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ABSTRACT

In this paper, we study the problem of training real binary weight networks (without
layer-wise or filter-wise scaling factors) from scratch under the Bayesian deep
learning perspective, meaning that the final objective is to approximate the posterior
distribution of binary weights rather than reach a point estimation. The proposed
method, named as SnapQuant, has two intriguing features: (1) The posterior
distribution is parameterized as a policy network trained with a reinforcement
learning scheme. During the training phase, we generate binary weights on-the-fly
since what we actually maintain is the policy network, and all the binary weights are
used in a burn-after-reading style. At the testing phase, we can sample binary weight
instances for a given recognition architecture from the learnt policy network. (2)
The policy network, which has a nested parameter structure consisting of layer-wise,
filter-wise and kernel-wise parameter sharing designs, is applicable to any neural
network architecture. Such a nested parameterization explicitly and hierarchically
models the joint posterior distribution of binary weights. The performance of
SnapQuant is evaluated with several visual recognition tasks including ImageNet.
The code will be made publicly available.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved tremendous success in computer vision Krizhevsky
et al. (2012), natural language processing Collobert et al. (2011) and speech recognition Hinton
et al. (2012). Regardless of the availability of large-scale labeled data and powerful computational
resources, the leading accuracies of DNNs are attributed to the huge number of learnable parameters,
ranging from a couple of millions to even hundreds of millions. However, this also brings heavy
consumption of memory, compute and power resources, which prohibits their use on the resource-
constrained platforms.

Binary Weight Network (BWN) is among the most promising way to ease the deployment of DNNs
thanks to its advantages of much smaller storage space and cheaper bit-wise operations over the
full-precision (32-bit floating-point) counterpart. Because of this, substantial research efforts have
been invested on how to train BWNs either from the pre-trained full-precision models or from
scratch. Existing solutions can be grouped into two basic families. The first solution family, such
as Soudry et al. (2014), BinaryConnect Courbariaux et al. (2015) and Binarized Neural Networks
(BNNs) Courbariaux et al. (2016), strictly forces the weight values to be either +1 or −1 from
the perspective of approximating the posterior distribution of the weights. The second solution
family, such as XNOR-Net Rastegari et al. (2016), Zhou et al. (2018) and Wan et al. (2018),
directly considers the network binarization problem as a layer-wise approximation of the floating-
point weight set by a binarized version (that is called a point estimation in this paper). To address
notable accuracy degradation, they add filter-wise or layer-wise scaling factors over binarized weights,
introducing additional multiplication operations. Our proposed method belongs to the first solution
family, but we strive to explore the problem of training BWNs from scratch, by an association of
Reinforcement Learning (RL) J William (1992) and Bayesian deep learning for approximating the
posterior distribution of binary weights. Although there are some recent research attempts Lin et al.
(2017); Ashok et al. (2017); He & Han (2018) that also use RL to address DNN compression, they
focus on how to adapt policy network designs to reduce the complexity of pre-trained network models,
mostly from the perspective of weights pruning. Our main contributions are summarized as follows:
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• We propose SnapQuant, a reinforcement learning method for training BWNs from scratch
under the Bayesian deep learning perspective, which approximates the posterior distribu-
tion of binary weights instead of a single point estimation. During the training phase, it
generates binary weights in a burn-after-reading style by maintaining a policy network that
parameterizes this posterior distribution. At the testing phase, it enables to sample binary
weight instances for a given recognition architecture from the learnt policy network.

• We propose a nested parameter structure for the policy network, which explicitly and
hierarchically models the joint posterior distribution of binary weights. Such a nested
parameter structure has layer-wise, filter-wise and kernel-wise parameter sharing designs,
thus it is applicable to any DNN architecture.

• Experiments conducted on the widely used image classification datasets including ImageNet
show that SnapQuant has better performance in comparison to related probabilistic methods.

2 RELATED WORKS

Here, we briefly summarize recent advancements in the related field.

