
Workshop track - ICLR 2018

CHALLENGES IN DISENTANGLING INDEPENDENT
FACTORS OF VARIATION

∗Attila Szabó1, ∗Qiyang Hu1, Tiziano Portenier1, Matthias Zwicker2, Paolo Favaro1

1University of Bern, Switzerland
2University of Maryland, USA
1{hu, szabo, portenier, paolo.favaro}@inf.unibe.ch
2zwicker@cs.umd.edu

ABSTRACT

We study the problem of building models that disentangle independent factors of
variation. Such models encode features that can efficiently be used for classification
and to transfer attributes between different images in image synthesis. As data
we use a weakly labeled training set, where labels indicate what single factor has
changed between two data samples, although the relative value of the change is
unknown. This labeling is of particular interest as it may be readily available
without annotation costs. We introduce an autoencoder model and train it through
constraints on image pairs and triplets. We show the role of feature dimensionality
and adversarial training theoretically and experimentally. We formally prove the
existence of the reference ambiguity, which is inherently present in the disentan-
gling task when weakly labeled data is used. The numerical value of a factor
has different meaning in different reference frames. When the reference depends
on other factors, transferring that factor becomes ambiguous. We demonstrate
experimentally that the proposed model can successfully transfer attributes on
several datasets, but show also cases when the reference ambiguity occurs.

1 INTRODUCTION

One way to simplify the problem of classifying or regressing attributes of interest from data is to build
an intermediate representation, a feature, where the information about the attributes is better separated
than in the input data. Better separation means that some entries of the feature vary only with
respect to one and only one attribute. In this way, classifiers and regressors would not need to build
invariance to many nuisance attributes. Instead, they could devote more capacity to discriminating the
attributes of interest, and possibly achieve better performance. We call this task disentangling factors
of variation, and we identify attributes with the factors. In addition to facilitating classification and
regression, this task is beneficial to image synthesis. One could build a model to render images,
where each input varies only one attribute of the output, and to transfer attributes between images.

When labeling is possible and available, supervised learning can be used to solve this task. In general,
however, some attributes may not be easily quantifiable (e.g., style). Therefore, we consider using
weak labeling, where we only know what attribute has changed between two images, although we do
not know by how much. This type of labeling may be readily available in many cases without manual
annotation. For example, image pairs from a stereo system are automatically labeled with a viewpoint
change, albeit unknown. A practical model that can learn from these labels is an encoder-decoder pair
subject to a reconstruction constraint. In this model the weak labels can be used to define similarities
between subsets of the feature obtained from two input images.

We introduce a novel adversarial training of autoencoders to solve the disentangling task when only
weak labels are available. Compared to previous methods, our discriminator is not conditioned on
class labels, but takes image pairs as inputs. This way the number of parameters can be kept constant.

∗The authors contributed equally.

1

Workshop track - ICLR 2018

We describe the shortcut problem, where all the the information is encoded only in one part of the
feature, while other part is completely ignored, as fig. 1 illustrates. We prove our method solves this
problem and demonstrate it experimentally.

We formally prove existence of the reference ambiguity, that is inherently present in the disentangling
task when weak labels are used. Thus no algorithm can provably learn disentangling. As fig. 1 shows,
the reference ambiguity means that a factor (for example viewpoint) can have different meaning when
using a different reference frame that depends on another factor (for example car type). We show
experimentally that this ambiguity rarely arise, we can observe it only when the data is complex.

(a) ideal solution (b) shortcut problem (c) reference ambiguity

Figure 1: Challenges of disentangling. We disentangle the feature into two parts, one representing
the viewpoint, the other the car type. We use the features for attribute transfer. For all subfigures
the viewpoint feature is taken from the leftmost column and the car type feature is taken from the
topmost row. (a) ideal solution: the viewpoint and the car type are transferred correctly. (b) shortcut
problem: the car type is not transferred. (c) reference ambiguity: compared to the others the viewpoint
orientation is flipped for the blue car.

