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Lexicosyntactic Inference in Neural Models

Anonymous EMNLP submission

Abstract
We investigate neural models’ ability to cap-
ture lexicosyntactic inferences: inferences
triggered by the interaction of lexical and syn-
tactic information. We take the task of event
factuality prediction as a case study and build
a factuality judgment dataset for all English
clause-embedding predicates in various syn-
tactic contexts. We use this dataset, which we
make publicly available, to probe the behav-
ior of current state-of-the-art neural systems,
showing that these systems make certain sys-
tematic errors that are clearly visible through
the lens of factuality prediction.

1 Introduction

The formal semantics literature has long been con-
cerned with the complex array of inferences that
different open class lexical items trigger (Kiparsky
and Kiparsky, 1970; Karttunen, 1971a,b; Horn,
1972; Karttunen and Peters, 1979; Heim, 1992; Si-
mons, 2001, 2007; Simons et al., 2010; Abusch,
2002, 2010; Gajewski, 2007; Anand and Hac-
quard, 2013, 2014). For example, why does (1a)
give rise to the inference (2a), while the struc-
turally identical (1b) triggers the inference (2b)?
(1) a. Jo doesn’t believe that Bo left.

b. Jo doesn’t know that Bo left.
(2) a. Jo believes that Bo didn’t leave.

b. Bo left.
c. Bo didn’t leave.

A major finding of this literature is that lexically
triggered inferences are conditioned by surprising
aspects of the syntactic context that a word occurs
in. For example, while (3a), (3b), and (4a) trigger
the inference (2b), (4b) triggers the inference (2c).
(3) a. Jo remembered that Bo left.

b. Jo didn’t remember that Bo left.
(4) a. Bo remembered to leave.

b. Bo didn’t remember to leave.

Accurately capturing such interactions – e.g. be-
tween clause-embedding verbs, negation, and em-
bedded clause type – is important for any system
that aims to do general natural language inference
(MacCartney et al. 2008 et seq; cf. Dagan et al.
2006) or event extraction (see Grishman and Sund-
heim 1996 et seq), and it seems unlikely to be
a trivial phenomenon to capture, given the com-
plexity and variability of the inferences involved
(see, e.g., Karttunen, 2012, 2013; Karttunen et al.,
2014; van Leusen, 2012; White, 2014; Baglini and
Francez, 2016; Nadathur, 2016, on implicatives).

In this paper, we investigate how well current
state-of-the-art neural systems for a subtask of
general event extraction – event factuality predic-
tion (EFP; Nairn et al., 2006; Saurı́ and Puste-
jovsky, 2009, 2012; de Marneffe et al., 2012; Lee
et al., 2015; Stanovsky et al., 2017; Rudinger et al.,
2018) – capture inferential interactions between
lexical items and syntactic context – lexicosyntac-
tic inferences – when trained on current event fac-
tuality datasets. Probing these particular systems
is useful for understanding neural systems’ behav-
ior more generally because (i) the best performing
neural models for EFP (Rudinger et al., 2018) are
simple instances of common baseline models; and
(ii) the task itself is relatively constrained.

To do this, we substantially extend the
MegaVeridicality dataset (White and Rawlins,
2018) to cover all English clause-embedding verbs
in a variety of the syntactic contexts covered by
recent psycholinguistic work (White and Rawlins,
2016), and we use it to probe the behavior of these
models. We focus on clause-embedding verbs be-
cause they show effectively every possible pattern-
ing of lexicosyntactic inference (Karttunen, 2012).

We discuss three findings: (i) Tree biLSTMs (T-
biLSTMs) are better able to correctly predict lexi-
cosyntactic inferences than linear-chain biLSTMs
(L-biLSTMs); (ii) L-biLSTMs and T-biLSTMs
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capture different lexicosyntactic inferences, and
thus ensembling their predictions can reliably im-
prove performance; and (iii) even when ensem-
bled, these models show systematic errors – per-
forming well when the polarity of the matrix
clause matches the polarity of the true inference,
but poorly when these polarities mismatch.

We furthermore release our new dataset at
url:anon as a benchmark for probing the ability
of neural systems – whether systems for factuality
prediction or for more general natual language in-
ference – to capture lexicosyntactic inference.