Neural Network Quantization. Prevalent deep neural networks are usually trained with 32-bit
floating-point weights, thus the reduction of weights precision is a natural way to compress and
accelerate DNNs. Gong et al. (2014) propose to replace the weights in each fully connected layer
of a pre-trained DNN model by a small number of the clustered centroid values obtained from
vector quantization techniques. Chen et al. (2015) use hash function to perform weight mapping over
fully connected layers. Vanhoucke et al. (2011) adopt 16-bit fixed-point implementation of DNNs,
and Gupta et al. (2015) utilize 8-bit fixed-point implementation. To achieve significant reduction
of network complexity, there have numerous approaches proposed to train binary or ternary DNNs
either from the pre-trained full-precision models or from scratch, including but not limited to Soudry
et al. (2014); Courbariaux et al. (2015; 2016); Rastegari et al. (2016); Li & Liu (2016); Zhou et al.
(2016); Hubara et al. (2016); Zhu et al. (2017); Zhou et al. (2017); Li et al. (2017a); Zhou et al.
(2018); Zhang et al. (2018); Wan et al. (2018). During the training phase, most of these methods
maintain full-precision weights and use them for gradients accumulation and weights quantization.

Reinforcement Learning. Recently, reinforcement learning J William (1992); Volodymyr et al.
(2015) has been used to reduce the complexity of DNNs. Veniat & Denoyer (2017) use RL to learn
efficient DNN architecture with a budgeted objective function. Lin et al. (2017) propose to train a
policy Recurrent Neural Network (RNN) which can dynamically prune DNNs according to the input
data and the corresponding feature maps during the inference phase. Ashok et al. (2017) adopt two
policy RNNs for learning reduced network architectures from the larger teachers in an incremental
way. He & Han (2018) utilize deep deterministic policy gradient agent to address DNN pruning.
These RL based methods share a common feature: they mainly focus on how to adapt policy network
designs for compressing pre-trained network models, usually from the perspective of weights pruning.

Other Methods. Besides aforementioned approaches, there are also many other methods to improve
the efficiency of DNNs. Network pruning is a promising way to transform dense DNN models into
sparse versions without loss of predication accuracy. This line of research mainly includes network
parameter pruning Yann et al. (1990); Hassibi & Stork (1993); Han et al. (2015); Guo et al. (2016),
filter pruning Li et al. (2017b) and channel pruning Hu et al. (2016); He et al. (2017). Knowledge
distillation presents another way which allows training an efficient yet accurate student network
distilled by the knowledge of a larger pre-trained teacher model Hinton et al. (2014); Romero et al.
(2015); Mishra & Marr (2018). For more neural network compression methods, we refer the reader
to Sze et al. (2017) and Cheng et al. (2018) for comprehensive reviews.

3 PROPOSED METHOD: SNAPQUANT

3.1 OVERVIEW

Here we consider the problem of training a binary neural network f for a supervised learning task
f : X → Y , in which X is the training set of the input data points and Y is the corresponding
objective. In this study, we focus on supervised image classification tasks, thus X represents
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Figure 1: The leftmost panel illustrates the connection between probabilistic nodes. The remaining
four panels show how a forward-backward iteration for the likelihood term ∆ is done.

natural images and Y is the set of image labels taken from a pre-defined category taxonomy. Since
Convolutional Neural Networks (CNNs) are the most prevalent model, we consider the setting of
approximating f : X → Y with a CNN. More specifically, we restrict the weights of the recognition
network (denoted as w) to take either value +1 or −1. We adopt the Bayesian deep learning
perspective, in which the ultimate goal is to approximate the posterior distribution P (w|X,Y ).
Note that most existing methods Rastegari et al. (2016); Li & Liu (2016); Zhou et al. (2016);
Hubara et al. (2016); Zhu et al. (2017); Zhou et al. (2017); Li et al. (2017a); Zhou et al. (2018);
Zhang et al. (2018); Wan et al. (2018) only give a point estimate of this distribution. The prior
distribution of binary weights is denoted as P (w). The likelihood on the training set {X,Y } is
denoted as P (Y |w,X). According to the Bayesian rule, the concerned posterior can be expressed
as P (w|X,Y ) = P (Y |w,X)P (w)

P (Y |X) . As evaluating the generic posterior P (w|X,Y ) is intractable,
we resort to the variational approximation Pθ(w). Though there are other possible probabilistic
parameterizations for θ, we propose an alternative that directly parameterizes P (w|X,Y ) as a policy
network. More specifically, let’s denote the parameters of the policy network as θ. As illustrated by
the first panel of Fig 1, w is conditioned on θ, or say, P (w|X,Y )

.
= Pθ(w).

