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ABSTRACT

Convolutional neural networks (CNNs) in recent years have made a dramatic im-
pact in science, technology and industry, yet the theoretical mechanism of CNN
architecture design remains surprisingly vague. The CNN neurons, including its
distinctive element, convolutional filters, are known to be learnable features, yet
their individual role in producing the output is rather unclear. The thesis of this
work is that not all neurons are equally important and some of them contain more
useful information to perform a given task. Hence, we propose to quantify and
rank neuron importance, and directly incorporate neuron importance in the objec-
tive function under two formulations: (1) a game theoretical approach based on
Shapley value which computes the marginal contribution of each filter; and (2) a
probabilistic approach based on what-we-call, the importance switch using vari-
ational inference. Using these two methods we confirm the general theory that
some of the neurons are inherently more important than the others. Various exper-
iments illustrate that learned ranks can be readily useable for structured network
compression and interpretability of learned features.

1 INTRODUCTION

Neural networks have achieved state-of-the art results in various cognition tasks, including image
and speech recognition, machine translation, reinforcement learning (Fergus et al.,[2003; [Mnih et al.,
2013; |Gu et al., 2018). Many of these applications involved CNNs which excel in particular in
the vision tasks due to its ability to capture visual by means of convolution filters. Although the
effectiveness of convolutional networks is unquestionable, the details of the architecture design and
what particularly makes neural network work in detail remain highly uncertain. The experimental
results roughly confirm that the accuracy of the network and representational capacity is correlated
with the depth of the network (Simonyan & Zisserman, 2014; He et al.l [2016; Montufar et al.,
2014). Interestingly, the deeper architecture also become wider, although the link between width and
network expressivity is questionable (Poole et al.l 2016)) and the choice of the number of neurons is
rather discretionary. As a result the discussion about the network architecture often revolves around
the numbers of filters and layers and their relative positioning, putting aside the conversation about
the quality of the information that it contains.

The increasing size of the network architectures have faced scrutiny that made claims that the net-
works are overparametrized raising two main concerns: heavy computational load and potential
overfitting (Louizos et al., 2017). In response to the need to build networks that are smaller yet ac-
curate, a stream of research attempted to remove redundant units, compress the networks and design
lighter architectures (Iandola et al., 2016; [Ullrich et al., 2017). A widespread approach to network
reduction has been removing weights that are small or even close to zero (Han et al.;2015)). This line
of research implicitly discerns that nodes with larger weights are more significant for learning task
than the small weights. As a result, broadly speaking, this approach divides features between those
that are useful which are kept and those which are insignificant and therefore discarded, forming a
sort of binary approach.

In this work, we would like to scrutinize the individual filters and form an explicit theory that states
that the units in the network (both convolutional filters and nodes in fully connected layers) are not
equally important when it comes to performing an inference task. The corollary of this thesis is
that CNNSs learn features in a discriminative way so that some of them carry more significance than
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others, and the knowledge about the input is not uniformly distributed among the CNN features.
This theory is in line of research that adding more filters does not make the network more expressive
since learning relevant information to the network has already been addressed by other filters.

Given the proposed theory, we would like to make a step forward in gaining insight what the CNN
learns and propose to extend the binary approach to form a quantifiable ranking of features. In other
words, we attempt to estimate the importance of each feature compared to the others with particular
focus on convolutional filters, which may be visualized. We introduce a theoretical framework
to quantify how important each feature is through proposing a feature ranking method based on
two different approaches. The first approach derives from the game theoretical concept of Shapley
value (Shapley, |1953)), which assesses the importance of an individual in a group of neurons based
on its marginal contribution to the group. The second method takes a probabilistic approach and
introduces additional learnable parameters, which we call importance switches, that take real values
and are trained by means of variational inference to give more weight to the important features.
The extensive experimental results using these approaches indicate that some features are inherently
more significant than others.

The theoretical underpinnings of the feature rankings have further direct practical implications we
explore. Firstly, the knowledge of the ranking allows to know which features directly impact the
score of our method and consequently a more informed way of building an effective model. Thus,
we are able to build a network around the the relevant features and discard the less relevant ones,
effectively compressing the network achieving state-of-the-art results. Secondly and perhaps more
significantly, the feature ranking of convolutional features provides more interpretable information
about the network and places meaning on particular features in the context of a given task, thus
casting light on the black box models. To achieve human interpretability, we visualize the most sig-
nificant features which significantly show the significance of repeated and complementary features.