2 RELATED WORK

Autoencoders. Autoencoders in Bourlard & Kamp (1988), Hinton & Salakhutdinov (2006), Bengio
et al. (2013) learn to reconstruct the input data as x = Dec(Enc(x)), where Enc(x) is the internal
image representation (the encoder) and Dec (the decoder) reconstructs the input of the encoder.
Variational autoencoders in Kingma & Welling (2014) use a generative model; p(x, z) = p(x|z)p(z),
where x is the observed data (images), and z are latent variables. The encoder estimates the
parameters of the posterior, Enc(x) = p(z|x), and the decoder estimates the conditional likelihood,
Dec(z) = p(x|z). In Hinton et al. (2011) autoencoders are trained with transformed image input pairs.
The relative transformation parameters are also fed to the network. Because the internal representation
explicitly represents the objects presence and location, the network can learn their absolute position.
One important aspect of the autoencoders is that they encourage latent representations to keep as
much information about the input as possible.

GAN. Generative Adversarial Nets Goodfellow et al. (2014) learn to sample realistic images with
two competing neural networks. The generator Dec creates images x = Dec(z) from a random
noise sample z and tries to fool a discriminator Dsc, which has to decide whether the image is
sampled from the generator pg or from real images preal. After a successful training the discriminator
cannot distinguish the real from the generated samples. Adversarial training is often used to enforce
constraints on random variables. BIGAN, Donahue et al. (2016) learns a feature representation with
adversarial nets by training an encoder Enc, such that Enc(x) is Gaussian, when x ∼ preal. CoGAN,
Liu & Tuzel (2016) learns the joint distribution of multi-domain images by having generators and
discriminators in each domain, and sharing their weights. They can transform images between
domains without being given correspondences. InfoGan, Chen et al. (2016) learns a subset of factors
of variation by reproducing parts of the input vector with the discriminator.

Disentangling and independence. Many recent methods use neural networks for disentangling
features, with various degrees of supervision. In Xi Peng (2017) multi-task learning is used with full
supervision for pose invariant face recognition. Using both identity and pose labels Tran et al. (2017)
can learn pose invariant features and synthesize frontalized faces from any pose. In Yang et al. (2015)
autoencoders are used to generate novel viewpoints of objects. They disentangle the object category
factor from the viewpoint factor by using as explicit supervision signals: the relative viewpoint

2

Workshop track - ICLR 2018

transformations between image pairs. In Cheung et al. (2014) the output of the encoder is split in two
parts: one represents the class label and the other represents the nuisance factors. Their objective
function has a penalty term for misclassification and a cross-covariance cost to disentangle class from
nuisance factors. Hierarchical Boltzmann Machines are used in Reed et al. (2014) for disentangling.
A subset of hidden units are trained to be sensitive to a specific factor of variation, while being
invariant to others. Variational Fair Autoencoders Louizos et al. (2016) learn a representation that is
invariant to specific nuisance factors, while retaining as much information as possible. Autoencoders
can also be used for visual analogy Reed et al. (2015). GAN is used for disentangling intrinsic image
factors (albedo and normal map) in Shu et al. (2017) by modeling the physics of the image formation
in their network. Reed et al. (2015) uses autoencoders for disentangling. The feature representation
is split into two parts to represent different factors. They combine these parts from different inputs,
and feed it to the decoder. Given the ground truth target image, they can learn to disentangle the
factors of variation. Mathieu et al. (2016) uses GAN to avoid the use of ground truth images, but their
discriminator still requires to be conditioned on class labels. Our model only requires weak labelling,
where the input images share a factor of variation. Our novel adversarial term takes only images pairs
as inputs and we do not need to condition it on class labels.

3 DISENTANGLING FACTORS OF VARIATION

We are interested in the design and training of two models. One should map a data sample (e.g., an
image) to a feature that is explicitly partitioned into subvectors, each associated to a specific factor
of variation. The other model should map this feature back to an image. We call the first model the
encoder and the second model the decoder. For example, given the image of a car we would like
the encoder to yield a feature with two subvectors: one related to the car viewpoint, and the other
related to the car type. The subvectors of the feature obtained from the encoder should be useful
for classification or regression of the corresponding factor that they depend on (the car viewpoint
and type in the example). This separation would also be very useful to the decoder. It would enable
advanced editing of images, for example, the transfer of the viewpoint or car types from an image to
another, by swapping the corresponding subvectors. Next, we introduce our model of the data and
formal definitions of our encoder and decoder.