Following the common practice in modern variational approximation Gal & Ghahramani (2016);
Blei (2016), the objective is to minimize the KL divergence DKL(Pθ(w)||P (w|X,Y )). By apply-
ing the evidence lower bound (ELBO) theorem, we can get the equivalent objective to minimize
−
∫
Pθ(w) logP (Y |w,X)dw +DKL(Pθ(w)||P (w)). Note that these two terms correspond to like-

lihood (denoted as ∆) and prior (denoted as Γ) respectively. Here a prior that all weights follow
a 50%-50% Bernoulli distribution is imposed, thus the prior term Γ is actually an entropy maxi-
mization term (which is widely used in policy gradient to encourage exploration). We refer readers
to Appendix A for a more detailed exposition for Γ. In the main text, we focus on the non-trivial
part ∆. Specifically, a training scheme is shown in the second to fifth panel of Fig 1. A complete
forward-backward propagation iteration for optimizing ∆ is described as follows:

• In the first forward phase, we sample a set of concrete weights w from the distribution
P (w|θ). It is worth mentioning that these concrete weights w only exist temporarily.

• In the second forward phase, we do a standard forward propagation on a batch of training
data X using concrete weights w. Denoting the network output as Y ∗ and the cross entropy
metric as ∆(∗, ∗), we can evaluate ∆(Y ∗, Y ).

• In the first backward phase, we do a standard backward propagation, getting gradients w.r.t.
concrete weights w. We denote these gradients as ∂∆

∂w .

• In the second backward phase, we update the policy network parameters θ. However, since
the derivate ∂w

∂θ cannot be trivially evaluated, we propose to update θ using the REINFORCE
algorithm J William (1992), treating µ(∂∆

∂w ) as a pseudo reward. The function µ(∗) will be
elaborated later. Once θ updated, concrete weights w are discarded.

The network weightsw used for the target task f : X → Y are sampled from P (w|θ) at the beginning
of every single iteration and discarded at the end of the iteration. The de facto parameters we maintain
during the whole training procedure are θ, which is a parameterization of P (w|X,Y ). Intuitively, we
call this burn-after-reading style training scheme as SnapQuant. Note that the regularization term Γ is
only involved in the second backward phase. Then we describe these four phases sequentially, for
which we elaborate the nested parameter structure of the policy network as a necessary foundation.
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Figure 2: An illustration of the nested parameter structure. The policy network (a) has four lay-
ers while the recognition network (b) is a 2-layer CNN. Input to the policy network is state s.
Blue/orange/green/black connections are layer shared/filter shared/kernel shared/weight specific
parameters of the policy network. The details of sampling the recognition network weights w from
the policy network can be found in the main text.

3.2 NESTED PARAMETER STRUCTURE

Firstly, we formally define the recognition network. For a convolutional layer indexed by l (l ∈ [1, L]),
the weight set is a O × I ×K ×K tensor, where O/I are output/input channel numbers while K
is the spatial size. As illustrated by Fig 2, formally we call every group of K × K weights a
kernel, every group of I ×K ×K weights a filter and every group of O × I ×K ×K weights a
layer. By treating all weights in a kernel as a single dimension, we index a certain weight as wliok,
l ∈ [1, L], i =∈ [1, I], o ∈ [1, O], k ∈ [1,K2].

There are various ways to construct the policy network. For example, the most straightforward
choice is to condition every wliok on an independent θliok. Adopting this formulation is similar to
the probabilistic version of BinaryConnect Courbariaux et al. (2015) except that in SnapQuant the
training is done with the REINFORCE algorithm J William (1992). However, this trivial formulation
fails to capture the joint distribution of different weights, which is obviously not a realistic assumption.
To this end, we propose a nested parameter structure of θ, hierarchically modeling the dependency
between weights across layers, filters and kernels.