RELATED WORK

In early years of CNN development, the networks were limited to a few layers (LeCun et al.,[1998).
Recently, the architectures have become deeper and wider (Krizhevsky et al., [2012; [Szegedy et al.,
2015). The emergence of GPU implementability and regularization algorithms (Srivastava et al.,
2014; [loffe & Szegedy, |2015) has allowed to use large architectures which train and generalize
well. Nevertheless, the trend towards building larger neural networks ironically opposed the research
about the nature, interpretability and knowledge extraction from within the neural network models,
which we are interested in this work. Therefore, we will compare our method to existing ones in
terms of compression ability and interpretability, and then frame the idea in terms of neuron ranking.

Compression. The early work on compression largely focused on non-Bayesian approaches, e.g.,
(Hassibi & Storkl [1993)) and mostly centered around non-structured pruning methods, e.g., removing
single weights from the architectures of CNNs (Han et al.| [2015). Then, hardware-oriented struc-
tured pruning techniques made more practical speed-ups (Srinivas & Babul [2015; [Li et al., 2016
Wen et al.,2016; Lebedev & Lempitsky, 2016} Zhou et al., 2016). More recently Bayesian methods
using the network weights’ uncertainties have achieved impressive compression rates, e.g., using
sparsity inducing prior on scale parameter (Molchanov et al.,[2017), using Gaussian mixture priors
(Ullrich et al., [2017)), and using the grouping of weights through a group Horseshoe prior (Louizos
et all [2017), among many. However, none of these methods prune neurons based on the direct
optimization for extracting the importance of each neuron.

Interpretability. Broadly there are three lines of work done for intepretability of CNNs. The
first line of work, the early and used-to-be very popular work, focused on visualization of neurons
in CNNs to understand how information propagates within the network (Zeiler & Fergus, 2013
Simonyan et al.,|2014; |Yosinski et al.|[2015)). Another line of work focused on probing trained CNNs
to obtain local & pixel level explanations either layer-wise or class-wise using gradient information
of querying points (Selvaraju et al.,|2016; Bach et al.,[2015;|Montavon et al.,[2015)). Last line of work
focused on mapping semantic concepts to latent representations of CNNs (Bau et al.| 2017)). Other
somewhat related work for interpretability using Shapley value also exist (but not in the context of
CNN5s) (Lundberg & Lee, 2017). Compared to existing methods, our method provides a global view
of a trained model in terms of the importance of learned features.

In what follows, we introduce the two methods to perform neuron ranking.
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2 GAME THEORETICAL NEURON RANKING

The first approach derives from the game theoretical concept of Shapley value (Shapley}|1953). The
concept allows to compute the importance score (payoff) of an individual based on the payoffs given
to collections of individuals. We subsequently adapt the concept to rank the neurons in terms of their
predictive utility. Assuming that an important feature allows for task generalization, the feature
importance further translates into finding features that carry most information and usefulness in the
prediction task that lead to achieving higher accuracy.

2.1 COALITIONAL GAME THEORY

A coalitional game is a game where utility is given to a group of players (in our case, nodes or
neurons) instead of each agent individually. Let [V be the number of agents, which in this work are
CNN features (also referred as neurons or nodes). To be specific, let IV; to be the number of neurons
in a layer [ (in unambiguous cases, for clarity we omit the subscript). For every group of players,
a coalitional game specifies the payoff the members receive as a group or a coalition. We define a
coalition of the neurons N of a layer L as a subset of neurons, C' C N. To assess quantitatively the
performance of a group of agents, each coalition is assigned to a real number, which is interpreted
as a payoff that a coalition receives from being together. Mathematically, the value of a coalition
is given by a characteristic function, which assigns a real number to a set of nodes. Formally, a
characteristic function v: 2%V — R maps each coalition (subset) C' C N to a real number v(C').
Therefore, a coalitional game is defined by a tuple (N, v), where N is a set of players and v is a
function that assigns payoffs to every coalition of N.

