers not only minimizes the natural loss but, under mild conditions
on the distribution over the transformations, is even equivalent to the set of natural minimizers.

Although the framework can be applied to general problems and transformation groups, we consider image classification
for concreteness. In the following, X ∈ X ⊂ Rd are the observed images, Y ∈ Rp is the one-hot vector for multiclass
labels and both are random variables from a joint distribution P. The function f : Rd → Rp in function space F (e.g. deep
neural network in experiments) maps the input image to a logit vector that is then used for prediction via a softmax layer.

B.1. Transformation sets

Invariance with respect to spatial transformations is often thought of in terms of group equivariance of the representation
and prediction. Instead of invariance with respect to all spatial transformations in a group, we impose a weaker requirement,
that is invariance against transformation sets, defined as follows. We denote by Gz a compact subset of images in the
support of P that can be obtained by transformation of an image z ∈ X . Gz is called a transformation set. For example
in the case of rotations, the transformation set Gz corresponds to the set of observed images in a dataset that are different
versions of the same image z, that can be obtained by small rotations of one another.

By the technical assumption on the space of real images that the sampling operator is bijective, the mapping z → Gz

is bijective. We can hence define G, a set of transformation sets, by G = ∪z∈XGz for a given transformation group.
Importantly, the bijectivity assumption also leads to Gz being disjoint for different images z ∈ X . The above definition is
distribution dependent and G partitions the support X̃ of the distribution. More details on the aforementioned concepts and
definitions can be found in Sec. B.5 in the Appendix.

We say that a function f is (transformation-)invariant if f(x) = f(x′) for all x, x′ ∈ U for all U ∈ G and denote the class
of all such functions by V . Using this notation, fitting a model with high accuracy under worst-case “small” transformations
of the input can be mathematically captured by the robust optimization formulation [5] of minimizing the robust loss

Lrob(f) := E X,Y sup
x′∈GX

ℓ(f(x′), Y ) (1)

in some function space F . We call the solution of this problem the (spatially) robust minimizer. While adversarial training
aims to optimize the empirical version of Eq. (1), the converged predictor might be far from the global population minimum,
in particular in the case of nonconvex optimization landscapes encountered when training neural networks. Furthermore,
we show in the following section that for robustness over transformation sets, constraining the model class to invariant
functions leads to the same optimizer of the robust loss. These facts motivate invariance-inducing regularization which we
then show to exhibit improved robust test accuracy in practice.

B.2. Regularization to encourage invariance

For any regularizer R, we define the corresponding constrained set of functions V(R) as

V(R) := {f : R(f, x, y) = 0 ∀(x, y) ∈ supp(P)},

where supp(P) denotes the support of P. When R(f, x, y) = supx′∈Gx h(f(x), f ′(x)) and h is a semimetric2 on Rp, we
have V(R) = V . We now consider constrained optimization problems of the form

min
f∈F

E ℓ(f(X), Y ) s.t. f ∈ V(R), (O1)

min
f∈F

E sup
x′∈GX

ℓ(f(x′), Y ) s.t. f ∈ V(R). (O2)

2The weaker notion of a semimetric satisfies almost all conditions for a metric without having to satisfy the triangle inequality.



The following theorem shows that (O1), (O2) are equivalent to (1) if the set of all invariant functions V is a subset of the
function space F .

Theorem 1. If V ⊆ F , all minimizers of the adversarial loss (1) are in V . If furthermore V(R) ⊆ V , any solution of the
optimization problems (O1), (O2) minimizes the adversarial loss.

The proof of Theorem 1 can be found in the Appendix in Sec. B.6. Since exact projection onto the constrained set is in
general not achievable for neural networks, an alternative method to induce invariance is to relax the constraints by only
requiring f ∈ {f : R(f, x, y) ≤ ϵ ∀(x, y) ∈ supp(P)}. Using Lagrangian duality, (O1) and (O2) can then be rewritten
in penalized form for some scalar λ > 0 as

min
f∈F

Lnat(f ;R, λ) := min
f∈F

E ℓ(f(X), Y ) + λR(f,X, Y ), (2)

min
f∈F

Lrob(f ;R, λ) := min
f∈F

E sup
x′∈GX

ℓ(f(x′), Y ) + λR(f,X, Y ). (3)

In Sec. B.4 we discuss how ordinary adversarial training, and modified variants that have been proposed thereafter, can
be viewed as special cases of Eqs. (2) and (3). On the other hand, the constrained regularization formulation corresponds
to restricting the function space and is hence comparable with hand-crafted network architecture design as described in
Sec. C.2.

B.3. Trade-off between natural and robust accuracy

Even though high robust accuracy (1) might be the main goal in some applications, one might wonder whether the robust
minimizer exhibits lower accuracy on untransformed images (natural accuracy) defined as Lnat(f) := E X,Y ℓ(f(X), Y )
[33, 39]. In this section we address this question and identify the conditions for transformation set perturbations under
which minimizing the robust loss does not lead to decreased natural accuracy. Notably, it even increases under mild
assumptions.