We illustrate our nested parameter structure in Fig 2, where the policy network is a four-layer neural
network. Note that these four layers are not conventional fully connected layers as the input-output
connections are separated into groups. Now we detail how these groups are organized. Let’s denote
the input to the policy network as s, and the hidden units of subsequent three layers as h1, h2 and
h3. Then we name the layer-wise parameters of the policy network according to the different colors
used in Fig 2. The blue connections are layer shared parameters θ1

l . The orange connections are
filter shared parameters θ2

li. The green connections are kernel shared parameters θ3
lio. The black

connections are weight specific parameters θ4
liok.

For a clear exposition of the nested structure, here we formally describe the forward procedure of the
policy network. We use f(∗; θ) to represent two sequent operations: (1) feeding inputs/hidden units
to these grouply-separated linear layers; (2) feeding outputs of (1) to a subsequent sigmoid nonlinear
function that gives f(∗; θ) a probabilistic interpretation. Meanwhile we denote the final outputs of
the policy network as pliok.

The following equation represents calculating layer shared hidden units h1:

h1
l = f(s; θ1

l ) (1)
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Similarly, filter shared/kernel shared hidden units h2/h3 and final outputs pliok are calculated by:

h2
li = f(h1

l ; θ
2
li)

h3
lio = f(h2

li; θ
3
lio)

pliok = f(h3
lio; θ

4
liok)

(2)

As such, we get the weight specific outputs pliok. Each pliok characterizes a policy:{
P (wliok = +1) = pliok
P (wliok = −1) = 1− pliok (3)

Following these policies, we can do the sampling mentioned in the first forward phase. Thanks to
the nested parameter structure, the policies to generate different weights are connected by those
shared weights. For clarity, we further give a concrete example to demonstrate the parameter sharing
mechanism. Imagine there are two weights wliok1 and wliok2 which reside in the same kernel. They
are sampled according to pliok1 and pliok2 . Formally these two quantities are calculated by:

pliok1 = f(f(f(f(s; θ1
l ); θ

2
li); θ

3
lio); θ

4
liok1

)

pliok2 = f(f(f(f(s; θ1
l ); θ

2
li); θ

3
lio); θ

4
liok2

)

As clearly shown by these two equations, among all quantities used to generated pliok1 and pliok2 ,
the only difference is the weight specific parameters θ4

liok1
and θ4

liok2
.

Now that the first forward phase has been formally defined, we move on to the remaining three
phases. Recall that the second forward phase and the first backward phase actually form a ordinary
forward-backward routine of a typical CNN. Thus the only unclear part is the second backward phase,
which will be elaborated in the next subsection.

3.3 OPTIMIZING THE EXPECTED LIKELIHOOD WITH REINFORCE

Since the procedure of sampling w from P (w|θ) is not trivially differentiable, we propose to update
the parameters θ of the policy network using the REINFORCE algorithm J William (1992).

We associate a total of L× I ×O ×K2 Markov Decision Processes (MDPs) with all the weights
w. All these MDPs share the same state s, which is the globally shared input vector into the policy
network. For every policy characterized by pliok, there are two actions: (1) assigning value +1 to
wliok (with probability pliok); (2) assigning value -1 to wliok (with probability 1-pliok). To this end,
we have to define rewards w.r.t. these two actions.

Here, we propose an intuitive trick that assumes there is only one step in an episode of each MDP and
an episode corresponds to a complete forward-backward iteration in Fig 1. As such, we can define
pseudo rewards r = µ(∂∆

∂w ), which is related to the gradients w.r.t. w obtained in the current iteration.