A critical component of a coalitional game is specifying the choice of characteristic function that
is assigned to a given subset of features. In the case of CNN, the test metric is accuracy which
assesses whether the (argmax of) the network output is the correct label averaged over the number of
examples. As a result, we choose the accuracy on a validation set as the characteristic function, that
is, v(C) = acc(C') and v(N) = acc(NV). The question now remains how to assess the importance
of a single feature given the information about the payoffs for each subset of nodes. To this end, we
employ the concept of Shapley value about the normative payoff of the total reward/cost, that is a
division scheme that allows to distribute the total payoff uniquely and in a fair way.

2.2 SHAPLEY VALUE

Shapley proposes to evaluate each player by the marginal contribution that the player makes to every
coalition averaged over all the coalitions. The marginal contribution of an agent n is the difference
between the value of a coalition C' that contains n and the coalition C' \ n. For example, when
a coalition has no members, i.e. is empty, and the neuron n; joins the coalition, the value of its
marginal contribution is equal to the value of the one-member coalition as the value of the empty
coalition is equal to 0, v({n1}) —v({0}) = v({n1}) where {n;} = C. Subsequently, when another
agent no joins this coalition, its marginal contribution is equal to v({ni,n2}) — v({n1}). The
process continues until all the nodes join the coalition. The coalition of all the nodes is called the
grand coalition.

The order of nodes, which builds subsequent coalitions to finally the grand coalition, can be rep-
resented as a permutation of nodes. For example, in the case of permutation ngnsnz...ny...ns,
the neuron nj creates the first non-empty coalition on it own, and we measure the accuracy of the
pretrained model which includes only one neuron, ns, in the given layer of the original pre-trained
model. Then two-element coalition nsng is formed corresponding to the two-neuron layer, and so
on. All the subsequent nodes join the coalition in the order given by the permutation. There are N!
permutations of N nodes, meaning that there are N! different ways to form a coalition. To compute
the Shapley value of the node n, we compare the accuracy of the architecture before and after adding
the node n, that is the marginal contributions of n (which may be negative) for each of the N! per-
mutations and divide the sum by all the permutations. The Shapley value of n is then the averaged
marginal contribution of n.

Formally, let 7 denote a permutation, 7(¢) a place of the neuron n; in the permutation 7, and C(4)
the coalition formed by the predecessors of n; such that C (i) = {n; € 7 : 7(j) before 7(¢)}. For
example, in the permutation nsngny...ny...n2, 7(3) = ny and C(3) = {ns,ns}. The Shapley
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value (SV;) of the node n; is thus defined as follows:
1 ) .
V()= > W(V(Cw(l) U {ni}) — v(Cr(i))) (D
wET(N) ’

This formula can also be written in a form that considers sets instead of permutations:

svm) = > A= 0c 0 ) - vien) @
CCN\{vi} '

PRACTICAL CONSIDERATIONS

First, Shapley value is a mathematically rigorous division scheme and, strictly speaking, it has been
proposed as the only measure that satisfies four normative criteria regarding the fair payoff distri-
bution. These criteria are (1) efficiency where the total gain is distributed among the agents, (2)
symmetry; if ¢ and j are agents such that v(C U i) = v(C U j) for each coalition C' of N, then
SV (i) = SV (j), (3) null player payoff such that an agent who contributes nothing to every coali-
tion obtains zero individual payoff and (4) linearity; v(C) = 11 (C) + v2(C) for every coalition
implies SV, (i) + SV,, (i) = SV, (7). Nevertheless, the choice of a characteristic function which
satisfies these criteria is not feasible in case of our application due to the fact that we do not have
control over the output of the model. As a result, the characteristic function may not be monotone
which violates the first criterion. However, the payoff produced by the Shapley value, although may
not be unique, is a valid cost division which works well in practice.

Second, computing the characteristic function for every subset is combinatorial and takes expo-
nential time complexity. Hence, for large networks, computing Shapley value is computationally
infeasible. We propose the following solutions to approximate the optimal solution and obtain a
sensible ranking metric based on Shapley value. The first solution entails computing the Shapley
value for the subsets no larger than arbitrary k. As a result we only compute the synergies that are
no larger than k. Intuitively, we assume that that the larger the coalition, the less information is to be
obtained from computing the large subsets. The second solution is based on sampling and sampling
provides an unbiased estimate of the optimal result. Thus, we first sample the characteristic function
and then sample the permutations needed for the computations of the Shapley value.