Data model. We assume that our observed data x is generated through some unknown deterministic
invertible and smooth process f that depends on the factors v and c, so that x = f(v, c). In our
earlier example, x is an image, v is a viewpoint, c is a car type, and f is the rendering engine.
It is reasonable to assume that f is invertible, as for most cases the factors are readily apparent
form the image. We assume f is smooth, because a small change in the factors should only result
in a small change in the image and vice versa. We denote the inverse of the rendering engine as
f−1 = [f−1v , f−1c], where the subscript refers to the recovered factor.

Weak labeling. In the training we are given pairs of images x1 and x2, where they differ in v
(varying factor), but they have the same c (common factor). We also assume that the two varying
factors and the common factor are sampled independently, v1 ∼ pv, v2 ∼ pv and c ∼ pc. The
images are generated as x1 = f(v1, c) and x1 = f(v2, c). We call this labeling weak, because we
do not know the absolute values of either the v or c factors or even relative changes between v1 and
v2. All we know is that the image pairs share the same common factor.

The encoder. Let Enc be the encoder mapping images to features. For simplicity, we consider
features split into only two column subvectors, Nv and Nc, one associated to the varying factor v and
the other associated to the common factor c. Then, we have that Enc(x) = [Nv(x), Nc(x)]. Ideally,
we would like to find the inverse of the image formation function, [Nv, Nc] = f−1, which separates
and recovers the factors v and c from data samples x, i.e.,

Nv(f(v, c)) = v Nc(f(v, c)) = c. (1)

In practice, this is not possible because any bijective transformation of v and c could be undone by f
and produce the same output x. Therefore, we aim for Nv and Nc that satisfy the following feature
disentangling properties

Rv(Nv(f(v, c))) = v Rc(Nc(f(v, c))) = c (2)

for all v, c, and for some bijective functions Rv and Rc, so that Nv is invariant to c and Nc is
invariant to v.

3

Workshop track - ICLR 2018

The decoder. Let Dec be the decoder mapping features to images. The sequence encoder-decoder is
constrained to form an autoencoder, so

Dec(Nv(x), Nc(x)) = x, ∀x. (3)

To use the decoder for image synthesis, so that each input subvector affects only one factor in the
rendered image, the ideal decoder should satisfy the data disentangling property

Dec(Nv(f(v1, c1)), Nc(f(v2, c2))) = f(v1, c2) (4)

for any v1, v2, c1, and c2. The equation above describes the transfer of the varying factor v1 of x1

and the common factor c2 of x2 to a new image x1⊕2 = f(v1, c2).

In the next section we describe our training method for disentangling. We introduce a novel adversarial
term, that does not need to be conditioned on the common factor, rather it uses only image pairs, that
keeps the model parameters constant. Then we address the two main challenges of disentangling, the
shortcut problem and the reference ambiguity. We discuss which disentanglement properties can be
(provably) achieved by our (or any) method.

3.1 MODEL TRAINING

In our training procedure we use two terms in the objective function: an autoencoder loss and
an adversarial loss. We describe these losses in functional form, however the components are
implemented using neural networks. In all our terms we use the following sampling of independent
factors

c1, c3 ∼ pc, v1,v2,v3 ∼ pv. (5)

The images are formed as x1 = f(v1, c1), x2 = f(v2, c1) and x3 = f(v3, c3). The images x1 and
x2 share the same common factor, and x1 and x3 are independent. In our objective functions, we use
either pairs or triplets of the above images.