In our implementation, the pseudo reward function µ(∗) takes this form:

gliok =
∂∆

∂wliok
rliok = µ(gliok) = −β × gliok × wliok

(4)

Note that wliok is either +1 or −1 so multiplying wliok only changes the sign of the reward and
the magnitude of the reward equals ‖βgliok‖. β is the scaling factor for the reward, which is a
hyper-parameter. The reward gives a positive value if the gradient gliok and the sampled weight
wliok take different signs. For intuitively understanding why we design rewards as such, we give a
concrete example. Assume wliok is sampled as +1 during the second forward phase and the gradient
on it gliok emerges as negative. According to the gradient descent rule, we should update wliok into
wliok − gliok. Obviously, wliok − gliok > wliok, meanning that if this is not a binary network, wliok
would take a value larger than +1 (e.g. +2) after this update. As wliok can only take the value +1 or
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−1, instead we increase the possibility of assigning +1 to wliok. In other words, we increase pliok,
meaning that the action of assigning +1 to wliok is encouraged. In this case, the reward is positive.

Now that the states, actions and rewards of these 1-step MDPs have already been defined, we can
update θ using the standard REINFORCE algorithm J William (1992). The expected reward is:

J(θ) =
∑
l,i,o,k

EP (wliok|θ)(rliok)

According to the REINFORCE principle, we have:

5J(θ) =
∑
l,i,o,k

EP (wliok|θ)(5θ logP (wliok|s; θ)× rliok)

Via applying a Monte Carlo sampling, we get an unbiased estimator of this quantity:

5 J(θ) =
∑
l,i,o,k

(5θ logP (wliok|s, θ)× rliok) (5)

Now that we have 5J(θ) which optimizes the first term in the aforementioned objective ∆ + Γ,
combining it with5Γ(θ) (for details see Appendix A) drives the variational distribution Pθ(w) to
the minimum of DKL(Pθ(w)||P (w|X,Y )). The whole training procedure of our SnapQuant is
summarized as in Algorithm 1.

Algorithm 1 SnapQuant for training BWNs from scratch

Require: X: natural images, Y : image labels, w: recognition network weights restricted to +1
or −1 (what we really need is w’s structure), Y ∗: recognition network outputs, ∆(∗, ∗): cross
entropy function, {θ : θ1, θ2, θ3, θ4}: randomly initialized policy network parameters, s: the
globally shared state vector to the policy network, N : maximum iteration number, β: pseudo
reward scaling factor.

Ensure: P (w|θ) approximates the posterior distribution P (w|X,Y ).
1: for n = 1, 2, . . . , N do
2: Calculate {pliok} according to Equation (1-2), using s and θ.
3: Sample concrete weights w = {wliok} according to Equation (3).
4: Sample a mini-batch B from the training set {X,Y }.
5: Do a standard feed forward using concrete weights w and B, getting ∆(Y ∗, Y ).
6: Do a standard backward propagation to get gradients gliok = ∂∆

∂wliok
.

7: Calculate pseudo rewards according to Equation (4).
8: Update θ according to5J(θ) in Equation (5) and5Γ(θ) in Appendix A.
9: Discard concrete weights w.

10: end for

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We evaluate SnapQuant with standard MNIST Yann et al. (1998), CIFAR-10/100 Krizhevsky &
Hinton (2009) and ImageNet Russakovsky et al. (2015) datasets. At the inference phase, we use the
trained policy network to sample concrete binary weights w for evaluation. Assuming the recognition
network has |w| weights, the amount of possible binary networks is up bounded by 2|w|, which can
be considered as infinite. For easy implementation, we sample 100 binary networks from the policy
network and pick the best one. This inference scheme demonstrates the versatility of SnapQuant’s
probabilistic nature. In the experiments, four different settings (namely non-sharing, kernel-wise
sharing, filter-wise sharing and layer-wise sharing) are considered for SnapQuant, according to
how parameters are shared in the nested policy network. For instance, SnapQuant (layer-wise
sharing) means the complete nested parameter structure is exploited, while SnapQuant (non-sharing)
represents the trivial solution of conditioning every wliok on an independent θliok. Taking 32-bit
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floating-point network model as the baseline, we compare our method with the most related method
BinaryConnect Courbariaux et al. (2015). BinaryConnect has two versions: (1) the deterministic
version binaries weights using a hard threshold; (2) the stochastic version also samples concrete
weights at the inference phase like our method, thus we also report its best result out of 100 trials. All
algorithms are implemented with Pytorch Paszke et al. (2017).