What comes next describes our proposal to improve the speed of computation for identifying the
neuron ranking in a continuous manner.

3 PROBABILISTIC NEURON RANKING

3.1 IMPORTANCE SWITCHES

To infer the neuron ranking in each layer, we propose to make a slight modification in the existing
neural network architecture. We introduce a component, the importance switch, denoted by s; for
each layer [. Each importance switch is a probability vector of length D; (the output dimension of

the [th layer) and Z?l s;; = 1, where s; ; is the jth element of the vector. With this addition, we
rewrite the forward pass under a deep neural network model, where the function f(Wj, x;) can be
the convolution operation for CNNs or simple matrix multiplication for MLPs between the weights
W, and the unit x;,

Pre-activation followed by a switch s;: h;; = s; 0 [f(W}, x;)], 3)

Input to the next layer after going through a nonlinearity o: 2z;; = o(h;;), “4)
where o is an element-wise product. Introducing a switch operation between layers in a neural
network model was also presented in (Louizos et al., [2017), although in their case, the switch is a

binary random variable (called a gate). The output probability under such networks with L hidden
layers for solving classification problems can be written as

P(y;|a;, {VVZ}ZL;EI) =g (Wiyi12z1:), where 2z ; = o(sp o [f(Wrzr—1,)]). (5)

where g is the softmax operation.
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3.2  VARIATIONAL LEARNING OF IMPORTANCE SWITCHES

A natural choice to model the distribution over the switch is the Dirichlet distribution, which defines
a probability distribution over a probability vector. We model each switch as a vector of independent
Dirichlet distributed random variables

p(s;) = Dir(s;|ay). (6)

When there is no prior knowledge, i.e., a priori we don’t know which feature would be more impor-
tant for prediction, so we treat them all equally important features by setting the same value to each
parameter, i.e., g = g * 1 p, where 1p, is a vector of ones of length D;. When we apply the same
parameter to each dimension, this special case of Dirichlet distribution is called symmetric Dirichlet
distribution. In this case, if we set oy < 1, this puts the probability mass toward a few components,
resulting in only a few components that are non-zero, i.e., inducing sparse probability vector. If we
set ap > 1, all components become similar to each other.

We model the posterior over s; as the Dirichlet distribution as well but with asymmetric form to learn
a different probability on different elements of the switch (or neurons), using a set of variational
parameters (the parameters for the posterior). We denote the variational parameters by ¢;, where
each element of the vector can choose any values above 0. Our posterior distribution over the switch
is, hence, defined by

¢, (s1) = Dir(si| ). @)

With this parametric form of prior and posterior, we optimize the variational parameters ¢; over each
layer’s importance switch by maximizing the variational lower bound with freezing all the weights
to the pre-trained values,

logp(D) > L(¢y) := /(I@(Sl) log p(D|s;)ds; — Dii[q(si|é1)||p(si]a)). ®)

We do this variational learning for each layer’s importance switch sequentially from the input layer
to the last layer before the output layer.

Computing the gradient of equation [§] with respect to ¢; requires computing the gradients of the
integral (the first term on RHS) and also the KL divergence term (the second term on RHS), as both
depends on the value of ¢;. The KL divergence between two Dirichlet distributions can be wrttien
in closed form. However, the first term is tricky. As described in (Figurnov et al., [2018)), the usual
reparameterization trick, i.e., replacing a probability distribution with an equivalent parameteriza-
tion of it by using a deterministic and differentiable transformation of some fixed base distributioﬂ
does not work. For instance, in an attempt to find a reparameterization, one could adopt the rep-
resentation of a k-dimensional Dirichlet random variable as a weighted sum of Gamma random

