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ABSTRACT

In this paper, a new interactive parallel learning scheme is proposed to enhance the
performance of off-policy continuous-action reinforcement learning. In the pro-
posed interactive parallel learning scheme, multiple identical learners with their
own value-functions and policies share a common experience replay buffer, and
search a good policy in collaboration with the guidance of the best policy informa-
tion. The information of the best policy is fused in a soft manner by constructing
an augmented loss function for policy update to enlarge the overall search space
by the multiple learners. The guidance by the previous best policy and the en-
larged search space by the proposed interactive parallel learning scheme enable
faster and better policy search in the policy parameter space. Working algorithms
are constructed by applying the proposed interactive parallel learning scheme to
several off-policy reinforcement learning algorithms such as the twin delayed deep
deterministic (TD3) policy gradient algorithm and the soft actor-critic (SAC) algo-
rithm, and numerical results show that the constructed IPE-enhanced algorithms
outperform most of the current state-of-the-art reinforcement learning algorithms
for continuous action control.

1 INTRODUCTION

Reinforcement learning (RL) for continuous action control is an active research field. In RL, an
agent learns a policy through interaction with the environment to maximize the cumulative reward.
One of the key issues in RL is the trade-off between exploitation and exploration. Exploitation
is to make a best decision based on the already collected information, whereas exploration is to
collect more new information about the environment. The balance between the two is important for
good RL algorithms. For example, DQN (Mnih et al. (2015)) balances exploitation and exploration
by taking actions based on the ǫ-greedy approach. Deep deterministic policy gradient (DDPG)
(Lillicrap et al. (2015)) and twin delayed deep deterministic (TD3) (Fujimoto et al. (2018)) policy
gradient algorithms promote exploration by adding Ornstein-Uhlenbeck noise and Gaussian noise
to the best decision action, respectively. Soft actor-critic (SAC) (Haarnoja et al. (2018)) performs
balancing by using a maximum entropy objective. However, most of the previous works focus on
exploration to obtain unobserved states or actions. In this paper, we consider exploration in the
policy parameter space by using parallel identical learners for the same environment. By having
multiple identical learners for the same environment, we can have increased search capability for
a better policy. Parallelism in learning has been investigated widely in distributed RL (Nair et al.
(2015), Mnih et al. (2016), Horgan et al. (2018), Barth-Maron et al. (2018), Espeholt et al. (2018)),
evolutional strategies (Salimans et al. (2017), Choromanski et al. (2018)), and recently in population
based training (PBT) (Jaderberg et al. (2017), Jaderberg et al. (2018), Conti et al. (2017)) for faster
and better search for parameters and/or hyperparameters. In this paper, we also apply parallelism to
RL in order to enhance the learning performance but in a slightly different way as compared to the
previous methods.

The proposed algorithm is intended for any off-policy RL algorithms and is composed of a chief,
N environment copies of the same environment, and N identical learners with a shared common
experience replay buffer and a common base algorithm, as shown in Fig. 1. Each learner has its
own value function(s) and policy, and trains its own policy by interacting with its own environment
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copy with some additional interaction with the chief, as shown in Fig. 1. At each time step, each
learner takes an action to its environment copy by using its own policy, stores its experience to the
shared common experience replay buffer. Then, each learner updates its value function parameter
and policy parameter by drawing mini-batches from the shared common replay buffer by minimizing
its own value loss function and policy loss function, respectively.

One way to implement parallel learning under the above setup is to run N fully independent parallel
learning without interaction among the learners except sharing their experiences until the end of
time steps and to choose the policy from the learner with the maximum accumulated reward at the
end for future use. We will refer to this method as the experience-sharing-only method. However,
this method ignores possible benefit from mutual interaction among the learners during training. In
order to harness the benefit of mutual interaction among the learners in parallel learning, we exploit
the information from the best learner among all learners periodically during training like in PBT
(Jaderberg et al. (2017), Jaderberg et al. (2018)). Suppose that the value and policy parameters of
each learner are initialized and learning is performed as described above forM time steps. At the end
of M time steps, we can determine who is the best learner based on the average of the most recent
Er episodic rewards for each learner. Then, the policy parameter information of the best learner can
be used to enhance the learning of other learners for the next M time steps. This information can
help learners stuck in local minima escape from the local minima and guide other learners for better
direction.

One simple way to exploit this best policy parameter information is that we reset the policy param-
eter of each learner with the policy parameter of the best learner at the beginning of the next M
time steps, make each learner perform learning from this initial point in the policy parameter space
for the next M time steps, select the best learner again at the end of the next M time steps, and
repeat this procedure every M time steps in a similar way that PBT (Jaderberg et al. (2017)) copies
the best learner’s parameters and hyperparameters to other learners. We will refer to this method as
the reloading method in this paper. However, this reloading method has the problem that the search
area covered by all N searching policies collapses to one point at the time of parameter copying and
thus the search area can be narrow around the previous best policy point. In order to overcome such
disadvantage, instead of resetting the policy parameter with the best policy parameter every M time
steps, we here propose using the policy parameter information of the best learner in a soft manner
to enhance the performance of the overall parallel learning. In the proposed scheme, the shared best
policy information is used only to guide the policies of other learners. The policy of each learner
is updated by improving the performance around a certain distance from the shared guiding policy.
The chief periodically determines the best policy among the policies of all learners and distributes
the best policy parameter to all learners so that the learners search for better policies around the
previous best policy. The chief also enforces that the N searching policies are spread in the policy
parameter space with a given distance from the previous best policy point so that the search area in
the policy space by all N learners maintains a wide area and does not collapse into a narrow region.