4.2 RESULT COMPARISON ON MNIST

MNIST is a digit recognition dataset consisting of 60000 training samples and 10000 testing samples.
We adopt the LeNet-5 architecture Yann et al. (1998) and the results are summarized in Table 1. It
can be seen that SnapQuant reaches an error rate of 0.89%, which is better than the stochastic version
of BinaryConnect, and is very close to the performance of the full-precision baseline.

Architecture Method Error rate (%)

LeNet-5 32-bit floating-point baseline 0.81
BinaryConnect (deterministic) 0.88
BinaryConnect (stochastic) 1.24
SnapQuant (layer-wise sharing) 0.89

Table 1: Quantitative results on MNIST.

4.3 RESULT COMPARISON ON CIFAR-10/100

CIFAR-10 Krizhevsky & Hinton (2009) consists of 50000 training images and 10000 testing images
collected from 10 classes. CIFAR-100 has the same numbers of training/testing images containing
100 classes. For CIFAR-10, we firstly evaluate the VGG-like architecture proposed in BinaryCon-
nect Courbariaux et al. (2015). It has 14.03 million parameters, causing severe over-fitting. The
32-bit floating-point baseline can only reach 10.64% error rate, which is worse than SnapQuant and
BinaryConnect as binarization can be considered a regularization. Here, for BinaryConnect, we use
its best result reported in the original paper. Then we evaluate the ResNet-20 architecture He et al.
(2016) on both CIFAR-10 and CIFAR-100. The results are shown in Table 2. On both benchmarks,
SnapQuant outperforms the stochastic version of BinaryConnect by large margins while performs
comparably with its deterministic version. It is worth mentioning that the deterministic version cannot
provide the versatility of Bayesian formulation, such as model selection and uncertainty measure.

Architecture Method Error rate on CIFAR-10 (%) Error rate on CIFAR-100 (%)

VGG-like 32-bit floating-point baseline 10.64
(14.03M) BinaryConnect (deterministic) 9.90

BinaryConnect (stochastic) 8.27
SnapQuant (layer-wise sharing) 9.26

ResNet-20 32-bit floating-point baseline 8.75 31.20
(0.27M) BinaryConnect (deterministic) 10.85 41.99

BinaryConnect (stochastic) 17.22 55.98
SnapQuant (non-sharing) 14.24 46.74
SnapQuant (kernel-wise sharing) 13.39 44.43
SnapQuant (filter-wise sharing) 12.74 43.46
SnapQuant (layer-wise sharing) 13.29 43.13

Table 2: Quantitative results on CIFAR-10/100.

4.4 RESULT COMPARISON ON IMAGENET

ImageNet classification dataset is known as the most challenging image classification benchmark
so far. It has about 1.2 million training images and 50 thousand validation images. Each image is
annotated as one of 1000 object classes. We apply our SnapQuant to two popular CNN architectures:
AlexNet Krizhevsky et al. (2012) and ResNet-18 He et al. (2016). Using the center crops of validation
images, we report the results with two standard measures: top-1 error rate and top-5 error rate. The
results are summarized in Table 3. Results for comparison methods are taken from the original
papers Rastegari et al. (2016). On AlexNet, SnapQuant outperforms BinaryConnect by 16.9%
and is worse than Binary-weight-network by 4.5%, considering top-1 error rate. On ResNet-18,
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Figure 3: (a/b) The accuracy distribution of 100 randomly sampled binary networks for different
SnapQuant settings, on CIFAR-10/100. (c/d) Testing set error curves of different SnapQuant settings
on CIFAR-10/100. Each data point corresponds to the performance of a randomly sampled network
at that epoch. Note these four figures are better viewed electronically for a full resolution.

SnapQuant’s top-1 performance gap against Binary-weight-network is 1.9%. As a reminder, Binary-
weight-network exploits filter-wise scaling factors leading to +αi or −αi weights. Scaling involves
multiplication operations, which costs additional hardware cycles. BinaryNet and XNOR-Net exploit
1-bit activations. Recall that the central scientific problem considered in this paper is to learn the
posterior distribution of binary weights, learning the distribution of binary activations is another
interesting direction yet out of our scope.

Table 3: Error rates (%) on ImageNet validation set.

