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ABSTRACT

Deep generative models are capable of learning probability distributions over
large, high-dimensional datasets such as images, video and natural language. Gen-
erative models trained on samples from p(x) ought to assign low likelihoods to
out-of-distribution (OoD) samples from q(x), making them suitable for anomaly
detection applications. We show that in practice, likelihood models are themselves
susceptible to OoD errors, and even assign large likelihoods to images from other
natural datasets. To mitigate these issues, we propose Generative Ensembles,
a model-independent technique for OoD detection that combines density-based
anomaly detection with uncertainty estimation. Our method outperforms the Out-
of-DIstribution detector for Neural networks (ODIN) and Variational Information
Bottleneck (VIB) baselines on image datasets, and achieves comparable perfor-
mance to a classification model on the Kaggle Credit Fraud dataset.

1 INTRODUCTION

Knowing when a machine learning (ML) model is qualified to make predictions on an input is critical
to safe deployment of ML technology in the real world. When training and test distributions differ,
neural networks may provide – with high confidence – arbitrary predictions on inputs that they are
unaccustomed to seeing. To mitigate these Out-of-Distribution (OoD) errors, we require methods to
determine whether a given input is sampled from a different stochastic generator than the one used
to train the model.

OoD detection techniques have broad applications beyond safe deployment of ML technology. As
datasets for ML grow ever larger and trend towards automated data collection, we require scalable
methods for identifying outliers and quantifying noise before we can attempt to train models on that
data. Identifying anomalies in data is a crucial feature of many data-driven applications, such as
credit fraud detection and monitoring patient data in medical settings.

Generative modeling algorithms have improved dramatically in recent years, and are capable of
learning probabilistic models over large, high-dimensional datasets such as images, video, and nat-
ural language (Vaswani et al., 2017; Wang et al., 2018). A generative model pθ(x), parameterized
by random variable θ and trained to approximate data distribution p(x), ought to assign low like-
lihoods to samples from any distribution q(x) that differs from p(x). Density estimation does not
presuppose a specific “alternate” distribution at training time, making it an attractive alternative to
classification-based anomaly detection methods.

In this work, we apply several classes of generative models to OoD detection problems and demon-
strate a significant shortcoming to high-dimensional density estimation models: the anomaly de-
tection model itself may be mispecified. Explicit likelihood models can, in practice, realize high
likelihoods to adversarial examples, random noise, and even other natural image datasets. We also
illustrate how GAN discriminators presuppose a particular OoD distribution, which makes them par-
ticularly fragile at OoD classification. We propose Generative Ensembles, which combine density
estimation with uncertainty estimation to detect OoD in a robust manner. Generative Ensembles
are model-independent and are trained independently of the task-specific ML model of interest.
Our method outperforms task-specific OoD baselines on the majority of evaluated OoD tasks and
demonstrate competitive results with discriminative classification approaches on the Kaggle Credit
Fraud dataset.
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2 GENERATIVE ENSEMBLES

We consider several classes of generative modeling techniques in our experiments. Autoregressive
Models and Normalizing Flows (NF) are fully-observed likelihood models that construct a tractable
log-likelihood approximation to the data-generating density p(x) (Uria et al., 2016; Dinh et al.,
2014; Rezende & Mohamed, 2015). Variational Autoencoders (VAE) are latent variable models
that maximize a variational lower bound on log density (Kingma & Welling, 2013; Rezende et al.,
2014). Finally, Generative Adversarial Networks (GAN) are implicit density models that minimize a
divergence metric between p(x) and generative distribution qθ(x) (Goodfellow et al., 2014). We refer
to a GAN’s generative distribution as qθ(x) (in lieu of pθ(x)) because from the GAN discriminator’s
point of view, the outputs of the generator are OoD and depend on θ.

Although log p(x) and its lower bounds are proper scoring methods (Lakshminarayanan et al., 2017),
we approximate them in practice with continuous-valued neural network function approximators
log pθ(x). Neural networks have non-smooth predictive distributions, which makes them susceptible
to malformed inputs that exploit idiosyncratic computation within the model (Szegedy et al., 2013).