The proposed interactive parallel exploration (IPE) learning method can be applied to any off-policy
RL algorithms and implementation is easy. Furthermore, the proposed method can be extended
directly to distributed or multi-agent RL systems. We apply our IPE scheme to the TD3 algorithm
and the SAC algorithm, which are state-of-the-art off-policy algorithms, as our base algorithms, and
the new algorithms are named IPE-TD3 and IPE-SAC algorithms, respectively. Numerical result
shows that the IPE-enhanced algorithms outperform the baseline algorithms both in the speed of
convergence and in the final steady-state performance. The gain by IPE

2 BACKGROUND AND RELATED WORKS

2.1 DISTRIBUTED RL

Distributed RL is an efficient way that takes advantage of parallelism to achieve fast training for
large complex tasks (Nair et al. (2015)). Most of the works in distributed RL assume a common
structure composed of multiple actors interacting with multiple copies of the same environment and
a central system which stores and optimizes the common Q-function parameter or the policy param-
eter shared by all actors. The focus of distributed RL is to optimize the Q-function parameter or the
policy parameter fast by generating more samples for the same wall clock time with multiple actors.
In order to achieve this goal, researchers investigated various techniques for distributed RL, e.g.,
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Figure 1: The overall structure of the proposed IPE scheme

asynchronous update of parameters (Mnih et al. (2016), Babaeizadeh et al. (2017)), sharing an ex-
perience replay buffer (Horgan et al. (2018)), GPU-based parallel computation (Babaeizadeh et al.
(2017), Clemente et al. (2017)), GPU-based simulation (Liang et al. (2018)) and V-trace in case of
on-policy algorithms (Espeholt et al. (2018)). Distributed RL yields significant performance im-
provement in terms of the wall clock time but it does not consider the possible enhancement by
interaction among multiple learners like in IPE and PBT. The proposed IPE uses a similar structure
to that in (Nair et al. (2015), Espeholt et al. (2018)): that is, IPE is composed of multiple learners
and a central system called chief. The difference is that each learner has its own Q or value function
parameter and policy parameter and optimizes the parameters in parallel with interactions.

2.2 POPULATION BASED TRAINING

Parallelism is also exploited in finding optimal parameters and hyperparameters of training al-
gorithms for neural networks in PBT (Jaderberg et al. (2017), Jaderberg et al. (2018), Conti et al.
(2017)). PBT (Jaderberg et al. (2017)) first chooses multiple sets of hyperparameters and parame-
ters for a common base algorithm, and runs the base algorithm separatively in parallel at multiple
learners to train their neural networks using those parameters and hyperparameters. Each learner
updates the neural network parameters by perturbing the assigned hyperparameters. During train-
ing, in principle PBT evaluates the performance of multiple learners periodically, and selects the
best performing hyperparameters, and then distributes the best performing hyperparameters and the
corresponding parameters to other learners, although implementation details can be changed. Re-
cently, PBT is applied to competitive multi-agent RL (Jaderberg et al. (2018)) and novelty search
algorithms (Conti et al. (2017)).

Although PBT is mainly developed to tune hyperparamters, the philosophy of PBT can be applied to
find optimal parameters for given hyperparameters by multiple learners. In this case, multiple learn-
ers update their parameters in parallel, their performance is measured periodically, the parameters
of the best performing learner are copied to other learners, other learners independently update their
parameters from the copied parameters as their new initialization, and this process is repeated. The
proposed IPE is similar to PBT in the sense that it exploits the parameters of the best performing
learner among multiple parallel learners. However, IPE is different from the PBT-derived method
in the way how IPE uses the parameters of the best learner. In the PBT-derived method, the pa-
rameters of the best learner are copied to other learners and other learners’ parameters are reset to
the parameters of the best performing learner. Then, the parameters of each learner are updated by
stochastic gradient descent (SGD). However, in IPE the parameters of the best performing learner
are not copied but used in a soft manner as a guiding direction. Copying means that the parame-
ters of all learners collapse to a single point in the parameter space. Furthermore, unlike PBT, IPE
uses a common experience replay buffer to store all experiences from multiple learners with dif-
ferent parameters to exploit the diverse experiences of multiple learners with different parameters.
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As mentioned in Section 1, we refer to the PBT-derived method with a common experience replay
buffer as the reloading method of which performance will be given in ablation study in Section 4.

Although IPE is considered only for parallel parameter search in this paper, combining the soft way
of using the parameters of the best performing learner with hyperparameter search is an interesting
future work.

2.3 GUIDED POLICY SEARCH

Our IPE method is also related to guided policy search (Levine & Koltun (2013), Levine et al.
(2016), Teh et al. (2017), Ghosh et al. (2018)). Recently, Teh et al. (2017) proposed a guided policy
search method for joint training of multiple tasks in which a common policy is used to guide local
policies and the common policy is distilled from the local policies. Here, the local policies’ param-
eters are updated to maximize the performance and minimize the KL divergence between the local
policies and the common distilled policy. The proposed IPE is related to guided policy search in
the sense that multiple policies are guided by a common policy. However, the difference is that the
goal of IPE is not learning multiple tasks but learning optimal parameters for a common task as in
PBT and hence the guiding policy is not distilled from multiple local policies but chosen as the best
performing policy among multiple learners.

2.4 EXPLORATION

Improving exploration has been one of the key issues in RL and many different ways have been de-
veloped to improve exploration through maximum entropy objectives (Haarnoja et al. (2017; 2018)),
noise in networks (Fortunato et al. (2018); Plappert et al. (2018)), and intrinsically motivated ap-
proaches (Bellemare et al. (2016); Ostrovski et al. (2017); Pathak et al. (2017); Achiam & Sastry
(2017); Zheng et al. (2018)). The proposed IPE also enhances exploration. Specifically, IPE uses
exploitation for exploration. Exploitation for exploration has been considered in the previous works
(White & Sofge (1992), Oh et al. (2018)). In particular, Oh et al. (2018) exploited past good expe-
riences to explore the sample space, whereas IPE exploit the current good policy among multiple
policies to explore the policy space.