Autoencoder loss. In this term, we use images x1 and x2 with the same common factor c1. We
feed both images to the encoder. Since both images share the same c1, we impose that the decoder
should reconstruct x1 from the encoder subvector Nv(x1) and the encoder subvector Nc(x2), and
similarly for the reconstruction of x2. The autoencoder objective is thus defined as

LAE
.
= Ex1,x2

[∣∣x1 − Dec(Nv(x1), Nc(x2))
∣∣2 + ∣∣x2 − Dec(Nv(x2), Nc(x1))

∣∣2]. (6)

Adversarial loss. We introduce an adversarial training where the generator is our encoder-decoder
pair and the discriminator Dsc is a neural network, which takes image pairs as input. The discriminator
learns to distinguish between real image pairs [x1,x2] and fake ones [x1,x3⊕1], where x3⊕1

.
=

Dec(Nv(x3), Nc(x1)). If the encoder were ideal, the image x3⊕1 would be the result of taking the
common factor from x1 and the varying factor from x3. The generator learns to fool the discriminator,
so that x3⊕1 looks like the random variable x2 (the common factor is c1 and the varying factor is
independent of v1). To this purpose, the decoder must make use of Nc(x1), since x3 does not carry
any information about c1. The objective function is thus defined as

LGAN
.
= Ex1,x2

[
log(Dsc(x1,x2))

]
+ Ex1,x3

[
log(1− Dsc(x1,x3⊕1))

]
. (7)

Composite loss. Finally, we optimize the weighted sum of the two losses L = LAE + λLGAN ,

min
Dec,Enc

max
Dsc
LAE(Dec,Enc) + λLGAN (Dec,Enc,Dsc) (8)

where λ regulates the relative importance of the two losses.

3.2 SHORTCUT PROBLEM.

Ideally, at the global minimum of LAE , Nv relates only to the factor v and Nc only to c. However,
the encoder may map a complete description of its input into Nv and the decoder may completely
ignore Nc. We call this challenge the shortcut problem. When the shortcut problem occurs, the
decoder is invariant to its second input, so it does not transfer the c factor correctly,

Dec(Nv(x3), Nc(x1)) = x3. (9)

4

Workshop track - ICLR 2018

The shortcut problem can be addressed by reducing the dimensionality of Nv, so it cannot build a
complete representation of all input images. This also forces the encoder and decoder to make use
of Nc for the common factor. However, this strategy may not be convenient as it leads to a time
consuming trial-and-error procedure to find the correct dimensionality. A better way to address the
shortcut problem is to use adversarial training (7) (8).
Proposition 1. Let x1, x2 and x3 data samples generated according to (5), where the factors
c1, c3,v1,v2,v3 are jointly independent, and x3⊕1

.
= Dec(Nv(x3), Nc(x1)). When the global

optimum of the composite loss (8) is reached, the c factor is transferred to x3⊕1, i.e. f−1c (x3⊕1) = c1.

Proof. When the global optimum of (8) is reached, the distribution of real [x1,x2] and fake [x1,x3⊕1]
image pairs are identical. We compute statistics of the inverse of the rendering engine of the common
factor f−1c on the data. For the images x1 and x2 we obtain

Ex1,x2

[
|f−1c (x1)− f−1c (x2)|2

]
= Ec1

[
|c1 − c1|2

]
= 0 (10)

by construction (of x1 and x2). For the images x1 and x3⊕1 we obtain

Ex1,x3

[
|f−1c (x1)− f−1c (x3⊕1)|2

]
= Ev1,c1,v3,c3

[
|c1 − c3⊕1|2

]
≥ 0, (11)

where c3⊕1 = f−1c (x3⊕1). We achieve equality if and only if c1 = c3⊕1 everywhere.