One reason why adversarial examples have attracted a lot of interest is because the prediction of a given classifier can
change in a perturbation set in which all images appear the same to the human eye. Mathematically, in the case of
transformation sets, the latter can be modeled by a property of the true distribution. Namely, it translates into the conditional
distribution Y given x, denoted by PGx , being constant for all x belonging to the same subset U ∈ G. In other words, Y is
conditionally independent of X given GX , i.e. Y ⊥⊥ X|GX . Under this assumption the next theorem shows that there is
no trade-off in natural accuracy for the transformation robust minimizer.

Theorem 2 (Trade-off natural vs. robust accuracy). Under the assumption of Theorem 1 and if Y ⊥⊥ X|GX holds, the
adversarial minimizer also minimizes the natural loss. If moreover, PGz has support Gz for every z ∈ X̃ and the loss ℓ is
injective, then every minimizer of the natural loss also has to be invariant.

As a consequence, minimizing the constrained optimization problem (O1) could potentially help in finding the optimal
solution to minimize standard test error. Practically, the assumption on the distribution of the transformation sets Gz

corresponds to assuming non-zero inherent transformation variance in the natural distribution of the dataset. In practice,
we indeed observe a boost in natural accuracy for robust invariance-inducing methods in Sec. 3 on SVHN, a commonly
used benchmark dataset for spatial-equivariant networks for this reason.

One might wonder how this result relates to several recent publications such as [33, 39] that presented toy examples for
which the ℓ∞ robust solution must have higher natural loss than the Bayes optimal solution even in the infinite data limit.
On a fundamental level, ℓ∞ perturbation sets are of different nature compared to transformation sets on generic distributions
of X . In the distribution considered in [33, 39], there is no unique mapping from x ∈ X to a perturbation set and thus the
conditional independence property does not hold in general.

B.4. Different regularizers and practical implementation

In order to improve robustness against spatial transformations we consider different choices of R(f, x, y) in the regularized
objectives (2) and (3) that we then compare empirically in Sec. 3. This allows us to view a number of variants of adversarial
training in a unified framework. Broadly speaking, each approach listed below consists of first searching an adversarial
example according to some mechanism which is then included in a regularizing function, often some weak notion of



distance between the prediction at X and the new example. The following choices of regularizers involve the maximization
of a regularizing function over the transformation set

RAT(f,X, Y ) = sup
x′∈GX

ℓ(f(x′), Y )− ℓ(f(X), Y ) (equivalent to [31, 24] for Lnat)

Rℓ2(f,X, Y ) = sup
x′∈GX

∥f(X)− f(x′)∥22

RKL(f,X, Y ) = sup
x′∈GX

DKL(f(x
′), f(X)) (equivalent to [39] for Lnat)3

where DKL is the KL divergence on the softmax of the (logit) vectors f ∈ Rp. In all cases we refer to the maximizer as an
adversarial example that is found using defense mechanisms as discussed in Section 2.2. Note that for Rℓ2 and RKL the
assumption V(R) ⊆ V in Theorem 1 is satisfied.

Instead of performing a maximization of the regularizing function to find the adversarial example x′, we can also choose
x′ in alternative ways The following variants are explored in the paper, two of which are reminiscent of previous work

RALP(f,X, Y ) = ∥f(x′)− f(X)∥22 with x′ = argmax
u∈GX

ℓ(f(u), Y ) (equivalent to [20])

RKL-C(f,X, Y ) = DKL(f(x
′), f(X)) with x′ = argmax

u∈GX

ℓ(f(u), Y )

Rh−DA(f,X) = E x′∈GXh(f,X,X ′) (similar to [16])

The last regularizer suggests using an additive penalty on top of data augmentation, with either one or even multiple
random draws, where the penalty can be any of the above semimetrics h between f(X) and f(x′), such as the ℓ2 or DKL
distance. Albeit suboptimal, the experimental results in Section 3 suggest that simply adding the additive regularization
penalty on top of randomly drawn data matches general adversarial training in terms of robust prediction at a fraction of
the computational cost. In addition, Theorem 2 suggests that even when the goal is to improve standard accuracy and one
expects inherent variance of nuisance factors in the data distribution it is likely helpful to use regularized data augmentation
with Rh−DA instead of vanilla data augmentation. Empirically we observe this on the SVHN dataset in Section 3.

Adversarial example for spatial transformation sets Since GX is not a closed group and we do not even know whether
the observation X lies at the boundary of GX or in the interior, we cannot solve the maximization constrained to GX in
practice. However, for an appropriate choice of set S, we can instead minimize an upper bound of (1) which reads

min
f∈F

E sup
∆∈S

ℓ(f(T (X,∆)), Y ) ≥ min
f∈F

E sup
x′∈GX

ℓ(f(x′), Y ) (4)

where S is the set of transformations that we search over and T (X,∆) denotes the transformed image with transformation
∆ (see Sec. B.5 in the Appendix for an explicit construction of the transformation search set S). The left hand side in (4)
is hence what we aim to solve in practice where the expectation is over the empirical joint distribution of X,Y . The
relaxation of GX to a range of transformations of X that is {T (X,∆) : ∆ ∈ S} is also used for the maximization within
the regularizers.