2 Data collection

We substantially extend the MegaVeridicality
dataset (White and Rawlins, 2018), which con-
tains factuality judgments for all English clause-
embedding verbs that take finite subordinate
clauses. In White and Rawlins’s annotation pro-
tocol, all verbs that are grammatical with such
subordinate clauses – based on the MegaAttitude
dataset (White and Rawlins, 2016) – are slotted
into contexts either like (5a) or (5b), depending on
whether they take a direct object or not.

(5) a. Someone {knew, didn’t know} that a par-
ticular thing happened.

b. Someone {was, wasn’t} told that a particu-
lar thing happened.

For each sentence generated in this way, 10 differ-
ent annotators are asked to answer the question did
that thing happen?: yes, maybe or maybe not, no.

An important aspect of these contexts is that all
lexical items besides the embedding verbs are se-
mantically bleached to ensure that the measured
lexicosyntactic inferences are only due to inter-
actions between the embedding predicate – e.g.
know or tell – and the syntactic context.

We extend White and Rawlins’s dataset by col-
lecting judgments for a variety of infinitival subor-
dinate clause types, exemplified in (6).1 We inves-
tigate infinitival clauses because they can give rise
to different lexicosyntactic inferences than finite
subordinate clauses – see, e.g., (3)-(4).

(6) a. Someone {needed, didn’t need} for a par-
ticular thing to happen.

b. Someone {wanted, didn’t want} a particu-
lar person to {do, have} a particular thing.

c. A particular person {was, wasn’t} over-
joyed to {do, have} a particular thing.

1See Appendix A for further details.

Frame # verbs Ex.

NP ed that S 375 (5a)
NP was ed that S 169 (5b)

NP ed for NP to VP 184 (6a)
NP ed NP to VP[+ev] 197 (6b)
NP ed NP to VP[-ev] 128 (6b)
NP was ed to VP[+ev] 278 (6c)
NP was ed to VP[-ev] 256 (6c)
NP ed to VP[+ev] 217 (6d)
NP ed to VP[-ev] 165 (6d)

Total 1,969

Table 1: Contexts and number of verbs for which annota-
tions were collected: S = something happened, NP = some-
one, VP = happen, VP[+ev] = do something, VP[-ev] = have
something. The first two rows derive from White and Rawlins
2018; the remainder derive from this work.

d. A particular person {managed, didn’t man-
age} to {do, have} a particular thing.

For each sentence, we also collected judgments
from 10 different annotators, using slightly modi-
fied questions, depending on the sentence but the
same response options. Table 1 shows the number
of verb types for each syntactic context.

To build a factuality prediction test set from
these sentences, we combine MegaVeridicality
with our dataset and replace each instance of a
particular person or a particular thing with some-
one or something (respectively). Then, follow-
ing White and Rawlins, we normalize the 10 re-
sponses for each sentence to a single real value us-
ing an ordinal mixed model-based procedure.

3 Model and evaluation

We use our lexicosyntactic inference dataset to
evaluate the performance of three neural mod-
els for event factuality (Rudinger et al., 2018): a
linear-chain biLSTM (L-biLSTM), a dependency
tree biLSTM (T-biLSTM), and a hybrid biLSTM
(H-biLSTM) that ensembles the two. To predict
the factuality of the event referred to by a particu-
lar predicate, these models pass the output state of
the biLSTM at that predicate through a two-layer
regression. In the case of the H-biLSTM, the out-
put state of both the L- and T-biLSTMs are simply
concatenated and passed through the regression.2

Following the multi-task training regime de-
scribed by Rudinger et al. (2018), we train these
models on four standard factuality datasets – Fact-
Bank (Saurı́ and Pustejovsky, 2009, 2012), UW
(Lee et al., 2015), MEANTIME (Minard et al.,
2016), and UDS (White et al., 2016; Rudinger
et al., 2018) – with tied biLSTM weights but re-
gression parameters specific to each dataset. We

2See Appendix B for further details.

url:anon
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then use these trained models to predict the factu-
ality of the embedded predicate in our dataset.

To understand how much of these models’ per-
formance on our dataset is really due to a cor-
rect computation of lexicosyntactic inferences, we
also generate predictions for the sentences in our
dataset with the embedding verbs UNKed.3 In this
case, the model can rely only on the syntactic con-
text surrounding the predicate to make its infer-
ences. We refer to the models with lexical infor-
mation as the LEX models and the ones without
lexical information as the UNK models.