Likelihood function approximators are no exception. When judging natural images, we assume
an OoD input x ∼ q(x) should remain OoD within some LP -norm, and yet a Fast Gradient Sign
Method (FGSM) attack (Goodfellow et al., 2015) on the predictive distribution can realize extremely
high likelihood predictions (Nguyen et al., 2015). Conversely, a FGSM attack in the reverse direction
on an in-distribution sample x ∼ p(x) creates a perceptually identical input with low likelihood
predictions (Kos et al., 2018). To make matters worse, we show in Figure 1 that likelihood models
can be fooled by OoD samples that are not even adversarial by construction, such as SVHN test
images on a likelihood model trained on CIFAR-10. Concurrent work by Nalisnick et al. (2018)
also show this phenomena and present additional analyses on why generative models systematically
assign higher likelihoods to SVHN.

Figure 1: Left: density estimation models are not robust to OoD inputs. A GLOW model (Kingma
& Dhariwal, 2018) trained on CIFAR-10 assigns much higher likelihoods to samples from SVHN
than samples from CIFAR-10. Right: We use ensembles of generative models to implement the
Watanabe-Akaike Information Criterion (WAIC), which combines density estimation with uncer-
tainty estimation. Histograms correspond to predictions over test sets from each dataset.

Generative Ensembles detect OoD examples by combining a density evaluation model with pre-
dictive uncertainty estimation on the density model via ensemble variance. Following the results
of Lakshminarayanan et al. (2017), we elect to use independently trained ensembles instead of
a Bayesian Dropout approximation (Gal & Ghahramani, 2016). For generative models that ad-
mit exact likelihoods (or variational approximations), the ensemble can be used to implement the
Watanabe-Akaike Information Criterion (WAIC), which consists of a density estimation score with
a Bayesian correction term for model bias (Watanabe, 2010):

WAIC(x) = Eθ[log pθ(x)]−Varθ [log pθ(x)] (1)
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2.1 OOD DETECTION WITH GAN DISCRIMINATORS

We describe how to construct Generative Ensembles based on implicit density models such as
GANs, and highlight the importance of OoD detection approaches that do not presuppose a spe-
cific OoD distribution. A discriminative model tasked with classifying between p(x) and q(x) is
fragile to inputs that lie in neither distribution. Figure 2b illustrates a simple 2D density modeling
task where individual GAN discriminators – when trained to convergence – learn a discriminative
boundary that does not adequately capture p(x).

However, unlike discriminative anomaly classifiers on a static datasets, which model p(x)/q(x), the
likelihood ratio p(x)/qθ(x) implicitly assumed by a GAN discriminator is uniquely randomized by
GAN training dynamics on θ. By training an ensemble of GANs we can estimate the posterior
distribution over model decision boundaries p(x)/qθ(x), or equivalently, the posterior distribution
over alternate distributions qθ(x). In other words, we can use uncertainty estimation on randomly
sampled discriminators to de-correlate the OoD classification errors made by a single discriminator
(Figure 2c).

(a) Normalizing Flow (b) Independent Discriminators (c) Ensemble Variance (GAN)

Figure 2: In this toy example, we learn generative models for a 2D multivariate normal with identity
covariance centered at (5, 5). (a) Explicit density models such as Normalizing Flows concentrate
probability mass at the data distribution (b) Four independently trained GANs learn random discrim-
inative boundaries, each corresponding to a different implied generator distribution. To ensure that
the GAN discriminators form a clear discriminative boundary between p(x) and qθ(x), we train the
discriminators an additional 10k steps to convergence. Each of these boundaries fails to enclose the
true data distribution. (c) Predictive uncertainty over an ensemble of discriminators “fences in” the
shared, low-variance region corresponding to p(x).

3 RELATED WORK

We can categorize existing OoD detection techniques in Table 1 using two criteria: (1) Does it
assume a specific anomaly distribution? (2) Is the technique specific to the model, or does it only
depend on the inputs to the model?

A common approach to OoD detection (a.k.a. anomaly detection) is to label a dataset of anomalous
data and train a binary classifier on that label. Alternatively, a classification task model may be aug-
mented with a “None of the above” class. The classifier then learns a decision boundary (likelihood
ratio) between p(x) and q(x). However, the discriminative approach to anomaly detection requires
the anomaly distribution to be specified at training time; this is a severe flaw when anomalous data
is rare (e.g. medical seizures) or non-stationary (e.g. generated by an adversary).

3.1 UNCERTAINTY ESTIMATION

OoD detection is closely related to the problem of uncertainty estimation, whose goal is to yield
calibrated confidence measures for a model’s predictive distribution pθ(y|x). Well-calibrated un-
certainty estimation integrates several forms of uncertainty into pθ(y|x): model mispecification un-
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Table 1: Categorization of several OoD detection techniques, based on whether they depend on a
specific model/task, and whether they assume a specific anomaly distribution.