In Figure 3 one pair of example images is shown: the original image (panel (a)) is depicted along with a transformed
version T (·,∆) with ∆ ∈ S (panel (b)) and the respective predictions by a standard neural network classifier.

B.5. Rigorous definition of transformation sets and choice of S

In the following we introduce the concepts that are needed to rigorously define transformation sets that are subsets of the
finite-dimensional (sampled) image space X ⊂ Rd. In particular, because rotations of continuous angles are not well-
defined for sampled images we need to introduce the space of image functions I with elements I : R2 → [0, 255]3, i.e.
I maps Euclidean coordinates in R2 to the RGB intensities of an image. The observed finite-dimensional vector is then a
sampled version of an image function I . Here we assume that the sampling operator is bijective, with rigorous definitions
later in the section.

Next we define subsets in the continuous function space and then transfer the concept back to the finite-dimensional X .
Let us define the symmetric group G of all rotations and horizontal and vertical translations acting on I. We denote the
elements in the group by g∆, uniquely parameterized by ∆ ∈ R3 and can be represented by a coordinate transform matrix
G∆, see e.g. [7]. Two of the three dimensions represent the values for the translations and the third represents the rotation.



The transformed image (function) g∆(I) ∈ I can be expressed by g∆(I)(v) = I(G−1
∆ v) for each v ∈ R2 where G∆ is the

coordinate transform matrix associated with ∆ ∈ R3 as in [7]. For each I ∈ I, the group orbit is G(I) := {g∆(I) : g∆ ∈
G}. By definition, the group orbits partition the space I and every I ∈ I belongs to a unique orbit.

Subsets of orbits In our setting, requiring invariance in the entire orbit (i.e. with respect to all translations and rotations)
is too restrictive. First of all, large transformations rarely occur in nature because of physical laws and common human
perspectives (an upside down tower for example). Secondly, in image classification, robustness is usually only required
against adversarial attacks which would not fool humans, i.e. lead them to mislabel the image. If the transformation set is
too large, this requirement is no longer fulfilled. For this purpose we consider a closed subset GI of each group orbit. It
follows from the group orbit definition that for every I it either belongs to one unique or no such set.

As described in the paragraph of Equation (4), when observing a (sampled) image I ′ in the training set, we do not know
where in its corresponding subset GI′

it lies. At the same time, for our augmentation-based methods, we do not want the
set S of transformations that we search over (transformation search set for short), to be image dependent. Instead, in this
construction we aim to find S to be the smallest set of transformations such that (4) is satisfied. For this purpose, it suffices
that the effective search set of images SI′

for any image I ′ ∈ GI covers the corresponding subset GI for all I , i.e.

SI′
:= {g∆(I ′) : ∆ ∈ S} ⊃ GI .

Here we give an explicit construction of S using the maximal transformation for each subset GI that is needed to transform
an image of the subset to another. In particular, we define the maximal transformation vector ∆⋆ ∈ R3 by the element-wise
maximum over all such maximum transformations

(∆⋆)j := max
I∈I

max
U,U ′∈GI

|(∆)j | s.t. U ′ = g∆(U)

for j = 1, . . . , 3. Although the subsets themselves for each image are not known, using prior knowledge in each appli-
cation one can usually estimate the largest possible range of transformations ∆⋆ against which robustness is desired or
required. For example for images, one could use experiments with humans to determine for which range of angles their
reaction time to correctly label each image stays approximately constant. The maximal vector ∆⋆ can now be used to
determine the minimal set of transformations S = (−∆⋆,∆⋆). A simplified illustration for when I consists of just one
orbit (corresponding for example to one image function and all its rotated variants) can be found in Figure 2.
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Figure 2. Illustration of an example where one group orbit G(I) =: I is the entire space of images and I is an arbitrary image in the
orbit G(I). We depict one subset of the orbit GI and the effective search sets SI′ for different instantiations I ′ ∈ GI defined by the
transformation search set S: (a) I1 on the left boundary of GI , (b) I2 in the interior of GI and (c) I3 on the right boundary of GI . The
effective search sets are centered around each instantation Ij . The necessity of symmetry of the minimal set of transformations S arises
from the requirement to cover GI from both boundary points and the maximum transformation vector ∆⋆ that defines S = (−∆⋆,∆⋆)
is determined by the maximum transformation in GI (in blue).

Sampling issues In reality, the observed image is not a function on R2 but a vector z ∈ Rw×h that is the result of
sampling an image function I ∈ I. We use Φ to denote the sampling operator and hence z = Φ(I). Then the space of



observed finite dimensional images X is the range space of Φ. In order to counter the problem that the sampling operator
is in general not injective, we add another constraint to I by requiring that Φ is bijective so that the quantity Iz = Φ−1(z)
is well-defined. That is, for a finite-dimensional image z ∈ X , there exists exactly one possible continuous image Iz ∈ I.
As a consequence, if z and a transformed version z′ exist in X , then Iz = Iz′ . This is a rather technical assumption that is
typically fulfilled in practice. In the main text, we also refer to T (z,∆) = Φ(g∆(Iz)) ∈ X as the image corresponding to
the sampled image z transformed by the group element g∆.

