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Abstract

Thin-plate splines can be used for interpolation of image values, but can also be used to
represent a smooth surface, such as the boundary between two structures. We present a
method for partitioning vertebra segmentation masks into two substructures, the vertebral
body and the posterior elements, using a convolutional neural network that predicts the
boundary between the two structures. This boundary is modeled as a thin-plate spline
surface defined by a set of control points predicted by the network. The neural network is
trained using the reconstruction error of a convolutional autoencoder to enable the use of
unpaired data.

Keywords: thin-plate splines, shape analysis, vertebra partitioning, autoencoder

1. Introduction

Splines are commonly used for interpolation and, for that purpose, have recently also been
integrated into convolutional neural networks (CNNs), for example in spatial transformer
networks (Jaderberg et al., 2015) or in image registration frameworks (de Vos et al., 2019).
However, splines such as thin-plate splines (TPS) can not only be used to interpolate im-
age values, but can also be used to represent a smooth surface, for instance the boundary
between two structures. We leverage this property in a method for partitioning of segmenta-
tion masks of vertebrae into two substructures, namely the vertebral body and the vertebral
posterior elements. The approach is based on a CNN that predicts the location and shape
of a TPS surface by predicting the location of a set of control points that define the surface.
The CNN is trained with the help of a convolutional autoencoder, which serves as a shape
model of the vertebral body, to enable training the CNN with unpaired data (Figure 1).
We trained the method with vertebra segmentations from chest CT images and vertebral
body segmentations from lumbar spine MR images, and evaluated the partitioning results
on a set of chest CT scans with both vertebra and vertebral body reference segmentations.
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Figure 1: Flowchart illustrating the training process. Vertebra segmentation masks are fed
into a regression CNN that predicts the y-coordinates of several control points.
These define a TPS surface, from which a probabilistic mask is derived, which
is applied to the vertebra masks to obtain soft vertebral body masks. These are
passed through a convolutional autoencoder (CAE), trained to represent a shape
model of the substructure. The reconstruction error is used to update the CNN.

2. Methods

Training a CNN that predicts the location and shape of a TPS surface by predicting the
coordinates of its control points requires calculating the spline coefficients as part of the
forward pass. This involves solving a system of linear equations, which is typically not
a differentiable operation. However, by choosing a fixed grid of control points in a plane
and letting the network predict only the third coordinate, i.e., the height of the surface
relative to that plane, the spline coefficients can be calculated in a differentiable manner.
Specifically, the 2D grid coordinates of the control points as well as terms depending on the
in-plane distance of the control points can be accumulated in a single matrix of which a
pseudo-inverse can be precomputed before training the network (Bookstein, 1989). During
forward passes through the network, the spline coefficients can then be calculated with a
single matrix-vector multiplication.

The predicted continous TPS surface is used to mask out the vertebral posterior ele-
ments, but could likewise be used to mask out the vertebral body. We consider the distance
of each voxel of the input vertebra segmentation mask to the TPS surface, and use the sig-
moid function to convert these distances into a probabilistic mask with values in [0, 1]. This
mask is multiplied with the vertebra segmentation mask, resulting in a soft segmentation
of the vertebral body (Figure 1). A loss function for training the network could be defined
with these soft masks and corresponding reference segmentations of the vertebral bodies.
However, this requires a set of paired segmentation masks, where both the entire vertebrae
as well as the vertebral bodies have been segmented in the same scans. We instead address
the case were segmentation masks of vertebrae and vertebral bodies are available, but from
different scans (and possibly different subjects or modalities). This enables the combination
of multiple datasets, for example from segmentation challenges.

We train a convolutional autoencoder (CAE) with segmentation masks of vertebral
bodies. This CAE therefore learns a shape model of vertebral bodies (Oktay et al., 2018).
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Figure 2: Partitioning result as three-dimensional renderings. The vertebral body partition
is displayed in blue, the posterior partition in orange and the TPS surface in gray.
Note that the predicted surfaces are not smooth in the parts where there is never
any vertebral bone and hence no gradient information, i.e., at the very top and
bottom of the volume.

The CAE is trained beforehand and is fixed while training the TPS-CNN. Assuming that
the CAE will reconstruct segmentation masks well only if they are very similar to vertebral
body segmentation masks, and that TPS surfaces leading to an incorrect partitioning will
therefore produce vertebral body masks that the CAE cannot reconstruct well, we use the
reconstruction error of the CAE to update the TPS-CNN (Figure 1).

3. Results and Discussion

We used a set of 6247 vertebra segmentation masks obtained from 580 low-dose chest CT
scans and 1193 vertebral body segmentation masks obtained from 314 lumbar spine MR
scans. There was no overlap in patients between the two datasets. The segmentation masks
were automatically obtained with an iterative segmentation method (Lessmann et al., 2019)
and were manually reviewed for segmentation errors. Input volumes to both the TPS-CNN
and the CAE had a size of 128 × 128 × 128 voxels at 1 mm isotropic resolution. In six chest
CT scans, the vertebral bodies were manually segmented and the partitioning results were
evaluated with five of these annotations (50 vertebrae), the sixth was used for validation
during training. We computed the Dice coefficient as well as the Hausdorff distance for
networks trained with different grid spacing, i.e., different number of control points.

For 64, 100, 256 and 1024 control points, the Dice coefficient ranged from 98.9 ± 1.1 %
to 99.3 ± 0.5 %. The Hausdorff distance ranged from 4.1 ± 2.3 mm to 3.5 ± 1.8 mm. Visual
inspection of the results (Figure 2) revealed that the TPS surface was in most cases placed
in approximately the right location, which, however, is often also difficult to determine
manually in low-dose chest CT scans. The predicted surfaces were well adapted to various
spinal curvatures and to a range of vertebrae (T2–T11), differing in size and shape.

In conclusion, while a more thorough evaluation is still needed, these initial results
demonstrate that a CNN can be used for a partitioning task not only by labeling voxels,
but also by steering a smooth and continuous surface representing the boundary between
the partitions. We additionally demonstrated that a CAE can be used to train such an
approach by learning a model of plausible shapes and using the reconstruction error to
express the plausibility of partitioning results.
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