2.5 THE SET UP: PARALLEL LEARNING FOR A COMMON ENVIRONMENT

The considered parallel learning setting consists of the environment E andN policies {π1, · · · , πN}.
The environment E is described as a Markov decision process (MDP) defined by the tuple
〈S,A, T , r〉, where S is the state space, A is the action space, T : S × A × S → [0, 1] is the
state transition probability, and r : S × A → R is the reward function. There exist N copies
{E1, · · · , EN} of the environment E , i.e., E1 = · · · = EN = E , and the N environment copies may
have different random initial seeds. The policy πi interacts with its corresponding environment copy
E i and builds up its trajectory {(sit, a

i
t, r

i
t), t = 1, 2, · · · } for each i = 1, · · · , N . At time step t, the

environment copy E i has a state sit ∈ S . The policy πi interacts with the environment copy E i by
taking an action ait according to πi given the current state sit. Then, the environment copy E i yields
the reward rit = r(sit, a

i
t) and makes transition to the next state sit+1 according to T .

In this paper, in order to account for the actual amount of interaction with the environment, we define
environment steps as the total number of interactions by all N parallel policies with all N environ-
ment copies. Suppose that all N policies generate their trajectories simultaneously in parallel, and
suppose that M time steps have elapsed. Then, although the number of elapsed time steps is M , the
number of environment steps is NM .

3 INTERACTIVE PARALLEL POLICY EXPLORATION

We now present the proposed IPE scheme with the parallel environment learning setting described
in Section 2.5, and the overall structure is described in Fig. 1.

We have N identical parallel learners with a shared common experience replay buffer D, and all N
identical learners employ a common base algorithm, which can be any off-policy RL algorithm. The
execution is in parallel. The i-th learner has its own environment E i, which is a copy of the common
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environment E , and has its own value function (e.g., Q-function) parameter θi and policy parameter
φi. The i-th learner interacts with the environment copy E i with some additional interaction with the
chief, as shown in Fig. 1. At each time step, the i-th learner performs an action ait to its environment
copy E i by using its own policy πφi , stores its experience (sit, a

i
t, r

i
t, s

i
t+1) to the shared common

experience replay buffer D for all i = 1, 2, · · · , N . Note that one time step corresponds to N
environment steps. Then, at each time step, each learner updates its value function parameter and
policy parameter for N times by drawing N mini-batches of size B from the shared common replay
buffer D by minimizing its own value loss function and policy loss function, respectively. The N
time updates for each learner for each time step is to exploit the samples provided by other N − 1
learners stored in the shared common replay buffer.

In order to harness the benefit of mutual interaction among the learners in parallel learning, we ex-
ploit the information from the best learner periodically during training like in PBT (Jaderberg et al.
(2017)). Suppose that the Q-function parameter and the policy parameter of each learner are initial-
ized and learning is performed as described above for M time steps. At the end of the M time steps,
we determine who is the best learner based on the average of the most recentEr episodic rewards for
each learner. Let the index of the best learner be b. Then, the policy parameter information φb of the
best learner can be used to enhance the learning of other learners for the next M time steps. Here,
instead of copying φb to other learners, we propose using the information of φb in a soft manner
to enhance the performance of the overall parallel learning. That is, during the next M time steps,

whereas we set the loss function L̃(θi) for the Q-function to be the same as the loss L(θi) of the

base algorithm, we set the loss function L̃(φi) for the policy parameter φi of the i-th learner as the
following augmented version:

L̃(φi) = L(φi) + 1{i6=b}βÊs∼D

[

D(πφi , πφb)
]

(1)

where L(φi) is the policy loss function of the base algorithm, 1{·} denotes the indicator function,

β(> 0) is a weighting factor, D(π, π′) be some distance measure between two policies π and π′,

and Ês∼D denotes the sample expectation based on mini-batch drawn randomly from the experience

replay buffer D. The augmented loss function L̃(φi) in (1) is composed of two terms L(φi) and

1{i6=b}βÊs∼D

[

D(πφi , πφb)
]

. Thus, for the non-best learners in the previous M time steps, the

gradient of L̃(φi) is the mixture of two directions: one is to maximize the return by itself and the
other is to follow the previously best learner’s policy. The second term in the right-hand side (RHS)
of (1) guides non-best learners towards a good direction in addition to each leaner’s self search.

3.1 DESIGN OF THE WEIGHTING FACTOR β

In (1), the weighting factor β is common to all N learners and should be determined judiciously to
balance between improving its performance by each learner itself and going towards the previous
best policy among the N learners. We adopt an adaptive method to determine the value of β as
follows:

β =

{

β ← 2β if D̂best ≥ max{ρD̂b
change, dsearch} × 1.5

β ← β/2 if D̂best < max{ρD̂b
change, dsearch}/1.5

(2)

where D̂best is the estimated distance between πφi and πφb averaged over allN−1 non-best learners,

and D̂b
change is the estimated distance between πφb

updated
(i.e., the policy of the current best learner

at the end of the current M time steps) and πφb (i.e, the policy of the current best learner at the end
of the previous M time steps), given respectively by

D̂best =
1

N − 1

∑

i∈I−b

Ês∼D

[

D(πφi , πφb)
]

and D̂b
change = Ês∼D

[

D(πφb
updated

, πφb)
]

. (3)

Here, I−b = {1, . . . , N} \ {b}, and dsearch and ρ are predetermined hyperparameters.