We can now define specific GI to be the subsets of G(I) such that with z = Φ−1(I), the set Gz = {Φ(I) : I ∈ GIz}
corresponds to the support of the marginal distribution P on {Φ(I) : I ∈ G(Iz)}. We refer to Gz as transformation sets.
By definition of GI and bijectivity of Φ, there is an injective mapping from any z ∈ X to the set of transformation sets G.

B.6. Proof of Theorem 1

Please refer to Section B.5 for the necessary notation for this section. Furthermore, define Lnat(f) := Lnat(f ; 0, 0).

We prove the first statement of the theorem by contradiction. Let f rob be the minimizer of Lrob(f) and let us assume that
f rob ̸∈ V and in particular that it is constant on all transformation sets except Gz ∈ G and the marginal distribution over G
that can be defined as P ({GX = U}) = P ({X ∈ U}) for any U ∈ G, is discrete (for simplicity of presentation) and Gz

has non-zero probability.

Let’s assume that there is at least one transformation set Gz , on which f rob is not constant and collect all different values
in the set A = {f rob(x) : x ∈ Gz} (with cardinality strictly bigger than 1 since f not constant) and denote the distribution
over x ∈ Gz by Pz . Since there is a unique mapping Ψ that maps each x ∈ X to a unique transformation (see Section B.5),
we can lower bound of the robust loss as follows for any z ∈ X :

E X,Y sup
x′∈GX

ℓ(f(x′), Y )

= E [ sup
x′∈GX

ℓ(f(x′), Y )|X ̸∈ Gz]P({X ̸∈ Gz}) + E Y |z[ sup
x′∈Gz

ℓ(f(x′), Y )|Gz]P({X ∈ Gz})

≥ E [ sup
x′∈GX

ℓ(f(x′), Y )|X ̸∈ Gz]P({X ̸∈ Gz}) + sup
a∈A

∫
E Y |xℓ(a, Y )dPz(x) (5)

where the inequality follows from

E X|zE Y |x[sup
a∈A

ℓ(a, Y )|X = x]|Gz =

∫
E Y |x sup

a∈A
ℓ(a, Y )dPz(x) ≥ sup

a∈A

∫
E Y |xℓ(a, Y )dPz(x).

The right hand side is minimized with respect to the set A by choosing A = {a⋆} where a⋆ is defined as a⋆ =
argmina

∫
E Y |xℓ(a, Y )dPz(x) because setting f⋆(x) = a⋆ for all x ∈ Gz and f⋆(x) = f rob(x) else leads to equal-

ity in equation (5) and f⋆ ∈ F by assumption that V ⊆ F . Morever, since P({X ∈ Gz}) > 0 by assumption, choosing
f⋆(x) = a⋆ for all x ∈ Gz implies Lrob(f

⋆) < Lrob(f
rob) which contradicts optimality of f rob and thus proves the first

statement of the theorem.

For the second statement let us rewrite

Lrob(f) = Lnat(f) + [Lrob(f)− Lnat(f)]

= E ℓ(f(X,Y ) + E [max
∆′∈S

ℓ(f(T (X,∆′)), Y )− ℓ(f(X), Y )]︸ ︷︷ ︸
R̃(f)

By the first statement we know that the set of invariant functions that minimize the robust loss

F rob := {f ∈ V : Lrob(f) ≤ Lrob(f
′) ∀f ′ ∈ F}

is non-empty. For all f ∈ F rob, it holds by definition of V that R̃(f) = 0.

Since V(R) ⊆ V , the minimizers fmin of (O1) satisfy Lnat(f
min) ≤ Lnat(f) for all f ∈ V . But because fmin in V we have

Lrob(f) = Lnat(f) and it directly follows that fmin ∈ F rob. The same argument goes through for (O2) since for all f ∈ V ,
we have Lrob(f) = Lnat(f). This concludes the proof of the theorem.



B.7. Proof of Theorem 2

On a high level, similar to the proof of Theorem 1, we can construct a minimizer of the natural loss f⋆V given the
assumption that Y ⊥⊥ X|Gz . Since on V both losses are equivalent, together with Theorem 1 this shows that the robust
minimizer also minimizes the unconstrained natural loss.

Assume f nat ̸∈ V minimizes Lnat(f), and in particular, it is constant on all transformation sets except Gz for some z ∈ X .
Again by existence of a mapping Ψ and by assumption Y ⊥⊥ X|Gz we can write for any f

Lnat(f) = E X,Y ℓ(f(X), Y ) (6)
= E [ℓ(f(X), Y )|X ̸∈ Gz]P({X ̸∈ Gz}) + E [ℓ(f(X), Y )|Gz]P({X ∈ Gz})
= E [ℓ(f(X), Y )|X ̸∈ Gz]P({X ̸∈ Gz}) + E

[
E Y [ℓ(f(X), Y )]|Gz

]
P({X ∈ Gz}).