Model-Dependent Model-Independent

OoD
Dependent

Auxiliary “Other” class Binary classification (likelihood ratio)
Adversarial Training

OoD
Independent

Hendrycks & Gimpel (2016) Density Estimation
Gal & Ghahramani (2016) Generative Ensembles (ours)
Liang et al. (2017)
Lakshminarayanan et al. (2017)
Alemi et al. (2018b)

certainty (OoD detection of invalid inputs), aleatoric uncertainty (irreducible input noise for valid
inputs), and epistemic uncertainty (unknown model parameters for valid inputs). In this paper, we
study OoD detection in isolation; instead of considering whether pθ(y|x) should be trusted for a
given x, we are trying to determine whether x should be fed into pθ(y|x) at all.

Predictive uncertainty estimation is a model-dependent OoD technique because it depends on task-
specific information (such as labels and task model architecture) in order to yield an integrated
estimate of uncertainty. ODIN (Liang et al., 2017), MC Dropout (Gal & Ghahramani, 2016) and
DeepEnsemble (Lakshminarayanan et al., 2017) model a calibrated predictive distribution for a clas-
sification task. Variational information bottleneck (VIB) (Alemi et al., 2018b) performs divergence
estimation in latent space to detect OoD, but is technically a model-dependent technique because
the latent code is trained jointly with the downstream classification task.

One limitation of model-dependent OoD techniques is that they may discard information about p(x)
in learning the task-specific loss function pθ(y|x). Consider a contrived binary classification model
on images that learns to solve the task perfectly by discarding all information except the contents
of the first pixel (no other information is preserved in the features). Subsequently, the model yields
confident predictions on any distribution that happens to preserve identical first-pixel statistics. In
contrast, density estimation in data space x considers the structure of the entire input manifold,
without bias towards a particular downstream task or task-specific compression.

In our work we estimate predictive uncertainty of the scoring model itself. Unlike predictive un-
certainty methods applied to the task model’s predictions, Generative Ensembles do not require
task-specific labels to train. Furthermore, model-independent OoD detection aids interpretation of
predictive uncertainty by isolating the uncertainty component arising from OoD inputs.

3.2 ADVERSARIAL DEFENSE

Song et al. (2017) make the observation that adversarial examples designed to fool a downstream
task have low likelihood under an independent generative model. They propose a “data purification”
pipeline where inputs are first modified via gradient ascent on model likelihood, before passing it
to the unmodified classifier. Their evaluations are restricted to Lp-norm attacks on in-distribution
inputs to the task model, and do not take into account that the generative model itself may be sus-
ceptible to OoD errors. In fact, a preprocessing step with gradient ascent on model likelihood has
the exact opposite of the desired effect when the input is OoD to begin with.

Our work considers adversarial defense in a broader OoD context. Although adversarial attacks
literature typically considers small Lp-norm modifications to input (demonstrating the alarming
sensitivity of neural networks), there is no such restriction in practice to the degree with which an
input can be perturbed in a test setting. Adversarial defense is nothing more than making ML models
robust to OoD inputs; whether they come from an attacker or not is irrelevant. We evaluate our meth-
ods on simple OoD transformations (flipping images), common ML datasets, and the adversaraial
setting where a worst-case input is created from a single model in the ensemble.

He et al. (2017) demonstrate that ensembling adversarial defenses does not completely mitigate
local sensitivity of neural networks. It is certainly plausible that sufficient search over a Generative
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Ensemble’s predictions can find OoD inputs with both low variance and high likelihood. The focus
of our work is to measure the extent to which uncertainty estimation improves robustness to model
mispecification error, not to present a provably secure system. Having said that, model-independent
OoD detection is easy to obfuscate in a practical ML security setting since the user only has access
to the task model. Furthermore, a Generative Ensemble’s WAIC estimate can be made more robust
by sampling additional models from the posterior over model parameters.