This adaptation method is similar to that used in proximal policy optimization (PPO)
(Schulman et al. (2017)). The update of β is done every M time steps and the updated β is used for

the next M time steps. First, suppose that we do not have the first term ρD̂b
change in the maximum

of the condition in (2). Then, when the estimated average distance D̂best from the best policy to
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the remaining policies is smaller than dsearch/1.5, the parameter β is decreased by half. Hence,
the movement in the gradient direction of the second term in the RHS of (1) is diminished and the
independent movement into the optimization direction for L(φi) becomes more important. So, each
policy gradually diverges from the previous best policy serving as the reference point due to internal

exploration mechanism such as added noise in action. On the other hand, when D̂best is larger than
1.5dsearch, the parameter β increases by factor two and the movement towards the previous best

policy becomes more important. As time steps elapse, β is settled down so that D̂best is around
dsearch. Hence, the proposed IPE scheme searches a wide area with rough radius dsearch around
the best policy in the policy parameter space, as shown in Fig. 2(a). Furthermore, with the first

term ρD̂b
change in the maximum of the condition in (2), we can control the speed of tracking the

best policy. D̂b
change measures the speed of change in the best policy parameter. When the best

policy parameter change scaled by ρ, i.e., ρD̂b
change is less than dsearch, the term is invisible by the

maximum operation in (2). On the other hand, when ρD̂b
change > dsearch, the term is active and it

means that the best policy parameter changes fast. Thus, the tracking speed should be controlled.

If D̂best > ρD̂b
change, i.e., the distance from πφi to πφb is larger than ρ times the distance from

πφb
updated

to πφb , then this means that the speed of tracking the best policy is slow. Hence, we in-

crease β by factor two. Otherwise, we decrease β by half. When the search for the current M time
steps is finished, the new best learner is selected and a new search for a wide area around the new
best learner’s policy πφb is performed, as illustrated in Fig. 2(b). The policy parameter information

φb of the best learner can be changed before the next best learner selection.

· · ·

(a) (b)

πφb

πφ1

πφ2

πφ3

πφN

dsearch

Figure 2: (a) the conceptual search coverage in the policy parameter space by parallel learners
(the proper individual search area by each learner may be larger than that in the figure) and (b) an
illustration of search comparison: single search (blue) versus the proposed interactive parallel search
guided by the policy of best learner at each search interval (pink - policies of best learners during
search)

Now, the overall procedure for the proposed IPE scheme is explained with the diagram in Fig. 1. The
value function parameter and policy parameter of each learner are initialized. The chief distributes
the parameter β and the reference policy parameter φb, which is the policy information of the best
learner over the previous M time steps, to all learners. At each time step, each learner interacts
with its own environment copy by taking its action and receiving the reward and the next state, and
stores its experience to the shared common replay buffer D. Then, the i-th learner updates its value

function parameter θi by minimizing its own value loss function L̃(θi) which is the same as that of
the base algorithm, and updates the policy parameter φi by minimizing the augmented loss function

L̃(φi) in (1) for N times by drawing N mini-batches from the shared common replay buffer D.
Whenever an episode ends for a learner, the learner reports the episodic reward to the chief. The

i-th learner reports Ês∼D

[

D(πφi , πφb)
]

to the chief for computation of D̂best in (3). At every M
time steps, the chief updates β according to (2), determines the best learner over the most recent
M time steps based on the collected episodic rewards from each learner. Once the best learner is
determined, the chief obtains the policy parameter information φb from the determined best learner,
and distributes the new β and the reference policy parameter φb to all N learners. This procedure
repeats until the time steps reaches the predefined maximum. When the parallel learning based IPE
reaches a steady state, we can choose any of the N learners’ policies and use the chosen policy for
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the environment E in future since it is expected that at the steady-state the performance of all N
policies is more or less similar due to their distance property.

3.2 IPE-ENHANCED ALGORITHMS

The proposed IPE method can be applied to any off-policy RL algorithms regardless of whether the
base RL algorithms have continuous actions or discrete actions. Here, we consider the application
of IPE to the TD3 algorithm as the base algorithm and the constructed algorithm is named the IPE-
TD3 algorithm. The details of baseline TD3 are explained in Appendix A. With TD3 as the base
algorithm, each learner has its own parameters θi1, θi2, and φi for its two Q-functions and policy.
Furthermore, it has (θi1)

′, (θi2)
′, and (φi)′ which are the parameters of the corresponding target

networks. For the distance measure between two policies, we use the mean square difference given
by

D(π(s), π̃(s)) =
1

2
‖π(s)− π̃(s)‖22 . (4)

For the i-th learner, as in TD3, the parameters θij , j = 1, 2 are updated every time step by minimizing

L̃(θij) = Ê(s,a,r,s′)∼D

[

(y −Qθi
j
(s, a))2

]

(5)

where y = r + γminj=1,2Q(θi
j
)′(s

′, π(φi)′(s
′) + ǫ), ǫ ∼ clip(N (0, σ̃2),−c, c). The parameter φi

is updated every d time steps by minimizing the following augmented loss function:

L̃(φi) = Ês∼D

[

−Qθi
1

(s, πφi(s)) + 1{i6=b}
β

2

∥

∥πφi(s)− πφb(s)
∥

∥

2

2

]

. (6)

For the first Tinitial timesteps for initial exploration we use a random policy and do not update all
policies over the initial exploration period. With these loss functions, the reference policy, and the
initial exploration policy, all procedure is the same as the general IPE procedure described previ-
ously. The pseudocode of the IPE-TD3 algorithm is provided in Appendix B.

The application of IPE to other algorithms such as SAC and DQN is also provided in Appendices.

4 EXPERIMENTS

In this section, we provide the numerical results on the performance of the proposed IPE-TD3 and
current state-of-the-art on-policy and off-policy baseline algorithms on several MuJoCo environ-
ments (Todorov et al. (2012)). The baseline algorithms are Proximal Policy Optimization (PPO)
(Schulman et al. (2017)), Actor Critic using Kronecker-Factored Trust Region (ACKTR) (Wu et al.
(2017)), Soft Q-learning (SQL) (Haarnoja et al. (2017)), Soft Actor-Critic (SAC) (Haarnoja et al.
(2018)), and TD3 (Fujimoto et al. (2018)). More numerical result on IPE applied to SAC is pro-
vided in Appendices.

4.1 PARAMETER SETTING

All hyperparameters we used for evaluation are the same as those in the original papers
(Schulman et al. (2017); Haarnoja et al. (2018); Fujimoto et al. (2018)). Here, we provide the hy-
perparameters of TD3 and IPE-TD3 only.