We then obtain

E
[
E Y [ℓ(f(X), Y )]|Gz

]
=

∫
E [ℓ(f(x), Y )|x]dPz(x)

≥
∫

min
x′∈Gz

E [ℓ(f(x′), Y )|x′]dPz(x) = E
[
E Y [ℓ(f

⋆(X), Y )]|Gz
]

(7)

when setting f⋆(x) = minx∈Gz E Y ℓ(f
nat(x), Y )|Gz for all x ∈ Gz and f⋆(x) = f nat(x) otherwise. Together with

equation (6), we thus have that Lnat(f
⋆) = Lnat(f

nat) ≤ Lnat(f) for all f ∈ F by definition of f nat.

If additionally the support of Pz is equal to Gz and ℓ is injective, the inequality (7) becomes a strict inequality for f nat ̸∈ F
and hence we have Lnat(f

⋆) < Lnat(f
nat) which contradicts the definition of f nat being the minimizer of the natural loss.

C. Experimental details
C.1. Attacks and defenses

Grid search attack We consider a default grid of 5 values per translation direction and 31 values for rotation, yielding
775 transformed examples that are evaluated for each Xi. We refer to the accuracy attained under this attack as grid
accuracy.4

Defenses worst-of-k In worst-of-k (Wo-k) adversarial training, at iteration t, we sample k different perturbations for
each image in the batch. The one resulting in the highest function value is chosen to be the maximizer. Most of our
experiments are conducted with k = 10 consistent with [10] as a higher k only improved performance minimally.

Spatial PGD. In analogy to common practice for ℓp adversarial training as in e.g. [31, 24], the S-PGD mechanism uses
projected gradient descent with respect to the translation and rotation parameters with projection on the constrained set S
of transformations. We consider 5 steps, starting from a random initialization, with step sizes of [0.03, 0.03, 0.3] (following
[10]) for horizontal-, vertical translation and rotation respectively.

Random. Data augmentation with a distinct random perturbation per image and iteration as ubiquitously used in practice.
This can be seen as the most naive “adversarial” example as it corresponds to worst-of-k with k = 1.

Note that the empty space that results from translating and rotating an image is filled with black pixels (constant padding)
if not otherwise noted, and reflections in some cases (see Section C.5). See Fig. 3 for an example.

C.2. Spatial equivariant networks

We compare the robust prediction accuracies from networks trained with the regularizers with three specialized architec-
tures, designed to be equivariant against spatial transformations and translations: (a) G-ResNet44 (GRN) [7] using p4m
convolutional layers (90 degree rotations, translations and mirror reflections) on CIFAR-10; (b) Equivariant Transformer
Networks (ETN) [32], a generalization of Polar Transformer Networks (PTN) [11], on SVHN; and (c) Spatial Transformer
Networks (STN) [18] on SVHN. A more comprehensive discussion of the literature on equivariant networks can be found

4A finer grid search attack with a total of 7500 transformations only lead to minor reductions in accuracy compared to the coarse grid
(see Table 11).



in Sec. 4. We choose the architectures listed above based on availability of reproducible code and previously reported
state-of-the art standard accuracies on SVHN and CIFAR10. We train GRN, STN and ETN using standard augmentation
as described in Sec. 2 (std) and random rotations in addition (std⋆). In order to compute the grid accuracies, the adversarial
attacks using grid search are then computed by evaluating the entire architecture. Out of curiosity we also trained a two-
stage STN where we train the localization network separately on a supervised randomly transformed set of the training
data to predict the transformation parameters treated as labels. Details about the implementation and results can be found
in Section C.5.

We had difficulties to train both ETN and STN to higher than 86% natural accuracy for CIFAR10 even after an extensive
learning rate and schedule search so we do not report the numbers here.

C.3. Training procedure

All models are trained using a single-GPU on a node equipped with an NVIDIA GeForce GTX 1080 Ti and two 10-core
Xeon E5-2630v4 processors.

We run a standard minibatch SGD update with a momentum term with parameter 0.9 and weight decay parameter 0.0002.
We use an initial learning rate of 0.1 which is divided by 10 after half and three-quarters of the training steps. Independent
of the defense method, we fix the number of iterations to 80000 for SVHN and CIFAR-10, and to 120000 for CIFAR-100.
For comparability across all methods, we fix the number of unique original images in each iteration to 64. For the baselines,
we additionally trained with a batch size of 128 and report the higher accuracy.

C.4. Example images

One pair of example images is shown in panels (b) and (c) in Fig. 3, where the original image is depicted along with a
transformed version T (·,∆) with ∆ ∈ S .

Truth: airplane Truth: ship Pred.: airplane

(a) (b) (c)

Figure 3. Example images and classifications by the Standard model. (a)
An image that is misclassified for all rotations in the considered grid. (b) An
image that is correctly classified for most of the rotations in the considered
grid. (c) One rotation for which the image shown in (b) is misclassified as
“airplane”.