AlexNet ResNet-18
Method Top-1 Top-5 Top-1 Top-5

32-bit floating-point baseline 43.4 19.8 30.7 10.8
BinaryNet (1-bit activation) 72.1 49.6 — —
XNOR-Net (1-bit activation) 55.8 30.8 48.8 26.8
Binary-weight-network (w/ scaling) 43.2 20.6 39.2 17.0

BinaryConnect (deterministic) 64.6 39.0 — —
SnapQuant (layer-wise sharing) 47.7 25.0 41.1 18.3

4.5 NESTED PARAMETER STRUCTURE: DEEP ANALYSIS

For a deep understanding of the nested parameter structure, we present ablation studies on CIFAR-
10/100. According to the results shown in Table 2, all parameter sharing settings clearly outperform
the non-sharing setting. For CIFAR-10, the filter-wise sharing setting gets an error rate of 12.74%,
which outperforms the non-sharing baseline by 1.50%. For CIFAR-100, the layer-wise sharing
setting performs best, surpassing the non-sharing baseline by 3.61%. A deeper analysis is presented
in Figure 3-a/b, in which the accuracy distribution of 100 randomly sampled binary networks is
illustrated. Note that the accuracy variances of the sharing settings are obviously smaller than the
non-sharing baseline. According to the mean accuracies of the different settings, we can see that the
filter-wise sharing performs the best. This implies that modeling the joint distribution across layers is
not that necessary, which is consistent to common senses. While kernels or filters may be statistically
related, weights in different layers are less likely to correlated with each other. We further present the
testing error curves in Figure 3-c/d, showing that the sharing settings enable a more stable training.

Variance reduction results and training details are provided in Appendix B and C.

5 CONCLUSIONS

In this paper, we proposed SnapQuant, a probabilistic method for training binary weight neural
networks from scratch under the Bayesian deep learning perspective. We approximate the posterior
distribution of binary weights with a reinforcement learning scheme. A policy network with a novel
nested parameter structure was presented to parameterize the posterior distribution of binary weights.
We show that the proposed method performs well in several visual recognition tasks including
ImageNet, as tested with different network architectures.
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A OPTIMIZING THE REGULARIZATION TERM Γ

Recall that the variational approximation objective is ∆ + Γ, in which:

∆ = −
∫
Pθ(w) logP (Y |w,X)dw

Γ = DKL(Pθ(w)||P (w))

While the main paper focuses on optimizing ∆ w.r.t. θ using5J(θ), here we show how to optimize
the second term Γ. Note that it is imposed on the policy network thus only involved in the second
backward phase in Fig 1. Recall that (see Equation 3) for a certain concrete wliok:

Pθ(wliok) =

{
P (wliok = +1) = pliok
P (wliok = −1) = 1− pliok (6)

We adopt the 50%-50% Bernoulli distribution as the prior:

P (wliok) =

{
P (wliok = +1) = 0.5
P (wliok = −1) = 0.5

(7)

Thus the second term Γ is evaluated as:

Γ =
∑
l,i,o,k

DKL(Pθ(wliok)||P (wliok))

Each quantity in the summation can be calculated as:

pliok log
pliok
0.5

+ (1− pliok) log
1− pliok

0.5

= pliok log pliok + (1− pliok) log(1− pliok)− log 0.5

− log 0.5 is a constant. pliok log pliok+(1−pliok) log(1−pliok) is the negative entropy so minimizing
it means maximizing the entropy. Note that entropy maximization is a widely used technique in
REINFORCE to encourage exploration. Interestingly, it functions as the regularization term which
shapes the variational approximation Pθ(w), in the formulation of SnapQuant.

More specifically,5Γ(θ) = ∂Γ
∂p

∂p
∂θ . ∂Γ

∂p is the derivative of aforementioned negative entropy while
∂p
∂θ follows the standard back propagation of the policy network, which consists of fully connected
layers, slicing layers and sigmoid activation layers.