Each model produces four predictions, corre-
sponding to the four different datasets it was
trained on. We consider three different ways of en-
sembling these predictions using a cross-validated
ridge regression: (i) ensembling the four predic-
tions for each specific model (LEX or UNK); (ii)
ensembling the predictions for the LEX version of
a particular model with the UNK version of that
same model (LEX+UNK); and (iii) ensembling
the predictions across all models (LEX, UNK, or
LEX+UNK). Each ensemble is evaluated in a 10-
fold/10-fold nested cross-validation (see Cawley
and Talbot, 2010). In each iteration of the outer
cross-validation, a 10% test set is split off, and a
10-fold cross-validation to tune the regularization
is conducted on the remaining 90%.

4 Results

Figure 1 shows the mean correlation between
model predictions and true factuality on the outer
fold test sets of the nested cross-validation de-
scribed in §3. We note three aspects of this plot.

First, among the LEX models, the T-biLSTM
performs best, followed by the L-biLSTM, then
the H-biLSTM. This is somewhat surprising, since
Rudinger et al. (2018) find the opposite pattern of
performance, with the H-biLSTM outperforming
the L-biLSTM, and the L-biLSTM outperforming
the T-biLSTM. This indicates that T-biLSTMs are
better able to represent the lexicosyntactic infer-
ences relevant to this dataset, even though they un-
derperform on more general datasets. This possi-
bility is bolstered by the fact that, in contrast to
the L- and H-biLSTMs, the LEX version of the
T-biLSTMs performs significantly better than the

3We use the same UNKing method used by Rudinger et al.
(2018): a single UNK vector is randomly generated at train
time, and all OOV items are mapped to it. For the UNK mod-
els, we map all the embedding verbs to this vector at test.

0.45

0.50

0.55

0.60

0.65

Linear Tree Hybrid All

C
or
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tio
n

LEX UNK LEX+UNK

Figure 1: Mean correlation between model predictions and
true factuality in nested cross-validation. Error bars show
bootstrapped (iter=1,000) 95% confidence intervals for mean
correlation across 10 outer folds.

UNK version, suggesting that the T-biLSTM is po-
tentially more reliant on the lexical information
than the T- and H-biLSTMs.

Second, when the LEX and UNK version of
each model is ensembled (LEX+UNK), we find
comparable performance for all three biLSTMs
– each outperforming the LEX version of the T-
biLSTM. This indicates that each model captures
similar amounts of information about lexicosyn-
tactic inference, but this information is captured in
the models’ parameterizations in different ways.

Finally, when all three models are ensem-
bled, we find that both the LEX and UNK ver-
sion perform significantly better than any specific
LEX+UNK model. This may indicate two things:
(i) the models that have only access to syntax can
perform just as well as ones that have access to
both lexical information and syntax; but (ii) these
models appear to capture different aspects of in-
ference, since an ensemble of all models (All-
LEX+UNK) performs significantly better than ei-
ther the All-LEX or All-UNK ensembles alone.

5 Analysis

Table 2 shows the 20 sentences with the high-
est prediction errors under the All-LEX+UNK en-
semble. There are two interesting things to note
about these sentences. First, most of them involve
negative lexicosyntactic inferences that the model
predicts to be either positive or near zero. Sec-
ond, when the true inference is not positive, the
matrix polarity of the original sentence is negative.
This suggests that the models are not able to cap-
ture inferences whose polarity mismatches the ma-
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Someone ... True Pred.

faked that something happened -3.15 0.86
was misinformed that something happened -2.62 1.37
neglected to do something -3.07 -0.02
pretended to have something -2.96 0.05
was misjudged to have something -2.46 0.55
forgot to have something -3.18 -0.17
neglected to have something -2.93 0.07
pretended that something happened -2.11 0.86
declined to do something -3.18 -0.22
was refused to do something -3.16 -0.22
refused to do something -3.12 -0.20
pretended to do something -3.02 -0.11
disallowed someone to do something -2.56 0.34
was declined to have something -2.36 0.55
declined to have something -3.12 -0.23
did n’t hesitate to have something 1.84 -0.96
ceased to have something -2.22 0.57
did n’t hesitate to do something 1.86 -0.92
lied that something happened -1.99 0.78
feigned to have something -3.07 -0.31

Table 2: Sentences with the highest prediction errors.

trix clause polarity. This inability to predict mis-
matching inferences is perhaps unsurprising since
the majority of inferences match the matrix clause
polarity, evidenced in Figure 2.

Figure 2 plots the factuality predicted by the
the best performing ensemble (All-LEX+UNK)
against the true factuality, broken out by frame and
polarity. Table 3 shows the corresponding correla-
tions for each biLSTM.