TD3 The networks for two Q-functions and the policy have 2 hidden layers. The first and second
layers have sizes 400 and 300, respectively. The non-linearity function of the hidden layers is ReLU,
and the activation functions of the last layers of the Q-functions and the policy are linear and hyper-
bolic tangent, respectively. We used the Adam optimizer with learning rate 10−3, discount factor
γ = 0.99, target smoothing factor τ = 5 × 10−3, the period d = 2 for updating the policy. The
experience replay buffer size is 106, and the mini-batch size B is 100. The standard deviation for
exploration noise σ and target noise σ̃ are 0.1 and 0.2, respectively, and the noise clipping factor c
is 0.5.

IPE-TD3 In addition to the parameters for TD3, we used N = 4 learners, the period M = 250
of updating the best policy and β, the number of recent episodes Er = 10 for determining the best
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(a) Hopper-v1 (b) Walker2d-v1

(c) HalfCheetah-v1 (d) Ant-v1

Figure 3: Performance for PPO (brown), ACKTR (orange), SQL (purple), SAC (red), TD3 (green),
and IPE-TD3 (proposed method, blue) on MuJoCo tasks.

learner b. The parameters dsearch and ρ for the exploration range are 0.04 and 2, respectively. The
timesteps for initial exploration Tinitial is set as 250 for Hopper-v1 and Walker2d-v1 and as 2500
for HalfCheetah-v1 and Ant-v1.

4.2 COMPARISON TO BASELINES

In order to have sample-wise fair comparison among the considered algorithms, we obtain the per-
formance with respect to environment steps (not time steps), which is defined as the total number
of interactions with the environment by the agent. This comparison makes sense because the per-
formance at the same environment steps means that all algorithms use the same number of samples
obtained from the environment. The performance is obtained through the evaluation method that
is similar to those in (Haarnoja et al. (2018); Fujimoto et al. (2018)). Evaluation of the policies are
conducted every Reval = 4000 environment steps for all algorithms. At each evaluation instant, the
agent (or learner) fixes its policy as the one at the evaluation instant, and interacts with the same
environment separate for the evaluation purpose with the fixed policy to obtain 10 episodic rewards.
The average of these 10 episodic rewards is the performance at the evaluation instant. In the case of
IPE-TD3 and other parallel learning schemes, each of the N learners fixes its policy as the one at
the evaluation instant, and interacts with the environment with the fixed policy to obtain 10 episodic
rewards. First, the 10 episodic rewards are averaged for each learner and then the maximum of the
10-episode-average rewards of the N learners is taken as the performance at that evaluation instant.
We performed this operation for five different random seeds, and the mean and variance of the learn-
ing curve are obtained from these five simulations. The policies used for evaluation are stochastic
for PPO and deterministic for the others.
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Fig. 3 shows the learning curves over one million environment steps for several MuJoCo tasks:
Hopper-v1, Walker2d-v1, HalfCheetah-v1, and Ant-v1. First, it is observed that the performance of
TD3 here is similar to that in the original TD3 paper (Fujimoto et al. (2018)), and the performance
of other baseline algorithms is also similar to that in the original papers (Schulman et al. (2017);
Haarnoja et al. (2018)). It is seen that the IPE-TD3 algorithm outperforms the state-of-the-art RL
algorithms in terms of both the speed of convergence with respect to environment steps and the final
steady-state performance (except in Walker2d-v1, the initial convergence is a bit slower than TD3.)
Especially, in the cases of Hopper-v1 and Ant-v1, TD3 has large variance and this means that the
performance of TD3 is quite dependent on the initial condition of the environment and it is not easy
for TD3 to escape out of bad local minima in certain environments. However, it is seen that IPE-TD3
yields much less variance as compared to TD3. This implies that the wide area search by IPE in the
policy parameter space helps the learners escape out of bad local optima. It is seen that the wide
area search around the previous best policy point in the policy parameter space by IPE yields faster
and better policy search.

Figure 4: Ablation study: Different parallel methods for Ant-v1 task

4.3 ABLATION STUDY

IPE-TD3 has several components to improve the performance based on parallelism: 1) sharing
experiences from multiple policies, 2) using the best policy information, and 3) fusing the best
policy information in a soft manner based on the augmented loss function. Thus, we investigated
the impact of each component on the performance improvement. For comparison we considered the
following parallel policy exploration methods gradually incorporating more techniques:

1. TD3 The original TD3 with one learner

2. Distributed RL TD3 (DRL-TD3) N actors obtain samples from N environment copies.
The policy and the experience replay buffer are shared by all N actors.

3. Experience-Sharing-Only TD3 (ESO-TD3) N learners interact with N environment
copies and update their own policies using experiences drawn from the shared experience
replay buffer.

4. Reloading TD3 (Re-TD3) At every M ′ timesteps, the best policy is determined and all
policies are initialized as the best policy, i.e., the best learner’s policy parameter is copied
to all other learners. The rest of the procedure is the same as experience-sharing-only TD3.

5. IPE-TD3 At every M timesteps, the best policy information is determined and this policy
is used in a soft manner based on the augmented loss function.