3.3 REFERENCE AMBIGUITY

Let us consider the ideal case where we observe the space of all images. When weak labels are made
available to us, we also know what images x1 and x2 share the same c factor (for example, which
images have the same car). This labeling is equivalent to defining the probability density function pc
and the joint conditional px1,x2|c, where

px1,x2|c(x1,x2|c) =
∫
δ(x1 − f(v1, c))δ(x2 − f(v2, c))p(v1)p(v2)dv1dv2. (12)

Firstly, we show that the labeling allows us to satisfy the feature disentangling property for c (2). For
any [x1,x2] ∼ px1,x2|c we impose Nc(x1) = Nc(x2). In particular, this equation is true for pairs
when one of the two images is held fixed. Thus, a function C(c) = Nc(x1) can be defined, where
the C only depends on c, because Nc is invariant to v. Lastly, images with the same v, but different
c must also result in different features, C(c1) = Nv(f(v, c1)) 6= Nv(v, c2) = C(c2), otherwise the
autoencoder constraint (3) cannot be satisfied. Then, there exists a bijective function Rc = C−1 such
that property (2) is satisfied for c. Unfortunately the other disentangling properties can not provably
be satisfied.
Definition 1. A function g reproduces the data distribution, when it generates samples y1 = g(v1, c)
and y2 = g(v2, c) that have the same distribution as the data. Formally, [y1,y2] ∼ px1,x2 , where
the latent factors are independent, v1 ∼ pv, v2 ∼ pv and c ∼ pc.

The reference ambiguity occurs, when a decoder reproduces the data without satisfying the disentan-
gling properties.
Proposition 2. Let pv assign the same probability value to at least two different instances of v.
Then, we can find encoders that reproduce the data distribution, but do not satisfy the disentangling
properties for v in (2) and (4).

Proof. We already saw thatNc satisfies (2), so we can chooseNc = f−1c , the inverse of the rendering
engine. Now we look at defining Nv and the decoder. The iso-probability property of pv implies
that there exists a mapping T (v, c), such that T (v, c) ∼ pv and T (v, c1) 6= T (v, c2) for some
v and c1 6= c2. For example, let us denote with v1 6= v2 two varying components such that
pv(v1) = pv(v2). Then, let

T (v, c)
.
=

v if v 6= v1,v2

v1 if v = v1 ∨ v2 and c ∈ C
v2 if v = v1 ∨ v2 and c /∈ C

(13)

5

Workshop track - ICLR 2018

and C is a subset of the domain of c, where
∫
C pc(c)dc = 1/2. Now, let us define the encoder as

Nv(f(v, c)) = T (v, c). By using the autoencoder constraint, the decoder satisfies

Dec(Nv(f(v, c)), Nc(f(v, c))) = Dec(T (v, c), c) = f(v, c). (14)

Even though T (v, c) depends on c functionally, they are statistically independent. Because T (v, c) ∼
pv and c ∼ pc by construction, our encoder-decoder pair defines a data distribution identical to that
given as training set

[Dec(T (v1, c), c),Dec(T (v2, c), c)] ∼ px1,x2 . (15)

The feature disentanglement property is not satisfied because Nv(f(v1, c1)) = T (v1, c1) 6=
T (v1, c2) = Nv(f(v1, c2)), when c1 ∈ C and c2 6∈ C. Similarly, the data disentanglement
property does not hold, because Dec(T (v1, c1), c1) 6= Dec(T (v1, c2), c2).

The above proposition implies that we cannot provably disentangle all the factors of variation from
weakly labeled data, even if we had access to all the data and knew the distributions pv and pc.

To better understand it, let us consider a practical example. Let v ∼ U [−π, π] be the (continuous)
viewpoint (the azimuth angle) and c ∼ B(0.5) the car type, where U denotes the uniform distribution
and B(0.5) the Bernoulli distribution with probability pc(c = 0) = pc(c = 1) = 0.5 (i.e., there
are only 2 car types). In this case, every instance of v is iso-probable in pv so we have the worst
scenario for the reference ambiguity. We can define the function T (v, c) = v(2c − 1) so that the
mapping of v is mirrored as we change the car type. By construction T (v, c) ∼ U [−π, π] for any c
and T (v, c1) 6= T (v, c2) for v 6= 0 and c1 6= c2. So we cannot tell the difference between T and the
ideal correct mapping to the viewpoint factor. This is equivalent to an encoderNv(f(v, c)) = T (v, c)
that reverses the ordering of the azimuth of car 1 with respect to car 0. Each car has its own reference
system, and thus it is not possible to transfer the viewpoint from one system to the other, as it is
illustrated in fig. 1.