Linear Tree Hybrid
pos neg pos neg pos neg

NP ed that S 0.25 -0.02 0.19 0.12 0.19 0.10
NP was ed that S 0.11 0.20 0.08 0.17 0.23 0.24
NP ed for NP to VP 0.26 -0.02 -0.00 -0.06 -0.00 -0.04
NP ed NP to VP[+ev] -0.04 -0.20 0.04 0.20 -0.08 0.22
NP ed NP to VP[-ev] -0.09 -0.01 0.00 0.24 -0.08 0.16
NP was ed to VP[+ev] 0.21 0.24 0.29 0.38 0.26 0.41
NP was ed to VP[-ev] 0.36 0.13 0.44 0.43 0.40 0.55
NP ed to VP[+ev] 0.09 0.14 0.20 0.23 -0.06 0.02
NP ed to VP[-ev] 0.24 0.13 0.25 0.22 0.12 0.06

Table 3: Correlation between predictions from LEX+UNK
model and true factuality in nested cross-validation by biL-
STM, frame, and polarity. Bolding shows best performance
on positive and best performance on negative in each row.

We find that there is high variability in which
model best predicts inferences in particular syn-
tactic contexts. This may be why the ensemble of
all biLSTMs is able to outperform any particular
model, and it suggests that particular biLSTMs are
better at representing interactions between nega-
tion, lexical items, and certain syntactic structures.

The is corroborated in analysis of particular
items. For each biLSTM we extracted the items
that that model showed the lowest absolute error
on in comparison to the other models. For the
L-biLSTM, this list was dominated by sentences
like (7a), which the L-biLSTM does best on over-
all (see Table 3). In contrast, the T-biLSTM shows
more variety in the interactions it captures – in-
cluding sentences like (7b), which the H-biLSTM
tended to perform better on overall.
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Figure 2: Factuality by syntactic context and polarity,
each point a verb. Diagonals show perfect prediction.

(7) Someone...
a. didn’t mandate for something to happen.
b. wasn’t excited to do something.

This suggests that L-biLSTMs might fruitfully be
used to target specific lexicosyntactic inferences,
while others T-biLSTMs might be used to capture
more general patterns of lexicosyntactic inference.
A remaining question is whether other forms of
lexicosyntactic inference show similar patterns.

6 Related work

This work is inspired by recent work in recasting
various semantic annotations into natural language
inference (NLI) datasets (White et al., 2017; Po-
liak et al., 2018a; Wang et al., 2018) to gain a bet-
ter understanding of which phenomena standard
neural NLI models (Bowman et al., 2015; Con-
neau et al., 2017) can capture. It is also related
to work that uses hypothesis-only baselines for a
similar purpose (Gururangan et al., 2018; Poliak
et al., 2018b; Tsuchiya, 2018).

7 Conclusion

We investigated different neural models’ ability to
capture lexicosyntactic inference, taking the task
of event factuality prediction as a case study. We
built a factuality judgment dataset for all English
clause-embedding predicates in various syntactic
contexts, and we used this dataset to probe the be-
havior of current state-of-the-art neural systems.
We showed that these systems make certain sys-
tematic errors that are clearly visible through the
lens of factuality prediction.
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A Data collection

We manipulate two aspects of the subordinate
clause in our extension of the MegaVeridicality
dataset: (i) whether and how an NP embedded
subject is introduced; and (ii) whether the embed-
ded clause contains an eventive predicate (do, hap-
pen) or a stative predicate (have).

The first manipulation is known to give rise
to different inferential interactions for predicates
that take different kinds of infinitival subordinate
clauses – e.g. remember, forget. For example,
while (8a), (8b), and (9a) trigger the inference
(11a), (9b) triggers the inference (11b). And just a
slight tweak to (9a) and (9b) can make these infer-
ences go away completely: neither (10a) nor (10b)
trigger an inference to either (11a) or (11b).

(8) a. Jo remembered that Bo left.
b. Jo didn’t remember that Bo left.

(9) a. Bo remembered to leave.
b. Bo didn’t remember to leave.

(10) a. Jo remembered Bo to have left.
b. Jo didn’t remember Bo to have left.

(11) a. Bo left.
b. Bo didn’t leave.

The second manipulation is known to give rise
to importantly different temporal interpretations,
which also seem to affect factuality judgments
(White, 2014). For instance, believe is generally
rated more acceptable in sentences with stative
embedded predicates, like (12a), and less accept-
able in sentences with eventive embedded predi-
cates, like (12b).