Note that Re-TD3 exploits the best policy information from N learners. The main difference be-
tween IPE-TD3 and Re-TD3 is the way how the best learner’s policy parameter is used. Re-TD3
initializes all policies with the best policy parameter everyM ′ timesteps like in PBT (Jaderberg et al.
(2017)), whereas IPE-TD3 uses the best learner’s policy parameter information determined everyM
timesteps to construct an augmented loss function. For fair comparison, M and M ′ are determined

9
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Table 1: Steady state performance of different parallel exploration methods: IPE-TD3, Re-TD3,
ESO-TD3, DRL-TD3 and TD3

Environment IPE-TD3 Re-TD3 ESO-TD3 DRL-TD3 TD3

Hopper-v1 3729.92 3619.04 3745.77 3456.30 2555.85
Walker2d-v1 5029.22 4921.51 4677.01 4813.72 4455.51
HalfCheetah-v1 11418.50 11549.11 11086.88 11159.92 9695.92
Ant-v1 5501.87 5393.09 4847.34 4885.74 3760.50

independently and optimally for IPE-TD3 and Re-TD3, respectively, since the optimal period can
be different for the two methods. Thus, M ′ = 5000 is determined for Re-TD3 by tuning, whereas
M = 250 is used for IPE-TD3. Since all N policies collapse as one point in Re-TD3 at the begin-
ning of each period, we expect that a larger period is required for Re-TD3 to have sufficiently spread
policies at the end of the best policy selection period.

Fig. 4 shows the learning curves of the considered parallel exploration methods for the Ant-v1
task and Table 1 shows the final (steady-state) performance of the considered parallel exploration
methods for four MuJoCo tasks, respectively. It is seen that IPE-TD3 outperforms other parallel
methods: DRL-TD3, ESO-TD3 and Re-TD3 except the case that ESO-TD3 outperforms all other
parallel schemes in Hopper-v1. Both Re-TD3 and IPE-TD3 have better final (steady-state) perfor-
mance than TD3 and ESO-TD3 for all tasks except Hopper-v1 for which ESO-TD3 performs best.
Note that ESO-TD3 obtains most diverse experiences since the N learners shares the experience re-
play buffer but there is no interaction among theN learners until the end of training. So, it seems that
this diverse experience is beneficial to Hopper-v1. The final performances of Re-TD3 and IPE-TD3
are more or less the same for HalfCheetah-v1 but the final performance of IPE-TD3 is noticeably
better than that of Re-TD3 in other cases.

5 CONCLUSION

In this paper, we have proposed a new interactive parallel learning scheme, IPE, to enhance the
performance of off-policy RL systems. In the proposed IPE scheme, multiple identical learners
with their own value-functions and policies sharing a common experience replay buffer search a
good policy with the guidance of the best policy information in the previous search interval. The
information of the best policy parameter of the previous search interval is fused in a soft manner
by constructing an augmented loss function for policy update to enlarge the overall search space
by the multiple learners. The guidance by the previous best policy and the enlarged search space
by IPE enables faster and better policy search in the policy parameter space. The IPE-enhanced
algorithms constructed by applying the proposed IPE scheme to TD3 or SAC outperforms most
of the current state-of-the-art continuous-action RL algorithms. Although we mainly considered
continuous-action off-policy algorithms in this paper, the proposed IPE method can also be applied
to RL with discrete actions, as seen in Appendix E. In the case of continuous action control, the gain
by IPE can be beneficial for recent trend of fast computer-based prototyping of complex robotics
systems or autonomous cars, whereas in the discrete-action case better policy parameters can be
searched for more challenging tasks by IPE.
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APPENDIX A. THE TWIN DELAYED DEEP DETERMINISTIC POLICY GRADIENT

ALGORITHM AND THE SOFT ACTOR-CRITIC ALGORITHM

A.1 THE TWIN DELAYED DEEP DETERMINISTIC POLICY GRADIENT (TD3) ALGORITHM

The TD3 algorithm is a current state-of-the-art off-policy algorithm and is a variant of the deep
deterministic policy gradient (DDPG) algorithm (Lillicrap et al. (2015)). The TD3 algorithm tries
to resolve two problems in typical actor-critic algorithms: 1) overestimation bias and 2) high vari-
ance in the approximation of the Q-function. In order to reduce the bias, the TD3 considers two
Q-functions and uses the minimum of the two Q-function values to compute the target value, while
in order to reduce the variance in the gradient, the policy is updated less frequently than the Q-
functions. Specifically, letQθ1 ,Qθ2 and πφ be two current Q-functions and the current deterministic
policy, respectively, and let Qθ′

1
, Qθ′

2
and πφ′ be the target networks of Qθ1 , Qθ2 and πφ, respec-

tively. The target networks are initialized by the same networks as the current networks. At time
step t, the TD3 algorithm takes an action at with exploration noise ǫ: at = πφ(st) + ǫ, where ǫ is

zero-mean Gaussian noise with variance σ2, i.e., ǫ ∼ N (0, σ2). Then, the environment returns re-
ward rt and the state is switched to st+1. The TD3 algorithm stores the experience (st, at, rt, st+1)
at the experience replay buffer D. After storing the experience, the Q-function parameters θ1 and θ2
are updated by gradient descent of the following loss functions:

L(θj) = Ê(s,a,r,s′)∼D

[

(y −Qθj (s, a))
2
]

, j = 1, 2 (7)

where Ê(s,a,r,s′)∼D denotes the sample expectation with an uniform random mini-batch of size B
drawn from the replay buffer D, and the target value y is given by

y = r + γ min
j=1,2

Qθ′
j
(s′, πφ′(s′) + ǫ), ǫ ∼ clip(N (0, σ̃2),−c, c). (8)

Here, for the computation of the target value, the minimum of the two target Q-functions is used to
reduce the bias. The procedure of action taking and gradient descent for θ1 and θ2 are repeated for
d times (d = 2), and then the policy and target networks are updated. The policy parameter φ is
updated by gradient descent by minimizing the loss function for φ:

L(φ) = −Ês∼D [Qθ1(s, πφ(s))] , (9)

and the target network parameters θ′j and φ′ are updated as

θ′j ← (1− τ)θ′j + τθj φ′ ← (1− τ)φ′ + τφ. (10)

The networks are trained until the number of time steps reaches a predefined maximum.