3.4 IMPLEMENTATION

In our implementation we use convolutional neural networks for all the models. We denote with θ the
parameters associated to each network. Then, the optimization of the composite loss can be written as

θ̂Dec, θ̂Enc, θ̂Dsc = arg min
θDec,θEnc

max
θDsc
L(θDec, θEnc, θDsc). (16)

We choose λ = 1 and also add regularization to the adversarial loss so that each logarithm has a
minimum value. We define logε Dsc(x1,x2) = log(ε + Dsc(x1,x2)) (and similarly for the other
logarithmic term) and use ε = 10−12. The main components of our neural network are shown in
Fig. 2. The architecture of the encoder and the decoder were taken from DCGAN Radford et al.
(2015), with slight modifications. We added fully connected layers at the output of the encoder and to
the input of the decoder. For the discriminator we used a simplified version of the VGG Simonyan &
Zisserman (2014) network. As the input to the discriminator is an image pair, we concatenate them
along the color channels.

Normalization. In our architecture both the encoder and the decoder networks use blocks with a
convolutional layer, a nonlinear activation function (ReLU/leaky ReLU) and a normalization layer,
typically, batch normalization (BN). As an alternative to BN we consider the recently introduced
instance normalization (IN) Ulyanov et al. (2017). The main difference between BN and IN is that
the latter just computes the mean and standard deviation across the spatial domain of the input and
not along the batch dimension. Thus, the shift and scaling for the output of each layer is the same at
every iteration for the same input image. In practice, we find that IN improves the performance.

4 EXPERIMENTS

We tested our method on the MNIST, Sprites and ShapeNet datasets. We performed ablation studies
on the shortcut problem using ShapeNet cars. We focused on the effect of the feature dimensionality
and having the adversarial term (LAE + LGAN) or not (LAE). We also show that in most cases the
reference ambiguity does not arise in practice (MNIST, Sprites, ShapeNet cars), we can only observe
it when the data is more complex (ShapeNet chairs).

6

Workshop track - ICLR 2018

Dec Dec Dec

Enc Enc Enc

Nv2 Nc2 Nv1 Nc1 Nv3 Nc3

x2 x1 x3

L2

x1

L2

x2

Dsc

x1

Dsc

x1 x2x3�1x2�1x1�2

Figure 2: Learning to disentangle factors of variation. The scheme above shows how the encoder
(Enc), the decoder (Dec) and the discriminator (Dsc) are trained with input triplets. The components
with the same name share weights.

4.1 SHORTCUT PROBLEM

ShapeNet cars. The ShapeNet dataset Chang et al. (2015) contains 3D objects than we can render
from different viewpoints. We consider only one category (cars) for a set of fixed viewpoints. Cars
have high intraclass variability and they do not have rotational symmetries. We used approximately
3K car types for training and 300 for testing. We rendered 24 possible viewpoints around each object
in a full circle, resulting in 80K images in total. The elevation was fixed to 15 degrees and azimuth
angles were spaced 15 degrees apart. We normalized the size of the objects to fit in a 100× 100 pixel
bounding box, and placed it in the middle of a 128× 128 pixel image.

Fig. 3 shows the attribute transfer on the Shapenet cars. We compare the methods LAE and LAE +
LGAN with different feature dimension of Nv. The size of the common feature Nc was fixed to
1024 dimensions. We can observe that the transferring performance degrades for LAE , when we
increase the feature size of Nv. As expected, the autoencoder takes the shortcut and tries to store
all information into Nv. The model LAE + LGAN instead renders images without loss of quality,
independently of the feature dimension.

(a) (b)

Figure 3: Feature transfer on Shapenet. (a) synthesized images with LAE , where the top row shows
images from which the car type is taken. The second, third and fourth row show the decoder renderings
using 2, 16 and 128 dimensions for the feature Nv. (b) images synthesized with LAE + LGAN . The
setting for the inputs and feature dimensions are the same as in (a).