variables, s;; = ;/(35_, yyr), where y; ~ Gam(ey ;1) = yi*7 " exp(—y;)/T (). for
s; ~ Dir(s;|¢;), where the shape parameter of Gamma is ¢, ; and the scale parameter is 1. How-
ever, this does not allow us to detach the randomness from the parameters as the parameter still
appears in the Gamma distribution, hence one needs to sample from the posterior every time the
variational parameters are updated, which is costly and time-consuming. Existing methods suggest
either explicitly or implicitly computing the gradients of the inverse CDF of the Gamma distribu-
tion during training to decrease the variance of the gradients (e.g., (Knowles| [2015) and (Figurnov
et al.| |2018) among many). The length of the importance switch we consider is mostly less than
on the order of 100s, in which case the variance of gradients does not affect the speed of conver-
gence as significantly as in other cases such as Latent Dirichlet Allocation (LDA). Hence, when
training for the importance switch in each layer, we use the analytic mean of the Dirichlet random
variable to make a point estimate of the integral [ gg,(s;)logp(D|s;)ds; ~ logp(D|3;), where

S1; = ¢/ Zﬁ’zl ¢;,j+, which allows us to directly compute the gradient of the quantity with-

out sampling from the posterior. As illustrated in section |4} this approximation performs well with
relatively low dimensional switches.

"For instance, a Normal distribution for z with parameters of mean p and variance o2 can be written
equivalently as z = u + oe using a fixed base distribution € ~ (0, 1).
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Game-theoretic vs. probabilistic neuron ranking How are the game-theoretic and the proba-
bilistic neuron ranking methods related? Consider a vector of random variables 7 that describes a
certain ranking for a certain number of neurons. The predictive distribution on the test data D*, in
this case, can be obtained by integrating out a plausible distribution over the neuron rankings, which
we denote by f(r),

p(D*|D) = / p(D*|r, D) f(r)dr, ©)
~ p(D*|r, D), (10)

where the second line is a reasonable approximation if the distribution is highly peaked at around
the optimal ranking 7, meaning that there is indeed such an optimal ranking with a high confidence.
This predictive distribution specifies the likelihood of the test data given that optimal ranking. In
the multi-class classification, this predictive distribution is the likelihood of true lables given a clas-
sifier’s predictions. When we compute the Shapley value, we use an “approximate” version of this
predictive likelihood, namely, we introduce a max operation for choosing a single label that has the
maximum probability for that class, and then see if the label matches the true label, resulting in the
frequency of correct labeling as an accuracy measure. Hence, both methods attempt to find the best
ranking in order to “maximize the likelihood of data”. While the Shapley optimization attempts to
maximize the test data likelihood approximately in a combinatorial manner, the switch optimiza-
tion attempts to maximize the training data likelihood with a regularization as in equation [8|in a
continuous manner.

4 EXPERIMENTS

In this section we present experimental results based on the two proposed approaches for CNN fea-
tures ranking, the Shapley value and the importance switch methods. The tests have been performed
on LeNet-5 trained on MNIST and FashionMNIST, and VGG-16 trained on CIFAR-10.

To compute the rankings for both methods the same pretrained model is used. To compute the
Shapley value of each neuron in the trained model, we remove the subsets of features (both weights
and biases) and test the network on a validation set. As mentioned, the accuracy is the payoff for a
given group of features. The computation of the complete set of payoffs is of combinatorial nature
and therefore we compute the power set for layers up to 25 nodes. To account for this limitation and
to illustrate better the proposed method, we choose to limit the number of nodes in the pretrained
LeNet-5 architecture to 10-20-100-25. When using the trained VGG-16, we use the same number of
filters in each layer as in the original architecture. For the layers with larger number of features, we
use one of the two methods to compute marginal contributions. The first method uses equation [T]and
only limits the number of coalitions we consider to compute SV. The second method uses equation 2]
the accuracy change between two subsets which differ by a single node. Both node and the first
combination were sampled uniformly at random.

When we learn the importance switches, we load the same train model which has been used to
compute the Shapley value and then only add parameters for switches and trained them per layer
with fixing all the other network parameters to the trained values. We run the training of the impor-
tance switches for 300 epochs, however, in practice, even a few iterations is sufficient to distinguish
important nodes from the rest.