4 EXPERIMENTAL RESULTS

Following the experiments proposed by Liang et al. (2017) and Alemi et al. (2018b), we train OoD
models on MNIST, Fashion MNIST, CIFAR-10 datasets, and evaluate anomaly detection on test
samples from other datasets. In line with the aforementioned works, we measure anomaly detection
capability based on AUROC over several quantities shown in Table 2. Our proposed quantities in-
clude single Wasserstein GAN (WGAN) discriminators (Arjovsky et al., 2017) with fine-tuning (D),
ensemble variance of discriminators (Var(D)), likelihood models (log pθ(x)), and WAIC estimated
using an ensemble of likelihood models. We follow the protocol as suggested by Lakshminarayanan
et al. (2017) to use 5 independent models with different parameter initializations, trained on the full
training set (no bootstrap). For likelihood estimators based on variational autoencoders (VAE), we
also evaluate the rate term DKL(qθ(z|x)‖p(z)), which corresponds to information loss between the
latent inference distribution and prior.

For MNIST and Fashion MNIST datasets, we use a VAE to predict a 16-sample Importance
Weighted AutoEncoder (IWAE) bound. We extend the VAE example code1 from Tensorflow Prob-
ability (Dillon et al., 2017) to use a Masked Autoregressive Flow prior (Papamakarios et al., 2017),
and train the model for 5k steps. Additional architectural details are found in Appendix B.

Our WGAN model’s generator and discriminator share the same architecture with the VAE decoder
and encoder, respectively. The discriminator has an additional linear projection layer to its prediction
of the Wasserstein metric. To ensure D represents a meaningful discriminative boundary between
the two distributions, we freeze the generator and fine-tune the discriminator for an additional 4k
steps on stationary p(x) and qθ(x). We also include Gaussian noise adversarially perturbed by FGSM
on a single model (Adversarial).

For CIFAR-10 WGAN experiments, we change the first filter size in the discriminator from 7 to
8. For log-likelihood estimation, we train a vanilla GLOW model (Kingma & Dhariwal, 2018) for
250k steps, as we require a more powerful generative model to obtain good results.

The baseline methods are model-dependent and learn from the joint distribution of images and la-
bels, while our methods use only images. For the VIB baseline, we use the rate term as the threshold
variable. The experiments in Alemi et al. (2018b) make use of (28, 28, 5) “location-aware” features
concatenated to the model inputs, to assist in distinguishing spatial inhomogeneities in the data. In
this work we train vanilla generative models with no special modifications, so for fair comparison
we also train VIB without location-aware features. For CIFAR-10 experiments, we train VIB for
26 epochs and converge at 75.7% classification accuracy on the test set. All other experimental
parameters for VIB are identical to those in Alemi et al. (2018b).

Despite being trained on strictly less data (no labels), our methods – in particular Generative En-
sembles – outperform ODIN and VIB on most OoD tasks. The VAE rate term appears to be quite
effective, outperforming likelihood and WAIC estimation in data space. It is robust to adversarial
inputs on the same model, because the FGSM perturbation primarily minimizes the (larger) distor-
tion component of the approximate likelihood. The performance of VAE rate versus VIB rate also
suggests that latent codes learned from generative objectives are more useful for OoD detection that
latent codes learned via a classification-specific objective.

4.1 FAILURE ANALYSIS

In this section we discuss the experiments in which Generative Ensembles performed poorly, and
suggest simple fixes to address these issues.

1https://github.com/tensorflow/probability/blob/master/tensorflow_
probability/examples/vae.py
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Table 2: We train models on MNIST, Fashion MNIST, and CIFAR-10 and compare OoD classifi-
cation ability to baseline methods using the threshold-independent Area Under ROC curve metric
(AUROC). D corresponds to single WGAN discriminators with 4k fine-tuning steps on stationary
p(x), q(x). Var(D) is uncertainty estimated by an ensemble of discriminators. Rate is theDKL term
in the VAE objective. log pθ(x) is a single likelihood model (VAE, GLOW). WAIC is the Watanabe-
Akaike Information Criterion as estimated by the Generative Ensemble. ODIN results reproduced
from Liang et al. (2017). Best results for each task shown in bold.

Train Dataset OoD Dataset ODIN VIB D Var(D) Rate log pθ(x) WAIC

MNIST Omniglot 100 97.1 56.1 80.3 99.1 98.2 100
notMNIST 98.2 98.6 93.1 99.6 99.9 100 100
Fashion MNIST N/A 85.0 83.1 99.9 94.7 100 100
Uniform 100 76.6 95.6 100 99.3 100 100
Gaussian 100 99.2 0.6 100 100 100 100
HFlip N/A 63.7 41.5 57.7 90.0 84.9 86.1
VFlip N/A 75.1 44.7 60.9 89.3 81.9 80.7
Adversarial N/A N/A 30.8 100 100 0 100