C.5. Design choices for two-stage STN

Since STNs are known to be sensitive to hyperparameter settings and thus difficult to train end-to-end [32], we apply
the following two-stage procedure to simulate its functionality: (1) we first train a ResNet-32 as a localization regression
network (LocNet) to predict the attack perturbation separately by learning from a training set, which contains perturbed
images and uses the transformations as the prediction targets; (2) at the same time we train a ResNet-32 classifier with data
augmentation, namely random translations and rotations; (3) during the test phase, the output of the LocNet is used by a
spatial transformer module that transforms the image before entering the pretrained classifier. We refer to this two-stage
STN as STN+.

LocNet and Classifier For the classifiers, we take the two models trained on CIFAR-10 and SVHN using standard data
augmentation and random rotations from our previous experiments. Since we do not expect the regressors (or LocNets) to
be perfect in terms of prediction capability, there will still be some transformation left after the regression stage. Thus, the
classifiers should effectively see a smaller range of transformations than without the inclusion of a LocNet and transformer
module. The training procedure used to train the classifiers is described in Section 3.

Effect of rendering edges on LocNet The LocNet is trained on zero padded – suffix (c) – as well as reflect padded inputs
– suffix (r) – for comparison. The former possibly yields an unfair advantage of this approach compared to other methods as
the neural network can exploit the edges (induced through zero padding) to learn the transformation parameters. Therefore,
we also consider reflection padding to assess the effect of the different paddings on final performance. Nonetheless, zero
padding is consistent with the augmentation setting for the end-to-end trained networks and regularized methods and was



also the choice considered by [10]. For completeness we also show results when using reflection padding for training
LocNet although it lacks comparability with the other methods since attacks should be reflection-padded as well.

Minimizing loss of information in the prediction transformation process In the spatial transformer module we com-
pare two variants of handling the labels predicted by the LocNet. We can either back-transform the transformed image with
the negative predicted labels, which will, under the assumption that the regressor successfully learnt object orientations,
turn back the image but potentially result in extra padding space before we feed the images into the classifier. Alternatively,
we can subtract the predicted transformation from the attack transformation, then use the remaining transformation as the
new “attack transformation”. The latter will result in much smaller padding areas, if the LocNet is performing well. From
the experimental results we do see a big drop if we naively transform images twice. We denote the former method as
“naive” and latter as “trick”.

Observed results For CIFAR-10, this two-stage classifier achieved relatively high grid accuracies. However, the obtained
accuracies are still lower than expected, given that the LocNet is allowed to learn rotations with a separately trained
regressor on the transformed training set. For SVHN we also see a gain compared to adversarial training without regularizer.
However, the performance still lags behind the accuracies obtained by the regularizers. The results are summarized in
Table 3.

Table 3. Accuracies of two-stage STN (STN+) under different settings. Details are provided in Section C.5.

Dataset STN+(c) trick STN+(r) trick STN+(c) naive STN+(r) naive
SVHN (nat) 94.92 95.51 94.92 95.51

(rob) 90.95 90.28 64.91 59.68
CIFAR10 (nat) 91.29 90.99 91.29 90.99

(rob) 83.05 84.31 44.88 42.84

C.6. Additional experimental results

In this section we discuss additional experimental results that we collected and and analyzed.

C.7. Stability to selection of regularization parameter λ

Figures 4 and 5 show the test grid and test natural accuracy as a function of the regularization parameter λ. We observe
that the regularization methods outperform unregularized methods in terms of grid accuracy in a large range of λ values.

C.8. Additional experimental results

Table 4. Mean accuracies of models trained without regularized adversarial training. Standard errors are shown in parentheses.

std std* AT(rob, Wo-10) AT(mix, Wo-10)
SVHN (nat) 95.48 (0.15) 93.97 (0.09) 96.03 (0.03) 96.56 (0.07)

(rob) 18.85 (1.27) 82.60 (0.23) 90.35 (0.27) 88.83 (0.10)
CIFAR-10 (nat) 92.11 (0.18) 89.93 (0.18) 91.76 (0.23) 93.44 (0.19)

(rob) 9.52 (0.66) 58.29 (0.60) 71.17 (0.26) 68.14 (0.48)
CIFAR-100 (nat) 70.23 (0.18) 66.62 (0.37) 68.79 (0.34) 73.03 (0.13)

(rob) 5.09 (0.25) 28.53 (0.25) 38.21 (0.10) 35.93 (0.24)

Mixed batch experiments In addition to the results reported in the main text, in this section we also report results on
more experiments that use the “mixed batch” setting, meaning that the gradient of the loss is taken with respect to both
the adversarial and natural examples. This is common practice in the ℓp adversarial example literature [20] and we denote
this approach by “mix”. As can be seen in Table 4, for adversarial training a mixed batch improves natural accuracy at the
expense of test grid performance. For the regularization methods, we observe a much small, and not consistent, effect of
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Figure 4. Test grid accuracy (first row) and test natural accuracy (second row) as a function of the regularization parameter λ for the
SVHN (first column) and CIFAR-10 (second column) datasets and data augmentation (“rnd”). The test grid accuracy is relatively robust
in a large range of λ values while natural test accuracy decreases with larger values of λ.
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Figure 5. Test grid accuracy (first row) and test natural accuracy (second row) as a function of the regularization parameter λ for the
SVHN (first column) and CIFAR-10 (second column) datasets and Wo-k defenses. The test grid accuracy is relatively robust in a large
range of λ values while natural test accuracy decreases with larger values of λ.



the batch type as can be seen in Table 6. For example, comparing ALP(rob, ·) vs. ALP(mix, ·) shows that the performance
differences are mostly not significant.