A.2 THE SOFT ACTOR-CRITIC (SAC) ALGORITHM

The SAC algorithm is an off-policy algorithm comparable to TD3 and yields good performance
especially in environments with high dimensional action spaces. The SAC algorithm is a maximum
entropy RL which is based on the discounted sum of reward and the entropy of the current policy
given by

Eτ∼π

[

∞
∑

t=0

γt (r(st, at) + αH(π(·|st)))

]

, (11)

where α is a weighting factor that balances between the reward and the entropy of the policy. This
objective function stimulates the algorithm to explore more diverse experiences so as to find a better
policy.

The SAC algorithm has one value function Vψ(s), two Q-functions Qθj (s, a), j = 1, 2, and one
stochastic policy πφ(·|s), which are parameterized by parameters ψ, θj , and φ, respectively. It also
has a target value function Vψ′(s) for stable convergence.

After initialization, at each time step t the algorithm obtains experience (st, at, rt, st+1) by inter-
acting with the environment and stores the experience to the experience replay buffer D. Then, it
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updates the parameters ψ, θj , and φ by gradient descent of the following loss functions:

J(ψ) = Ês∼D,a∼πφ(·|s)

[

1

2

∥

∥Vψ(s)− Q̄(s, a) + log πφ(a|s)
∥

∥

2

2

]

, (12)

J(θj) = Ê(s,a,r,s′)∼D

[

1

2

(

Qθj (s, a)− r/α− γVψ′(s′)
)2
]

, j = 1, 2 (13)

J(φ) = Ês∼D,a∼πφ(·|s)

[

log πφ(a|s)− Q̄(s, a)
]

, (14)

where Q̄(s, a) = min {Qθ1(s, a), Qθ2(s, a)}, and Ê(s,a,r,s′)∼D is the sample expectation with an
uniform random mini-batch of size B drawn from the replay buffer D. After updating the parame-
ters, the target value function parameter ψ′ is updated as

ψ′ ← (1− τ)ψ′ + τψ (15)

In order to obtain diverse experience in the initial stage of learning, it uses a uniform policy for
initial Tinitial time steps and the current policy πφ(·|s) for the rest of learning.
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APPENDIX B. PSEUDOCODE OF THE IPE-TD3 ALGORITHM

Algorithm 1 The Interactive Parallel Exploration TD3 (IPE-TD3) Algorithm

Require: N : number of learners, Tinitial: initial exploration time steps, T : maximum time steps,
M : the best-policy update period,B: size of mini-batch, d: update interval for policy and target
networks.

1: Initialize φ1 = · · · = φN = φb, θ1j = · · · = θNj , j = 1, 2, randomly.
2: Initialize β = 1, t = 0
3: while t < T do
4: t← t+ 1 (one time step)
5: for i = 1, 2, · · · , N in parallel do
6: if t < Tinitial then
7: Take a uniform random action ait to environment copy E i

8: else
9: Take an action ait = πi

(

sit
)

+ ǫ, ǫ ∼ N (0, σ2) to environment copy E i

10: end if
11: Store experience (sit, a

i
t, r

i
t, s

i
t+1) to the shared common experience replay D

12: end for
13: if t < Tinitial then
14: continue (i.e., go to the beginning of the while loop)
15: end if
16: for i = 1, 2, · · · , N in parallel do
17: for k = 1, 2, · · · , N do
18: Sample a mini-batch B = {(stl , atl , rtl , stl+1)}l=1,...,B from D

19: Update θij , j = 1, 2, by gradient descent for minimizing L̃(θij) in (5) with B
20: if k ≡ 0(mod d) then

21: Update φi by gradient descent for minimizing L̃(φi) in (6) with B
22: Update the target networks: (θij)

′ ← (1− τ)(θij)
′ + τθij , (φ

i)′ ← (1− τ)(φi)′ + τφi

23: end if
24: end for
25: end for
26: if t ≡ 0(mod M) then
27: Select the best learner b
28: Adapt β with (2)
29: end if
30: end while
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APPENDIX C. PSEUDOCODE OF THE IPE-SAC ALGORITHM

Algorithm 2 The Interactive Parallel Exploration SAC (IPE-SAC) Algorithm

Require: N : number of learners, Tinitial: initial exploration time steps, T : maximum time steps,
M : the best-policy update period, B: size of mini-batch

1: Initialize ψ1 = · · · = ψN , φ1 = · · · = φN = φb, θ1j = · · · = θNj , j = 1, 2, randomly.
2: Initialize β = 1, t = 0
3: while t < T do
4: t← t+ 1 (one time step)
5: for i = 1, 2, · · · , N in parallel do
6: if t < Tinitial then
7: Take a uniform random action ait to environment copy E i

8: else
9: Take an action ait ∼ π

i
(

·|sit
)

to environment copy E i

10: end if
11: Store experience (sit, a

i
t, r

i
t, s

i
t+1) to the shared common experience replay D

12: end for
13: if t < Tinitial then
14: continue (i.e., go to the beginning of the while loop)
15: end if
16: for i = 1, 2, · · · , N in parallel do
17: for k = 1, 2, · · · , N do
18: Sample a mini-batch B = {(stl , atl , rtl , stl+1)}l=1,...,B from D
19: Update ψi, θij , and φi by gradient descent for minimizing (16), (17), and (18) with B,

respectively.
20: Update the target parameters: (ψi)′ ← (1− τ)(ψi)′ + τψi

21: end for
22: end for
23: if t ≡ 0(mod M) then
24: Select the best learner b
25: Update the best policy parameter φb

26: Adapt β with (2)
27: end if
28: end while

In IPE-SAC, each learner has its own parameters ψi, θi1, θi2, and φi for its value function, two Q-
functions, and policy. Each learner also has (ψi)′ which is the parameter of the target value function.
For the distance measure between two policies, we use the mean square difference of the mean

action of Gaussian policy, given by D(π(·|s), π̃(·|s)) = 1
2 ‖mean {π(·|s)} −mean {π̃(·|s)}‖22. The

i-th learner updates the parameters ψi, θi1, θi2, and φi every timestep by minimizing

L̃(ψi) = Ês∼D,a∼π
φi (·|s)