Fashion MNIST Omniglot N/A 94.3 19.4 83.5 97.7 56.8 79.6
notMNIST N/A 89.6 22.3 96.0 99.7 92.0 98.7
MNIST N/A 94.1 70.1 74.7 97.1 42.3 76.6
Uniform N/A 79.6 0 82.7 95.6 100 100
Gaussian N/A 89.3 0 99.8 89.2 100 100
HFlip N/A 66.7 58.0 54.1 72.4 59.4 62.3
VFlip N/A 90.2 69.6 69.6 87.1 66.8 74.0
Adversarial N/A N/A 0 100 100 0 100

CIFAR-10 CelebA N/A 73.5 56.5 74.3 N/A 99.7 99.9
SVHN N/A 52.8 68.9 61.4 N/A 7.5 100
ImageNet32 81.6 70.1 47.1 62.9 N/A 93.8 95.6
Uniform 99.2 54.0 100 100 N/A 100 100
Gaussian 99.7 45.8 100 100 N/A 100 100
HFlip N/A 50.6 52.0 50.3 N/A 50.1 50.0
VFlip N/A 51.2 60.9 52.3 N/A 50.6 50.4

In an earlier draft of this work, a VAE trained on Fashion MNIST performed poorly on all OoD
datasets when using log pθ(x) and WAIC metrics. This was surprising, since the same metrics per-
formed well when the same VAE architecture was trained on MNIST. To explain this phenomenon,
we show in Figure 3 inputs and VAE-decoded outputs from Fashion MNIST and MNIST test sets.
Fashion MNIST images are reconstructed properly, while MNIST images are are barely recogniz-
able after decoding.

A VAEs training objective can be interpreted as the sum of a pixel-wise autoencoding loss (distor-
tion) and a “semantic” loss (rate). Even though Fashion MNIST appears to be better reconstructed
in a semantic sense, the distortion values between the FMNIST and MNIST test datasets are numeri-
cally quite similar, as shown in Figure 3. Distortion terms make up the bulk of the IWAE predictions
in our models, thus explaining why log pθ(x) was not very discriminative when classifying OoD
MNIST examples.

Higgins et al. (2016) propose β-VAE, a simple modification to the standard VAE objective:
p(x|z) + β ·DKL(qθ(z|x)‖p(z)). β controls the relative balance between rate and distortion terms
during training. Setting β < 1 is a commonly prescribed fix for encouraging VAEs to approach
the “autoencoding limit” and avoid posterior collapse (Alemi et al., 2018a). At test time, this re-
sults in higher-fidelity autoencoding at the expense of higher rates, which seems to be a more useful
signal for identifying outliers than the total pixel distortion (also suggested by Table 2, column 7).
Re-training the ensemble with β = .1 encourages a higher distortion penalty during training, and
thereby fixes the OoD detection model.
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(a) Fashion MNIST (b) MNIST (OoD)

Figure 3: Top: Inputs and decoded outputs from a VAE trained on Fashion MNIST(β = 1) for Fash-
ion MNIST (left) and MNIST (right). Although Fashion MNIST inputs appear to be better recon-
structed (suggesting higher likelihoods), they have comparable distortions to MNIST. The bottom
row shows that Fashion MNIST and MNIST test samples have comparable rate-distortion scatter
plots and IWAE histograms.

4.2 CREDIT CARD ANOMALY DETECTION

We consider the problem of detecting fraudulent credit card transactions from the Kaggle Credit
Fraud Challenge (Dal Pozzolo et al., 2015). A conventional approach to fraud detection is to include
a small fraction of fraudulent transactions in the training set, and then learn a discriminative clas-
sifier. Instead, we treat fraud detection as an anomaly detection problem where a generative model
only sees normal credit card transactions at training time. This is motivated by realistic test scenar-
ios, where an adversary is hardly restricted to generating data identically distributed to the training
set.

We compare single likelihood models (16-sample IWAE) and Generative Ensembles (ensemble vari-
ance of IWAE) to a binary classifier baseline that has access to a training set of fraudulent transac-
tions in Table 3. The classifier baseline is a fully-connected network with 2 hidden ReLU layers
of 512 units, and is trained using a weighted sigmoid cross entropy loss (positive weight=580) with
Dropout and RMSProp (α = 1e−5). The VAE encoder and decoder are fully connected networks
with single hidden layers (32 and 30 units, respectively) and trained using Adam (α = 1e−3).