Method comparison: We start with comparing the learnt ranks of the two methods. As summa-
rized in Table 1, the first observation is that for the model pretrained both on MNIST and Fash-
1onMNIST both methods have identified similar nodes to be the most important. The similarity is
more significant for smaller layers where over 50% of top nodes (here we consider top-5 nodes for
clarity and top-10 nodes for the large fcl layer) and in three out of six cases the top two nodes are
the same. Significantly for conv2 on MNIST the group of four nodes are the same, and as far as fc2
on FashionMNIST is concerned, the top five nodes chosen from the set of 25 nodes are the same
(the probability to select this subset at random is 6 - 10~°), showing that the methods agree when
it comes to both convolutional and fully connected layers. For brevity, please look at the Appendix
for the rankings of the less significant nodes but what is notable is that both methods also identified
similar groups of unimportant nodes, particularly in fc2 where every node indexed higher than 9 (as
compared to nodes indexed lower than 9) scored very low for both methods. When it comes to larger
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layers, the methods however are more discrepant (yet still significantly the common nodes are found
as seen in the case of fcl layer). The differences may also come from the inexact computation of
the Shapley value.

Layer | Alg FashionMNIST MNIST

convl | SH 0,7,6,5,1 1,8,7,4,6
(10) IS 0,7,5,9,6 8,1,3,9,6

conv2 | SH 5,10,0,13,9 2,89,194
(20) IS 5,8,13,14,15 9,2,8,19,6

fcl SH | 60,13, 43, 88, 94, 20, 70, 44, 32, 64 | 56, 86, 25, 64, 33, 17, 23, 96, 52, 81
(100) | IS | 94,7,50, 92,13, 25, 60, 40, 75,45 | 25,96, 58, 56, 88, 52, 23, 43, 30, 4
fc2 SH 5,1,8,9.7 1,7,2,3,0
(25) IS 1,795.8 7.1,4,6,9

Table 1: Rankings of filters for the Shapley value (SH) and the importance switches (IS) methods
on a four-layer network, 10-20-100-25. For each layer the top five neurons are shown, the numbers
in bold indicate the common top neurons across both the methods.

Interpretability: One of the main aims of this work has been to understand better the process of
learning of convolutional neural networks. Building on the previous works which visualized CNN
filters, we want to add an extra component and interpret that visual features by means of the filter
rankings. In figure [T} we visualize feature maps produced by the first convolution layer of filters.
Knowing the important filters allows to ponder over what features the network learns and deems
useful. For instance, in the MNIST digits, the learnt filters identify local parts of the image (such as
lower and upper parts of the digit 2’ and opposite parts of the digit *0’). The interesting observation
is that the most important features, on the one hand, complement each other (such as complementing
parts of the digit *0’ or the dog in CIFAR-10) but, on the other and, overlap to seemingly reinforce
its importance. Finally, the important features appear smoother as compared to unimportant ones,
which outline the object with no particular focus.

C00CO0 O fa'i—m |

BREE N B I

Figure 1: Visualization of four important feature maps (MNIST: 1,8,3,7, FashionMNIST: 0,7,5,6)
and one unimportant one for two examples of digits for the same filters. The third row depicts the
feature maps from CIFAR-10. Notice the complementary nature of important features on MNIST:
(1,3), FashionMNIST (0,7) and CIFAR-10 (the first two) and reinforcing features: MNIST (1,8),
FashionMNIST (7,5). The unimportant features are jagged or lack concrete focus.

| SR LR )

Compression: The consequence of the feature ranking is that some of the nodes within each layer
are less significant than others and, as argued in network compression literature, the network may
do as well without them. The compression experiments procedure follows from the previous ex-
periments. Given the rankings, we prune the neurons from the bottom of the ranking and then we
retrain the network. We run the tests for both of the methods on several different architectures. In all
the trainings we use SGD with decreasing learning rate from 0.1 to 0.001, momentum, 0.9, weight
decay, 5e-4, and early stopping.

LeNetVGG presents the results for LeNet-5 as trained on MNIST, and VGG-16 as trained on CIFAR-
10. For LeNet-5, the compressed architecture has 17K parameters which is less than all the other
methods, and 137K FLOPs which is second to FDOO(100) 2018), which however has
over three times more parameters. The method fares relatively well also on VGG producing an
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architecture which is smaller than others in the earlier layers but larger in later layers (the second
proposed architecture has overall the least number of parameters at the cost of the performance,
though). We hope to test a larger set of possible architectures in the future and devise a way to
combine both rankings for a more optimal compression. Nevertheless, the results show that the
neuron ranking method is adequate for condensing both small and large architectures.