[

1

2

∥

∥Vψi(s)− Q̄i(s, a) + log πφi(a|s)
∥

∥

2

2

]

(16)

L̃(θij) = Ê(s,a,r,s′)∼D

[

1

2

(

Qθi
j
(s, a)− r/α− γV(ψi)′(s

′)
)2

]

, j = 1, 2 (17)

L̃(φi) = Ês∼D,a∼π
φi (·|s)

[

log πφi(a|s)− Q̄i(s, a)

+ 1{i6=b}
β

2

∥

∥mean
{

πφi(·|s)
}

−mean
{

πφb(·|s)
}∥

∥

2

2

]

(18)

where Q̄i(s, a) = min
{

Qθi
1

(s, a), Qθi
2

(s, a)
}

. After updating these parameters, each learner up-

dates its target value function parameters. With these loss functions, all procedure is the same as the
general IPE procedure described in Section 3. The pseudocode of the IPE-SAC algorithm is shown
above.
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APPENDIX D. RESULT OF IPE-SAC ON HUMANOID (RLLAB)

As mentioned already, IPE is general in that it can be applied to other off-policy algorithms. Here,
we provide numerical results on IPE-SAC, shown in Appendix C, constructed by combining IPE
with SAC. Experiment was perform on the task of Humanoid (rllab) (Duan et al. (2016)) that needs
more exploration. We compared IPE-SAC with SAC and multi-learner reloading SAC (Re-SAC)
which copies the parameter of the best learner to other learners periodically.

D.1 PARAMETER SETTING

SAC The networks for the state-value function, two Q-functions, and the policy had 2 hidden layers
of size 256. The activation functions for the hidden layers and the last layers were ReLU and linear,
respectively. We used the Adam optimizer with learning rate 3×10−4, discount factor γ = 0.99, and
target smoothing factor τ = 5 × 10−3. The algorithm was trained by random mini-batches of size
B = 256 from the experience replay buffer of the maximum size 106. The reward scale for updating
Q-functions was 10 for the Humanoid (rllab) environment. The initial exploration timesteps Tinitial
was set to 1000.

IPE-SAC Additional parameters for IPE-SAC are as follows. We used N = 4 learners, the period
M = 500 of updating the best policy and β, the number of recent episodes Er = 10 for deter-
mining the best learner b. The parameters dsearch and ρ for the exploration range were 0.01 and 2,
respectively. We used the initial exploration timesteps Tinitial = 250.

D.2 PERFORMANCE ON HUMANOID (RLLAB)

The learning curve on Humanoid (rllab) is shown in Figure 51. It is seen that IPE-SAC outperforms
the original SAC and Re-SAC. This result shows the promising aspect of IPE that it can be useful
for tasks requiring more exploration.

Figure 5: Performance of IPE-SAC (blue), Re-SAC (purple), and SAC (red) on Humanoid (rllab)

1The simulation is still running, and we will change the graph when the simulation is finished.
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APPENDIX E. PSEUDOCODE OF THE IPE-DQN ALGORITHM

Algorithm 3 The Interactive Parallel Exploration DQN (IPE-DQN) Algorithm

Require: N : number of learners, Tinitial: initial exploration time steps, T : maximum time steps,
M : the best-policy update period, B: size of mini-batch, f : update interval for Q-functions, d:
update interval for target Q-functions,.

1: Initialize θ1 = · · · = θN = θb randomly.
2: Initialize β = 1, t = 0
3: while t < T do
4: t← t+ 1 (one time step)
5: for i = 1, 2, · · · , N in parallel do
6: if t < Tinitial then
7: Take a uniform random action ait to environment copy E i

8: else
9: Take an action ait = argmaxa∈A

{

Qθi(s
i
t, a)

}

w.p. 1 − ε or a uniform random action

ait w.p. ε to environment copy E i

10: end if
11: Store experience (sit, a

i
t, r

i
t, s

i
t+1) to the shared common experience replay D

12: end for
13: if t < Tinitial then
14: continue (i.e., go to the beginning of the while loop)
15: end if
16: for i = 1, 2, · · · , N in parallel do
17: for k = 1, 2, · · · , N do
18: if k ≡ 0(mod f) then
19: Sample a mini-batch B = {(stl , atl , rtl , stl+1)}l=1,...,B from D
20: Update θi by gradient descent minimizing (19) with B.
21: end if
22: end for
23: end for
24: if t ≡ 0(mod d) then
25: for i = 1, 2, · · · , N in parallel do
26: Update (θi)′ ← θi

27: end for
28: end if
29: if t ≡ 0(mod M) then
30: Select the best learner b
31: Update the best policy parameter θb

32: Adapt β with (2)
33: end if
34: end while

IPE can also be applied to off-policy algorithms with discrete action spaces as well as con-
tinuous action spaces. Thus, we applied IPE to DQN to construct IPE-DQN. In IPE-DQN,
each learner has its own Q-function parameters θi and target Q-function parameters (θi)′.

We define the distance for two Q-functions Q(s, a) and Q̃(s, a) as D(Q(s, ·), Q̃(s, ·)) =

KL
(

softmax (Q(s, ·)) ||softmax
(

Q̃(s, ·)
))

. We used the Q-function parameter θb of the best

learner as the reference parameter, which was originally φb in (1) and (3). The i-th learner updates

the parameters θi every f timesteps by minimizing L̃(θi) =

Ê(s,a,r,s′)∼D

[

1

2
‖Qθi(s, a)− y‖

2
2 + 1{i6=b}βKL

(

softmax (Qθi(s, ·)) ||softmax
(

Qθ̃b(s, ·)
))

]

(19)
where y = r+γQ(θi)′(s

′, argmaxa′∈A {Qθi(s
′, a′)}). With the loss function and the reference pol-

icy, all procedure is the same as the general IPE procedure described in Section 3. The pseudocode
of the IPE-DQN algorithm is shown above.
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