In Fig. 4 we visualize the t-SNE embeddings of the Nv features for several models using different
feature sizes. For the 2D case, we do not modify the data. We can see that both LAE with 2
dimensions and LAE + LGAN with 128 separate the viewpoints well, but LAE with 128 dimensions
does not due to the shortcut problem. We investigate the effect of dimensionality of the Nv features
on the nearest neighbor classification task. The performance is measured by the mean average
precision. For Nv we use the viewpoint as ground truth. Fig. 4 also shows the results on LAE and
LAE +LGAN models with different Nv feature dimensions. The dimension of Nc was fixed to 1024
for this experiment. One can now see quantitatively that LAE is sensitive to the size of Nv, while
LAE + LGAN is not. LAE + LGAN also achieves a better performance.

7

Workshop track - ICLR 2018

(a) (b) (c)

2 16 128 1024

dimensions

0.2

0.3

0.4

0.5

0.6

v
ie

w
 m

A
P

AE

AE+GAN

(d)

Figure 4: The effect of dimensions and objective function on Nv features. (a), (b), (c) t-SNE
embeddings on Nv features. Colors correspond to the ground truth viewpoint. The objective
functions and the Nv dimensions are: (a) LAE 2 dim, (b) LAE 128 dim, (c) LAE + LGAN 128 dim.
(d) Mean average precision curves for the viewpoint prediction from the viewpoint feature using
different models and dimensions for Nv.

Table 1: Nearest neighbor classification on Nv and Nc features using different normalization
techniques on ShapeNet cars.

Normalization Nv mAP Nc mAP

None 0.47 0.13
Batch 0.50 0.08
Instance 0.50 0.20

We compare the different normalization choices in Table 1. We evaluate the case when batch, instance
and no normalization are used and compute the performance on the nearest neighbor classification
task. We fixed the feature dimensions at 1024 for both Nv and Nc features in all normalization cases.
We can see that both batch and instance normalization perform equally well on viewpoint classification
and no normalization is slightly worse. For the car type classification instance normalization is clearly
better.

4.2 REFERENCE AMBIGUITY

MNIST. The MNIST dataset LeCun et al. (1998) contains handwritten grayscale digits of size
28 × 28 pixel. There are 60K images of 10 classes for training and 10K for testing. The common
factor is the digit class and the varying factor is the intraclass variation. We take image pairs that
have the same digit for training, and use our full model LAE + LGAN with dimensions 64 for Nv

and 64 for Nc. In Fig. 5 (a) and (b) we show the transfer of varying factors. Qualitatively, both our
method and Mathieu et al. (2016) perform well. We observe neither the reference ambiguity nor the
shortcut problem in this case.

(a) (b) (c) (d)

Figure 5: Renderings of transferred features. In all figures the variable factor is transferred from the
left column and the common factor from the top row. (a) MNIST Mathieu et al. (2016); (b) MNIST
(ours); (c) Sprites Mathieu et al. (2016); (d) Sprites (ours).

Sprites. The Sprites dataset Reed et al. (2015) contains 60 pixel color images of animated characters
(sprites). There are 672 sprites, 500 for training, 100 for testing and 72 for validation. Each sprite
has 20 animations and 178 images, so the full dataset has 120K images in total. There are many

8

Workshop track - ICLR 2018

(a) ShapeNet cars (b) ShapeNet chairs

Figure 6: Attribute transfer on ShapeNet. For both subfigures the viewpoint is taken from the leftmost
column and the car/chair type is taken from the first row. (a) Cars: the factors are transferred correctly.
(b) Chairs: in the bottom three rows the viewpoint is not transferred correctly due to the reference
ambiguity.

changes in the appearance of the sprites, they differ in their body shape, gender, hair, armour, arm
type, greaves, and weapon. We consider character identity as the common factor and the pose as the
varying factor. We train our system using image pairs of the same sprite and do not exploit labels on
their pose. We train the LAE + LGAN model with dimensions 64 for Nv and 448 for Nc. Fig. 5
(c) and (d) show results on the attribute transfer task. Both our method and Mathieu et al. (2016)’s
transfer the identity of the sprites correctly, the reference ambiguity does not arise.