(12) a. Jo believe Mo to be intelligent.
b.?Jo believed Mo to run around the park.

This appears to correlate with certain aspects
of the temporal interpretation of such sentences
(Stowell, 1982; Pesetsky, 1991; Bošković, 1996,
1997; Martin, 1996, 2001; Grano, 2012; Wurm-
brand, 2014).

To accommodate the differences between these
contexts and theirs, we use a slightly modified
question, depending on the sentence – did that
person do that thing?; did that person have that
thing?; or did that thing happen? – with the same
response options.

B Model and evaluation

We use three models for event factuality predic-
tion proposed by Rudinger et al. (2018): a stacked



8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

EMNLP 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

bidirectional linear-chain LSTM (L-biLSTM), a
stacked bidirectional dependency tree LSTM (T-
biLSTM), and a simple ensemble of the two that
Rudinger et al. refer to as a H(ybrid)-biLSTM. We
use the two-layer version of these biLSTMs here.

B.1 Stacked bidirectional linear LSTM

The L-biLSTM we use is a standard extension of
the unidirectional linear-chain LSTM (Hochreiter
and Schmidhuber, 1997) by adding the notion of
a layer l ∈ {1, . . . , L} and a direction d ∈ {→
,←} (Graves et al., 2013; Sutskever et al., 2014;
Zaremba and Sutskever, 2014).
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t ◦ ĉ(l,d)t + f

(l,d)
t ◦ c(l,d)prevd(t)

h
(l,d)
t = o

(l,d)
t ◦ g

(
c
(l,d)
t

)
where ◦ is the Hadamard product; prev→(t) =

t − 1 and prev←(t) = t + 1, and x
(l,d)
t = xt

if l = 1; and x
(l,d)
t = [h

(l−1,→)
t ;h

(l−1,←)
t ] other-

wise. We follow Rudinger et al. in setting g to the
pointwise nonlinearity tanh.

B.2 Stacked bidirectional tree LSTM

Rudinger et al. (2018) propose a stacked bidirec-
tional extension to the child-sum dependency tree
LSTM (T-LSTM; Tai et al., 2015). The T-LSTM
redefines prev→(t) to return the set of indices
that correspond to the children of wt in some de-
pendency tree. In the case of multiple children one
defines ftk for each child index k ∈ prev→(t) in
a way analogous to the equations in §B.1 – i.e. as
though each child were the only child – and then
sums across k within the equations for it, ot, ĉt,
ct, and ht.

Rudinger et al.’s stacked bidirectional T-
biLSTM extends the T-LSTM with a downward
computation in terms of a prev←(t) that returns
the set of indices that correspond to the parents of
wt in some dependency tree.4 The same method
for combining children in the upward computation

4Miwa and Bansal (2016) propose a similar extension for
constituency trees.

is then used for combining parents in the down-
ward computation.
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We follow Rudinger et al. in using a ReLU point-
wise nonlinearity for g, and in contrast to other de-
pendency tree-structured T-LSTMs (Socher et al.,
2014; Iyyer et al., 2014), not using the dependency
labels in any way to make the L- and T-biLSTMs
as comparable as possible.

B.3 Regression model
To predict the factuality vt for the event referred to
by a word wt, we follow Rudinger et al. (2018) in
using the hidden states from the final layer of the
stacked L- or T-biLSTM as the input to a two-layer
regression model.

h
(L)
t = [h

(L,→)
t ;h

(L,←)
t ]

v̂t = V2 g
(
V1h

(L)
t + b1

)
+ b2

where v̂t is passed to a loss function L(v̂t, vt). we
follow Rudinger et al. (2018) in using smooth L1
for L and a ReLU pointwise nonlinearity for g.

We also use the simple ensemble method pro-
posed by Rudinger et al. (2018), which they call
the H(ybrid)-biLSTM. In this hybrid, the hidden
states from the final layers of both the stacked L-
biLSTM and the stacked T-biLSTM are concate-
nated and passed through the same two-layer re-
gression model (cf. Miwa and Bansal, 2016; Bow-
man et al., 2016).

B.4 Ensemble model
We use a ridge regression to ensemble the pre-
dictions from various models. The regular-
ization hyperparameter was tuned in the in-
ner fold of the nested cross-validation described
in §3 using exhaustive grid search over λ ∈
{0.0001, 0.001, 0.01, 0.1, 1., 2., 5., 10., 100.}.