Unsurprisingly, the classifier baseline performs best because fraudulent test samples are distributed
identically to fraudulent training samples. Even so, the single-model density estimation and Gener-
ative Ensemble achieve reasonable results.

Table 3: Comparison of density-based anomaly detection approaches to a classification baseline on
the Kaggle Credit Card Fraud Dataset. The test set consists of 492 fraudulent transactions and 492
normal transactions. Threshold-independent metrics include False Positives at 95% True Positives
(FPR@95%TPR), Area Under ROC (AUROC), and Average Precision (AP). Density-based models
(Single IWAE, WAIC) are trained only on normal credit card transactions, while the classifier is
trained on normal and fraudulent transactions. Arrows denote the direction of better scores.

Method FPR@95%TPR ↓ AUROC ↑ AP ↑
Classifier 4.0 99.1 99.3
Single IWAE 15.7 94.6 92.0
WAIC 15.2 94.7 92.1
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5 DISCUSSION AND FUTURE WORK

OoD detection is a critical piece of infrastructure for ML applications where the test data distribution
is not known at training time. We present Generative Ensembles, a simple yet powerful technique
for model-independent OoD detection that improves density models with uncertainty estimation.

An important future direction of research is that of scalability: learning good generative models
of semantically rich, high-dimensional inputs (e.g. video) is an active research area in its own
right. An open question is whether an ensemble of weak generative models (where each model may
not necessarily generate high-quality samples) can still yield density and uncertainty predictions
useful enough for OoD detection. Preliminary evidence on CIFAR-10 are promising; although the
ensemble average on the test set is ∼ 3.5 bits/dim and samples from the prior do not resemble any
recognizable objects, the ensemble still performs well at OoD detection. In future work we will
explore other methods of de-correlating samples from the posterior over model parameters, as well
as combining independent scores (D, Rate, logθ p(x), WAIC) into a more powerful OoD model.
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A TERMINOLOGY AND ABBREVIATIONS

p(x) Training data distribution
q(x) OoD data distribution
pθ(x) Learned approximation of true distribution with parameters θ.

May be implicitly specified, i.e. a fully-observed density model
qθ(x) Learned approximation of OoD distribution with parameters θ.

May be implicitly specified, i.e. via a GAN discriminator that
learns p(x)/qθ(x)

OoD Input Out-of-Distribution Input. Invalid input to a ML model
Anomaly Synonym with OoD Input
Epistemic Uncertainty Variance in a model’s predictive distribution arising from igno-

rance of true model parameters for a given input
Aleatoric Uncertainty Variance in a model’s predictive distribution arising from inher-

ent, irreducible noise in the inputs
Predictive Uncertainty Variance of a model’s predictive distribution, which takes into

account all of the above

MNIST Dataset of handwritten digits (size: 28x28)
FashionMNIST Dataset of clothing thumbnails (size: 28x28)
CIFAR-10 Dataset of color images (size: 32x32x3)

GAN Generative Adversarial Network. See Goodfellow et al. (2014)
FSGM Fast Sign Gradient Method
WGAN Wasserstein GAN. See Arjovsky et al. (2017)
VAE Variational Autoencoder. See Kingma & Welling (2013);

Rezende et al. (2014)
Rate DKL(qθ(z|x)‖p(z)) term in the VAE objective. Information

loss between encoder distribution and prior over latent code
IWAE Importance Weighted Autoencoder
GLOW A generative model based on normalizing flows. See Kingma

& Dhariwal (2018)

ODIN Out-of-DIstribution detector for Neural networks. See Liang
et al. (2017)

VIB Variational Information Bottleneck. See Alemi et al. (2018b)
WAIC Watanabe-Akaike Information Criterion. See Watanabe (2010)

AUROC Area Under ROC Curve
FPR@95%TPR False Positives at 95% True Positives
AP Average Precision

B VAE ARCHITECTURAL DETAILS

We use a flexible learned prior pθ(z) in our VAE experiments, but did not observe a significant
performance difference compared to the default mixture prior in the base VAE code sample. We use
an alternating chain of 6 MAF bijectors and 6 random permutation bijectors. Each MAF bijector
uses TensorFlow Probability’s default implementation with the following parameter:

s h i f t a n d l o g s c a l e f n = t f b . m a s k e d a u t o r e g r e s s i v e d e f a u l t t e m p l a t e (
h i d d e n l a y e r s =(512 , 5 1 2 ) )

Models are trained with Adam (α = 1e−3) with cosine decay on learning rate.
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