Method Architecture Error | FLOPs | Params
NR (proposed) 5-7-45-20 1.0% | 130K 4K
BC-GNIJ 8-13-88-13 1.0% 284K 11K
BC-GHS 5-10-76-16 1.0% 155K 8K
FDOO(100K) 2-7-112-478 1.1% 111K 242K
FDOO(200K) 3-8-128-499 1.0% 153K 267K
GL 3-12-192-500 1.0% 205K 288K
GD 7-13-208-16 1.1% 253K 46K
SBP 3-18-284-283 0.9% 217K 163K
NR (proposed) | 34-34-68-68-75-106-101-92-102-92-92-67-67-62-62 | 8.6% 44M 1.3M
NR (proposed) 39-39-63-48-55-98-97-52-62-22-42-47-47-42-62 9.1% 34M 0.9M
BC-GNIJ 63-64-128-128-245-155-63-26-24-24-20-14-12-11-15 | 8.3% 142M 1.0M
BC-GHS 51-62-125-128-228-129-38-13-9-6-5-6-6-20 8.3% 122M 0.8M

Table 2: The structured pruning of LeNet-5 and VGG-16

The final experiment demonstrates how our method compares to magnitude pruning commonly
done in compression literature. In figure 2] our method (blue trace) outperforms magnitude pruning
methods (L1 and L2 norm over weights). No retraining is used in this case to show how the proposed
method retains the relevant neurons that affect the predictive accuracy.
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Figure 2: Comparison to magnitude pruning

We would like to emphasize that the magnitude approaches may be more appropriate for the unstruc-
tured pruning where single weights are removed based on its magnitude. However, in the the case
of pruning entire channels, considering a norm of weights may be too simplistic as the interactions
between the weights within a channel are rather complex. The proposed new paradigm treats the
channels as whole units that directly contribute to the task generalization.

5 CONCLUSION

In summary, this work suggests a theory that the learnable CNN features contain inherent hierarchy
where some of the features are more significant than others. This multidisciplinary work which
builds on top of probability and game theoretical concepts proposes two methods to produce feature
ranking and select most important features in the CNN network. The striking observation is that the
different methods lead to similar results and allow to distinguish important nodes with larger con-
fidence. The ranking methods allow to build an informed way to build a slim network architecture
where the significant nodes remain and unimportant nodes are discarded. A future search for further
methods which allow to quantify the neuron importance is the next step to develop the understanding
of the feature importance in CNNs.
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A APPENDIX

The bar charts visualize filter rankingse for the LeNet network with two convolutional and two fully
connected layers trained on MNIST and FashionMNIST, respectively. The vertical axis describes,
respectively, the Shapley value (left column) and the importance switches value (right column). The
horizontal axis contains the filter indices.

11



Under review as a conference paper at ICLR 2020

Shapley value

Importance switch value
13 e o ° o
° N ® Y %
® F
-

a 6 3 9
Filter numbers (layer: c1) Filter numbers (layer: 1)

2.00 0.40
1754 035
]
150 4 3030
] =
T 1259 2 025
S H
b H
S 1.00 8 020
5 2
2 5
& £
0.75 g 015
E
0.50 010
025 005
0.00 0.00
28199 4125 61411 3 718 1 171516 0 13 10 92 81961615105 11 4 3 131418 0 7 1217 1
Filter numbers (layer: c3) Filter numbers (layer: c3)
016
0.10
014
0.08 S o012
g
v
=2 § o010
g 8
7 006 1 H
2 9 008
5 2
2 5
& £
0.044 S 0.06
E
0.04
002
0.02
0.00 0.00
5686256433 172396528146154322 1 19443985 8 5829637027 259658568852234330 4 8687 9 44 8 0615964179381194114
Filter numbers (layer: f5) Filter numbers (layer: f5)
012
104 0.10
]
81 3§ 008
] =
3 £
6 ]
7 7 0.06
-4 g
5 2
2 5
& £
8 0.04
E
>
0.02
oA
0.00
1723046 95 8102413161921221214231518171120 179048263 5241712192010211311221623141518
Filter numbers (layer: f6) Filter numbers (layer: f6)

Figure 3: MNIST dataset.
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Figure 4: FashionMNIST dataset.
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