B VARIANCE REDUCTION FOR REINFORCE

An experiment on CIFAR-10 using ResNet-20 is given in Fig 4. We incorporate a running mean
baseline to reduce the variance of gradients. We can see that using a baseline speeds up convergence
(see training curves before 100 epochs) yet cannot stably improve the performance on validation set.
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Figure 4: Using a running mean baseline for variance reduction on CIFAR-10.
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C NETWORK TRAINING DETAILS

LeNet-5 For the MNIST dataset, we use the LeNet-5 architecture. For all the experiments in Table
1, we use Adam optimizer with the initial learning rate 0.01 and an exponential learning rate decay
strategy at the end of each epoch, where the decay rate is 0.9. We set batch size to 64 with BN to
speed up the training. The training is run for 100 epochs. Noted that in our SnapQuant experiments,
we use another Adam optimizer to train our policy network, with the initial learning rate 0.1 and an
exponential learning rate decay strategy at the end of each epoch, where the decay rate is 0.9. The
reward scaling factor β is 0.1.

VGG-like We follow the CNN architecture in the BinaryConnect Courbariaux et al. (2015), imple-
ment the same VGG-like network expect that we replace the finial SVM by a softmax classifier, and
we do not quantize this classifier. For all the experiments of this VGG-like architecture in Table 2, we
use Adam optimizer with the initial learning rate 0.1 and an exponential learning rate decay strategy
at the end of every 50 epochs, where the decay rate is 0.5. We set batch size to 128 with BN to speed
up the training and the training is run for 300 epochs. Noted that in our SnapQuant experiments, we
use another Adam optimizer to train our policy network, with the initial learning rate 0.01 and an
exponential learning rate decay strategy at the end of every 10 epochs, where the decay rate is 0.9.
The reward scaling factor β is 0.1.

ResNet-20 We implement the ResNet-20 topological structure and do not quantize the first convolu-
tional layer and the last classifier like most of other methods. For all the experiments of ResNet-20
architecture in Table 2, we use Adam optimizer with the initial learning rate 0.01 and an exponential
learning rate decay strategy at the end of every 50 epochs, where the decay rate is 0.5. We set batch
size to 256 with BN to speed up the training and the training is run for 1000 epochs. Noted that in
our SnapQuant experiments, we use another Adam optimizer to train our policy network, with the
initial learning rate 0.01 and an exponential learning rate decay strategy at the end of every 10 epochs,
where the decay rate is 0.9. The reward scaling factor β is 0.1.

AlexNet Experiments with AlexNet are conducted on a server with 4 Titan X GPUs (while we use 1
GPU for experiments with the aforementioned three networks), and we follow standard experimental
settings Rastegari et al. (2016). To train binary AlexNet, we run SnapQuant with Adam optimizer
for 100 epochs with the batch size of 256, the weights decay of 0.0001 and the momentum of 0.9.
The learning rate starts at 0.01 and is divided by 10 every 30 epochs. Noted that in our SnapQuant
experiments, we use another Adam optimizer to train our policy network, with the initial learning
rate 0.01 and a learning rate decay strategy at the end of every 10 epochs, where the decay rate is
0.0002. The reward scaling factor β is 0.1.

ResNet-18 Experiments with ResNet-18 are conducted on a server with 4 Titan X GPUs, and we
follow standard experimental settings Rastegari et al. (2016). To train binary ResNet-18, we run
SnapQuant with Adam optimizer for 100 epochs with the batch size of 256, the weights decay of
0.0001 and the momentum of 0.9. The learning rate starts at 0.01 and is divided by 10 every 30
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epochs. Noted that in our SnapQuant experiments, we use another Adam optimizer to train our policy
network, with the initial learning rate 0.01 and a learning rate decay strategy at the end of every 10
epochs, where the decay rate is 0.0002. The reward scaling factor β is 0.1.

14


	Introduction
	Related Works
	Proposed Method: SnapQuant
	Overview
	Nested Parameter Structure
	Optimizing the Expected Likelihood with REINFORCE

	Experiments
	Experimental Settings
	Result Comparison on MNIST
	Result Comparison on CIFAR-10/100
	Result Comparison on ImageNet
	Nested Parameter Structure: Deep Analysis

	Conclusions
	Optimizing the Regularization Term 
	Variance Reduction for REINFORCE
	Network Training Details

