
GradientBoostingandrelatedmethods. Analysis
andapplications.

Angel Dominguez
angel.dominguez@cimat.mx

Abstract
In this work, I synthesize some papers regarding to gra-

dient boosting and related methods like xgboost, a pow-

erful machine learning technique for e�ciently solving

some classic problems with state of the art performance.

Theory
Consider a training set of N pairs of data (xi, yi) for
1 ≤ i ≤ N . Our aim is to �nd a function F such that it
minimizes

Ey,xL(y, F (x)) (1)

where the loss function L represents the quality of the
prediction.

As it is proposed in [1] , we can restringe the space of
functions for F by using a sum of functions h(x;am).
Estimating the joint distribution of x and y only with
the training set, the following approximation of (1)

N∑
i=1

L(yi,

M∑
m=1

βmh(xi; am)) (2)

Now, using the �greedy-stagewise� strategy proposed in
[1] , which is taking F0(x) as the best constant predic-

tor that minimizes
N∑
i=i

L(yi, ρ), and de�ning for m =

1, 2, . . . ,M

(βm,am) = argmin
β,a

N∑
i=1

L(yi, Fm−1(xi) + βh(xi;a))

(3)
and take Fm(x) = Fm−1(x) + βmh(x,am).
In equation (2) , since yi are �xed, the predictor vec-
tor (Fm(x1), . . . , Fm(xn)) determine the value of the loss
function. Then, using the gradient descent strategy we
want to move in the direction of the gradient vector. This
de�ne the gradient boosting algorithm (1). Using trees,

we have Fm(x) = Fm−1(x) + ρm
∑J
j=1 bjm1(x ∈ Rjm),

then by de�ning γjm = ρmbjm it implies

Fm(x) = Fm−1(x) +

J∑
j=1

γjm1(x ∈ Rjm) (4)

And we have then J functions to add, every one of them
can be maximized individually, as we can see in algo-
rithm (2). The stochastic version of this algorithm uses
only a proportion of the data for the calculations at each
iteration, see [2].
XGBoost is a regularized version of gradient boosting,
all the details of its development are in [3]. Let the tree
obtained in the m-th iteration be fm. The penalization
of this tree with Jm leafs and weights vector wm is γJm+
1
2
λ||wm||2. Now, let Ij = {i|xi ∈ Rjm} and

gi =

[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

(5)

hi =

[
∂2L(yi, F (xi))

∂F (xi)2

]
F (x)=Fm−1(x)

(6)

Hj =
∑
i∈Ij hi and Gj =

∑
i∈Ij gi we can choose the

weights vector by minimizing the second order taylor ap-
proximation of the regularized loss function, which is

Jm∑
j=1

[Gjwjm +
1

2
(Hj + λ)w2

jm] + γJm (7)

by taking wjm = − Gj
Hj+λ

. And the optimal value for (7)

is

−
1

2

Jm∑
j=1

(
G2
j

Hj + λ
) + γJm (8)

Let I = Ij for some j, let's make a criteria for doing a
split over I. If the split of I makes IL, IR and de�ning
GL, GR, HL, HR, G,H analogously to (5) and (6) then,
the reduction of (8) by doing that split is

1

2
[

G2
L

H2
L + λ

+
G2
R

H2
R + λ

−
G2

H2 + λ
]− γ (9)

Finally taking into account sparse data cases, we can
determine the best direction for the missing values as we
can see in algorithm (3)

Algorithms

Algorithm 1 Gradient Boosting

1: F0(x) = argminρ
N∑
i=i

L(yi, ρ)

2: for m = 1 to M do: do
3: ỹi = −

[
∂L(yi,F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

, 1 ≤ i ≤ N

4: am = argmin
a,β

∑N
i=1 [ỹi − βh(xi;a)]2

5: ρm = argminρ
∑N
i=1 L(yi, Fm−1(xi) + ρh(xi,am)

6: Fm(x) = Fm−1(x) + ρmh(x; am)
7: end for

Algorithm 2 Gradient Tree Boosting

1: F0(x) = argminρ
N∑
i=i

L(yi, ρ)

2: for m = 1 to M do: do
3: ỹi = −

[
∂L(yi,F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

, 1 ≤ i ≤ N

4: Build regression tree for the values ỹi. C Creating
the regions Rjm for j = 1 . . . , Jm

5: For j = 1 . . . , Jm , calculate
γjm = argminγ

∑
xi∈Rjm L(yi, Fm−1(xi) + γ)

6: Fm(x) = Fm−1(x) + ν
∑Jm
j=1 γjm1(x ∈ Rjm)

7: end for

Algorithm 3 Sparsity-aware Split Finding

1: Input: I, indexes of the observations in the current
node.