Table 5. Mean accuracies of models trained with various forms of regularized adversarial training, using the KL regularization function.
Standard errors are shown in parentheses.

KL(nat,
rnd)

KL(nat,
Wo-10)

KL(rob,
Wo-10)

KL-C(mix,
S-PGD)

KL(nat,
S-PGD)

SVHN (nat) 96.16 (0.10) 96.00 (0.02) 96.13 (0.07) 96.14 (0.04) 96.54 (0.01)
(rob) 90.69 (0.05) 92.27 (0.09) 92.71 (0.09) 92.42 (0.03) 92.62 (0.03)

CIFAR-10 (nat) 89.33 (0.16) 90.83 (0.18) 90.41 (0.05) 89.98 (0.21) 89.82 (0.13)
(rob) 73.50 (0.19) 77.34 (0.19) 77.47 (0.28) 78.93 (0.23) 78.89 (0.07)

Table 6. Mean accuracies of models trained with various forms of regularized adversarial training, using the ℓ2 and ALP regularization
functions. Standard errors are shown in parentheses.

ℓ2(nat,
Wo-10)

ℓ2(rob,
Wo-10)

ALP(mix,
Wo-10)

ALP(rob,
Wo-10)

ALP(mix,
Wo-20)

ALP(rob,
S-PGD)

ALP(mix,
S-PGD)

SVHN (nat) 96.05 (0.04) 96.53 (0.03) 96.41 (0.07) 96.3 (0.09) 96.39 (0.04) 96.11 (0.08) 96.30 (0.09)
(rob) 92.16 (0.05) 92.55 (0.08) 92.17 (0.11) 92.04 (0.19) 92.48 (0.05) 92.32 (0.17) 92.42 (0.20)

CIFAR-10 (nat) 88.32 (0.13) 90.53 (0.16) 91.13 (0.13) 90.11 (0.25) 90.67 (0.12) 89.85 (0.27) 89.70 (0.10)
(rob) 75.46 (0.25) 77.06 (0.16) 75.89 (0.23) 75.90 (0.31) 76.72 (0.21) 77.80 (0.17) 77.72 (0.35)

CIFAR-100 (nat) - - 68.54 (0.27) - 68.04 (0.27) 89.82 (0.13) 68.44 (0.39)
(rob) - - 49.30 (0.33) - 49.98 (0.31) 78.89 (0.07) 52.58 (0.20)

Table 7. Mean standard and grid (rob) accuracies of models trained with various forms of regularized adversarial training, using the
rnd (equivalent to Wo-1), Wo-10 and Wo-20 defense mechanisms for KL (left) and ALP (right). Standard errors are shown in parentheses.

KL(nat,
Wo-1)

KL(nat,
Wo-10)

KL(nat,
Wo-20)

ALP(rob,
Wo-1)

ALP(rob,
Wo-10)

ALP(rob,
Wo-20)

CIFAR-10 (nat) 89.34 (0.16) 90.83 (0.18) 89.33 (0.22) 89.47 (0.04) 90.11 (0.25) 90.62 (0.07)
(rob) 73.40 (0.19) 77.34 (0.19) 77.52 (0.16) 73.22 (0.14) 75.90 (0.31) 76.78 (0.15)

Table 8. Mean accuracies of models trained with various forms of augmented training, i.e. unregularized and regularized data augmenta-
tion. Standard errors are shown in parentheses.

std* ℓ2(nat, rnd) KL(nat, rnd) ALP(rob, rnd) KL(rob, rnd) ALP(mix, rnd)
SVHN (nat) 93.97 (0.09) 96.34 (0.08) 96.16 (0.10) 96.09 (0.06) 96.23 (0.08) 96.19 (0.07)

(rob) 82.60 (0.23) 90.51 (0.15) 90.69 (0.05) 90.48 (0.16) 90.92 (0.17) 90.48 (0.15)
CIFAR-10 (nat) 89.93 (0.18) 87.80 (0.11) 89.34 (0.16) 88.75 (0.18) 89.47 (0.04) 89.43 (0.28)

(rob) 58.29 (0.60) 71.60 (0.27) 73.50 (0.19) 71.49 (0.30) 73.22 (0.14) 71.97 (0.11)



Table 9. Mean accuracies of models trained with various forms of regularized adversarial training. Standard errors are shown in paren-
theses.

ALP(nat, Wo-10) ℓ2(nat, Wo-10) KL-C(nat, Wo-10) KL(nat, Wo-10)
SVHN (nat) 96.39 (0.03) 96.05 (0.04) 96.18 (0.06) 96.00 (0.02)

(rob) 91.98 (0.13) 92.16 (0.05) 91.99 (0.12) 92.27 (0.09)
CIFAR10 (nat) 88.78 (0.11) 88.32 (0.13) 89.61 (0.09) 90.83 (0.18)

(rob) 75.43 (0.13) 75.46 (0.25) 76.15 (0.23) 77.34 (0.19)

Weakness of first order attack. Table 10 shows the accuracies of various models trained with S-PGD defenses and
evaluated against the S-PGD and the grid search attack on all datasets. We observe that the S-PGD attack constitutes are
very weak attack since the associated accuracies are much larger than for the grid search attack. In other words, the S-PGD
attack only yields a very loose upper bound on the adversarial accuracy. This stands in stark contrast to ℓ∞ attacks and
has first been noted and discussed in [10]. Interestingly, using the first order method as a defense mechanism proves to be
very effective in terms of grid accuracy. When used in combination with a regularizer this defense yields the largest overall
accuracies as shown and discussed in Section 3. Recall that due to computational reasons grid search cannot be used as
a defense mechanism. Therefore, the strongest computationally feasible defense does not use the same mechanism as the
strongest attack in our setting.

AT(mix, S-PGD) AT(rob, S-PGD) ALP(mix, S-PGD)
SVHN (nat) 96.27 (0.00) 96.06 (0.10) 96.30 (0.09)

(grid) 84.81 (0.01) 87.29 (0.09) 92.42 (0.20)
(S-PGD) 95.26 (0.04) 95.46 (0.10) 95.92 (0.13)

CIFAR-10 (nat) 92.19 (0.23) 91.83 (0.19) 89.70 (0.10)
(grid) 64.26 (0.25) 69.74 (0.27) 77.72 (0.35)

(S-PGD) 88.84 (0.27) 89.87 (0.10) 88.15 (0.21)
CIFAR-100 (nat) 71.11 (0.37) 68.87 (0.19) 68.44 (0.39)

(grid) 33.40 (0.21) 37.87 (0.12) 52.58 (0.20)
(S-PGD) 65.01 (0.32) 65.56 (0.12) 66.04 (0.40)

Table 10. Mean accuracies of different models trained with S-PGD defenses and evaluated on the natural test set, against the S-PGD
attack and against the grid search attack on the SVHN, CIFAR-10 and CIFAR-100 datasets. While the test accuracy for the S-PGD
attack is only slightly lower than the natural accuracy in most cases, the grid accuracy is significantly smaller.



Stronger grid search attack To evaluate how much grid accuracy changes with a finer discretization of the perturbation
set S, we compare the default grid to a finer one for a subset of experiments, summarized in Table 11. Specifically, “(grid-
775)" shows the test grid accuracy using the default grid containing 5 values per translation direction and 31 values for
rotation, yielding a total of 775 transformed examples that are evaluated for each Xi. “(grid-7500)” shows the test grid
accuracy on a much finer grid with 10 values per translation direction and 75 values for rotation, resulting 7500 transformed
examples. We observe that the test grid accuracy only decreases slightly for the finer grid and the reduction in accuracy is
smaller for ALP than for AT. Due to computational reasons we use the grid containing 775 values for all other experiments.

AT(mix,Wo-10) AT(rob,Wo-10) ALP(mix,Wo-10)
SVHN (grid-775) 88.83 (0.10) 89.75 (0.17) 92.17 (0.11)

(grid-7500) 88.02 (0.12) 89.29 (0.15) 91.79 (0.12)
CIFAR-10 (grid-775) 68.14 (0.48) 70.35 (0.16) 75.89 (0.23)

(grid-7500) 65.69 (0.28) 68.28 (0.16) 74.58 (0.16)
CIFAR-100 (grid-775) 35.93 (0.24) 38.21 (0.10) 49.30 (0.33)

(grid-7500) 33.62 (0.23) 36.04 (0.21) 47.95 (0.23)

Table 11. Mean accuracies for different models evaluated against two different grid search attacks. grid-775 represents test grid accuracy
using the default grid with 775 transformed examples, grid-7500 shows test grid accuracy on a much finer grid with 7500 transformed
examples. Test grid accuracy only decreases slightly for the finer grid and the reduction in accuracy is smaller for ALP than for AT.



C.9. Regularization effect on range of incorrect angles
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Figure 6. For 100 randomly chosen examples from the CIFAR-10 dataset, we show which rotations lead to a misclassification by various
models. Each row corresponds to one example and each column to one angle in the interval [−30◦, 30◦]. A dark red square indicates
that the corresponding example was misclassified after being rotated by the corresponding angle. The visualization for AT(mix, rnd)
is more fragmented than for AT(rob, rnd) and ALP(mix, rnd) and the visualization for AT(mix,Wo-10) is more fragmented than for
AT(rob,Wo-10) and ALP(mix,Wo-10).
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