ShapeNet chairs. We render the ShapeNet chairs with the same settings (viewpoints, image size)
as the cars. There are 3500 chair types for training and 3200 for testing, so the dataset contains
160K images. We trained LAE + LGAN , and set the feature dimensions to 1024 for both Nv and
Nc. In Fig. 6 we show results on attribute transfer and compare it with ShapeNet cars. We found that
the reference ambiguity does not emerge for cars, but it does for chairs, possibly due to the higher
complexity, as cars have much less variability than chairs.

5 CONCLUSIONS

In this paper we studied the challenges of disentangling factors of variation, mainly the shortcut
problem and the reference ambiguity. The shortcut problem occurs when all information is stored in
only one feature chunk, while the other is ignored. The reference ambiguity means that the reference
in which a factor is interpreted, may depend on other factors. This makes the attribute transfer
ambiguous. We introduced a novel training of autoencoders to solve disentangling using image
triplets. We showed theoretically and experimentally how to keep the shortcut problem under control
through adversarial training, and enable to use large feature dimensions. We proved that the reference
ambiguity is inherently present in the disentangling task when weak labels are used. Most importantly
this can be stated independently of the learning algorithm. We demonstrated that training and transfer
of factors of variation may not be guaranteed. However, in practice we observe that our trained model
works well on many datasets and exhibits good generalization capabilities.

REFERENCES

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

Hervé Bourlard and Yves Kamp. Auto-association by multilayer perceptrons and singular value decomposition.
Biological cybernetics, 59(4):291–294, 1988.

9

Workshop track - ICLR 2018

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich
3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR], 2015.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan: Interpretable
representation learning by information maximizing generative adversarial nets. In NIPS, 2016.

Brian Cheung, Jesse A Livezey, Arjun K Bansal, and Bruno A Olshausen. Discovering hidden factors of variation
in deep networks. arXiv:1412.6583, 2014.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv:1605.09782, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507, 2006.

Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-encoders. In International
Conference on Artificial Neural Networks, pp. 44–51. Springer, 2011.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. In Advances in Neural Information
Processing Systems, pp. 469–477, 2016.

Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational fair autoencoder.
In ICLR, 2016.

Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya Ramesh, Pablo Sprechmann, and Yann LeCun.
Disentangling factors of variation in deep representation using adversarial training. In Advances in Neural
Information Processing Systems, pp. 5041–5049, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv:1511.06434, 2015.

Scott Reed, Kihyuk Sohn, Yuting Zhang, and Honglak Lee. Learning to disentangle factors of variation with
manifold interaction. In Proceedings of the 31st International Conference on Machine Learning (ICML-14),
pp. 1431–1439, 2014.

Scott E Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep visual analogy-making. In Advances in Neural
Information Processing Systems, pp. 1252–1260, 2015.

Zhixin Shu, Ersin Yumer, Sunil Hadap, Kalyan Sunkavalli, Eli Shechtman, and Dimitris Samaras. Neural
face editing with intrinsic image disentangling. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Luan Tran, Xi Yin, and Xiaoming Liu. Disentangled representation learning gan for pose-invariant face
recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Improved texture networks: Maximizing quality and
diversity in feed-forward stylization and texture synthesis. In CVPR, 2017.

Kihyuk Sohn Dimitris Metaxas Manmohan Chandraker Xi Peng, Xiang Yu. Reconstruction for feature disentan-
glement in pose-invariant face recognition. arXiv:1702.03041, 2017.

Jimei Yang, Scott E Reed, Ming-Hsuan Yang, and Honglak Lee. Weakly-supervised disentangling with recurrent
transformations for 3d view synthesis. In NIPS, 2015.

10

	Introduction
	Related work
	Disentangling factors of variation
	Model training
	Shortcut problem.
	Reference ambiguity
	Implementation

	Experiments
	Shortcut problem
	Reference ambiguity

	Conclusions