2: Input: Ik, indexes of the observations in the current
node without missing values in the feature k.

3: Input:d, feature dimension
4: score ← 0
5: G←

∑
i∈I gi, H ←

∑
i∈I hi

6: for k = 1 to d do: do
7: //missing value goes to right
8: GL ← 0, HL ← 0
9: for j in ascentSorted(Ik,by xjk) do
10: GL ← GL + gj ,HL ← HL + hj
11: GR ← G−GL,HR ← H −HL
12: score← max(score,

G2
L

H2
L
+λ

+
G2
R

H2
R
+λ
− G2

H2+λ
)

13: end for

14: //missing value goes to left
15: GR ← 0, HR ← 0
16: for j in descentSorted(Ik,by xjk) do
17: GR ← GR + gj ,HR ← HR + hj
18: GL ← G−GR,HL ← H −HR
19: score← max(score,

G2
L

H2
L
+λ

+
G2
R

H2
R
+λ
− G2

H2+λ
)

20: end for

21: end for

22: Output: split with maximum score and directions
of the missing values

Applications
From [1]
Least-squares regression:

L(y, F) =
(y − F)2

2
(10)

Least-absolute-deviation regression:

L(y, F) = |y − F | (11)

M-regression

L(y, F) =

{
1
2 (y − F)2 |y − F | ≤ δ
δ(|y − F | − δ

2)|y − F | > δ
(12)

Two-class logistic regression and classi�cation

L(y, F) = log(1 + exp(−2yF)) (13)

Multi-class logistic regression and classi�cation

L({yk, Fk(x)}K1) = −
K∑
k=1

yklogpk(x) (14)

Applications (ranking)
From [4]
Pointwise approach.

Lr({(xi, yi)}N1 , F) =

N∑
i=1

(F (xi)− yi) (15)

Pairwise approach.

Lp({(xi, yi)}N1 , F) =
∑

i,s|yi<ys

(φ(F (xi)− yi)) (16)

Listwise approach.

Ll(,̇F) =

N−1∑
s=1

[−F (sps) + log(

N∑
i=s

exp(F (xpi)))] (17)

XGBoost library
xgboost is a library available in R, some useful parame-
ters are:

• booster: The default is gbtree, boosting using
trees.

• eta: It's the shrinkage rate η (or ν in notation of
2).

• gamma: Penalization for the number of leafs.

• lambda: Penalization of the sum of weights of the
leafs λ. By taking gamma=0 and lambda=0 we
are using gradient boosting or stochastic gradient
boosting.

• subsample: Proportion of the data used for ad-
justing the model at each iteration. If subsample<
1 we have stochastic gradient boosting.

Some loss functions are

• reg:squarederror for Least-squares regression

• binary:logistic obtains the probabilities for the
two-class logistic regression and classi�cation

• multi:softmax for multiclass classi�cation. It re-
turns the most probable class.

• multi:softprob similar to softmax, it returns the
matrix of probabilities.

• rank:pairwise for ranking using the pairwise ap-
proach.

As referred in [5] xgboost can automatically do parallel
computation on Windows and Linux and supports cus-
tomized objective functions. A full list of parameters can
be found in [6]

References

[1] Friedman, J. H. (2001). Greedy function approxima-
tion: a gradient boosting machine. Annals of statis-
tics, 1189-1232.

[2] Friedman, J. H. (2002). Stochastic gradient boosting.
Computational statistics & data analysis, 38(4), 367-
378.

[3] Chen, T., & Guestrin, C. (2016, August). Xgboost:
A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on
knowledge discovery and data mining (pp. 785-794).
ACM.

[4] Chen, W., Liu, T. Y., Lan, Y., Ma, Z. M., & Li,
H. (2009). Ranking measures and loss functions in
learning to rank. In Advances in Neural Information
Processing Systems (pp. 315-323).

[5] Chen, T., He, T., Benesty, M., Khotilovich, V., &
Tang, Y. (2015). Xgboost: extreme gradient boost-
ing. R package version 0.4-2, 1-4.

[6] https://github.com/dmlc/xgboost/blob/master/
doc/parameter.rst
Last accessed July 30, 2019

See full report (in spanish) at:

