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ABSTRACT

In this article, we study a proposal that enables to train extremely thin (4 or 8 neu-
rons per layer) and relatively deep (more than 100 layers) feedforward networks
without resorting to any architectural modification such as Residual or Dense con-
nections, data normalization or model scaling. We accomplish that by alleviating
two problems. One of them are neurons whose output is zero for all the dataset,
which renders them useless. This problem is also known as dead neurons. The
other is a less studied problem, dead points. Dead points refers to data points that
are mapped to zero during the forward pass of the network. As such, the gradi-
ent generated by those points is not propagated back past the layer where they
die, thus having no effect in the training process. In this work, we characterize
both problems and propose a constraint formulation that added to the standard
loss function solves them both. As an additional benefit, the proposed method
allows to initialize the network weights with constant values or even zero and still
allowing the network to converge to reasonable results. We show very promising
results on a toy, MNIST, and CIFAR-10 datasets.

1 INTRODUCTION

The success of Deep Neural Networks (DNN for short) is linked to its ability to learn abstract
representations from input data in a hierarchical fashion (LeCun et al. (2006); Ramachandran et al.
(2017)). However, the concepts of depth and width in networks are often used as instrumental
elements to address different DNN pathologies during the learning process. Examples of these are:
vanishing gradient (Hochreiter (1991; 2001)), exploding gradient (Pascanu et al. (2013)), dead units
(Maas (2013); Douglas & Yu (2018); Guerraoui et al. (2017)), or the degradation problem (He et al.
(2015b)).

In order to address the former issues, we find many methods and techniques that we can roughly
classify in two families: data manipulation and architectural modifications. The most commonly
used data manipulation technique is data normalization on the output of the layers, for example using
batch normalization (Ioffe & Szegedy (2015)). Examples of architectural modifications include the
use of additional connections, as done in ResNets (He et al. (2015b)) or DenseNets (Huang et al.
(2016)); unit augmentation, as in leaky-ReLU (Maas (2013)), PReLU (He et al. (2015a)), C-ReLU
(Shang et al. (2016)), or linked neurons (Riera & Pujol (2017)); or the increment of layer’s width
with depth (Zagoruyko & Komodakis (2016); Szegedy et al. (2014)). This last widely used approach
effectively increases the the size of the network requiring larger computational power. This has led
to several works (Hasanpour et al. (2018); Tan & Le (2019)) that address it by offering heuristics on
how to scale the network. Recent research (Liu et al. (2018)) suggests that this inverted pyramidal
architecture is not optimal.

Besides of the width scaling strategy, the concept of dead units1 is of particular interest to this work.
A dead neuron is defined as the neuron with a constant or zero output for all training data points.
This effectively renders this unit ineffective during the learning process. In (Lu et al., 2019) it is
shown that as the depth increases the probability of finding dead neurons also increases, to the point

1In this work we use unit and neuron indistinctly.
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that the entire network can be dead even at initialization. Additionally, as expected, as the width of
a layer increases, the probability of having dead neurons decreases.

In this article we characterize another pathology, the dead point. The dead point is a dual concept
to the dead neuron. A dead point corresponds to a data point that does not reach the output of the
network. This is, the activation is zero for all the units in a given layer. As a result, this data point
will have no influence in the training process. As in the case of dead units, both condition are not
recoverable by back-propagation. This virtually reduces the size of the training set.

In order to solve the former issues, we propose and present a geometrical optimization constraint
that is added to the loss function. As a result of adding this constraint we ensure that all neurons
are active and no points are dead. The rationale behind the geometrical constraint is to control that
all units/neurons and data points are alive by constraining pre-activation values in such a way that
the hyperplanes associated to the non-linearity of each ReLU neuron separates, at least, one data
point from the rest of the dataset. This has the additional effect of enabling the learning process to
propagate all information through all the network avoiding the instrumental need of using additional
connections or inverted pyramidal architectures.

We test our proposal in a series of controlled experiments to showcase the effect of applying the
proposed Separation Constraints. We find that we can arbitrarily increase the network depth using
the same constant width when compared to standard feedforward network and Batch Normalization
Ioffe & Szegedy (2015) networks even when the width of the layer is extremely small (4 or 8
neurons). We additionally provide evidences that using this same approach we can initialize network
parameters to zero and still achieve reasonable performance. These promising results gives insight
on learning dynamics and suggest potential lines for future checks and research.

The article is organized as follows: Section 2 introduce the characterization of dead neurons and
dead points, Section 3 introduces the two geometrical constraints that ensure that neurons and data
points are alive, Section 4 describes the experiments and result, and, finally, Section 5 concludes the
paper and suggests future lines of research.

2 CHARACTERIZING DEAD NEURONS AND DEAD POINTS

A standard feed-forward ReLUDNN (LeCun et al., 2015) F can be formally written as a multi-
valued real function, F (x), that is created by composing a collection of D vector layer functions
` : Rnk−1 → Rnk . Layer k is defined as the sum of a collection of scalar functions (units):

`k(x) =

nk∑
j=1

ukj (x)êj (1)

that affinely depend on a weight vector wk
j ∈ Rnk and a bias parameter bkj ∈ R. When using

rectified linear units this value is truncated on negative values:

ukj (x) = max(0,wk
j · x+ bkj ). (2)

Considering the hyperplane defined by wk
j · x + bkj = 0, each unit defines a partition of the space

Rnk in two sets: the upper part of unit ukj and the lower part of ukj :

upper(ukj ) = {x : wk
j · x+ bkj > 0}

lower(ukj ) = {x : wk
j · x+ bkj ≤ 0}

(3)

We define the affine component of a layer function `k as the intersection of the upper parts of its
units, and its zero set as the intersection of the lower parts, as follows:

A(`k) =

nk⋂
j=1

upper(ukj ), Z(`k) =

nk⋂
j=1

lower(ukj ) (4)

Remark 2.1 (Dead unit). In a given ReLU -DNN F : Rn → Rk, we say that the j-th unit of layer
`k, ukj is dead with respect to a data set X ⊂ Rnk if and only if

X ⊂ lower(ukj ). (5)
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Observe that if a unit is dead, the output of the unit will be zero for the entire dataset, rendering
the unit useless. Moreover, since the gradient is zero as well, it remains in this state for the rest of
the training (See Lu et al. (2019); Shin & Karniadakis (2019)). This effectively reduce the network
learning capacity.

Remark 2.2 (Dead point with respect to a layer). Given ReLU -DNN F : Rn → Rk, we say that a
point x ∈ X is dead with regards to layer `k if

x ∈ Z(`k). (6)

Remark 2.3 (Dead point). In particular, if X ⊂ Rn, we say that point x ∈ X is dead with respect
to a network F with depth D if it gets mapped to the zero set of a layer in its transit through the
network. This is

(∃k, 1 < k ≤ D|`k−1 ◦ . . . `1(x) ∈ Z(`k)). (7)

Any dead point fulfilling Equation 7 will show zero gradient in the layers previous to `k. This
hinders the learning process by effectively reducing the data set size. Again, this condition is not
reversible using standard back-propagation. In a similar fashion to the case with dead units, the
probability of finding a dead point increases with network’s depth and decreases with layer’s width.

3 INTRODUCING SEPARABILITY CONSTRAINTS

In this section we introduce the desiderata for units and points to remain alive. Then, we proceed to
formulate the separability contraints that fulfill the desired conditions.

Let us introduce the concept of a separating unit with respect to an arbitrary set X.

Definition 3.1 (Separating Unit). Given an arbitrary set X ⊂ Rnk , we say that the j-th unit on layer
k, ukj , is able to separate through X if the following predicate is satisfied:

RX(u
k
j ) ≡ ∅ 6= {lower(ukj ) ∩ X} ⊂ X (8)

Thus, by construction, a separating unit can not be dead, and if RX(u
k
j ) is valid, ukj can not degrade

set X to zero. In other words, this condition ensures that each unit always separates at least one data
point.

In terms of points, we can define a separating point as follows:

Definition 3.2 (Separating point). Given an arbitrary set X ⊂ Rnk , we say that point x ∈ X
is separating a layer function `k if there exist indices j, l ∈ {1, . . . ,mk} for which the following
predicate is satisfied.

Rxk(j, l) ≡ x ∈ {upper(ukj ) ∩ lower(ukl )} (9)

Again, by construction, a separating point ensures that each point in the data set has at least one unit
in each layer with an activation different to zero and another with an activation equal to zero.

3.1 MODELLING UNIT-BASED SEPARATION CONSTRAINT (SEP-U )

Unit based separation contraint (Sep-U ) is designed to model predicate 8 with the goal of avoiding
the presence of dead units.

Given a unit ukj in layer `k : Rnk → Rnk+1 from a ReLUDNN F of depth D, predicate 8 can be
simply modelled imposing the following constraints,

max
i=1,...,|X|

{wk
j · xi + bkj } > 0

min
i=1,...,|X|

{wk
j · xi + bkj } < 0

(10)

These strict inequalities can not be directly optimized. It is easily to see that these can be rewritten
as
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max
i=1,...,|X|

{wk
j · xi + bkj } ≥ 1

min
i=1,...,|X|

{wk
j · xi + bkj } ≤ −1

(11)

The use of the former constraints makes most problems unfeasible. Thus, in a similar fashion to
soft-margin SVM (Cortes & Vapnik, 1995), we introduce a set of positive slack variables {ξ+jk, ξ

−
jk}

that account for constraint violations as follows,

max
i=1,...,|X|

{wk
j · xi + bkj } ≥ 1− ξ+jk,

min
i=1,...,|X|

{wk
j · xi + bkj } ≤ −1 + ξ−jk,

ξ+jk, ξ
−
jk ≥ 0,

(12)

for k = 1, . . . , D and nk the number of units of layer k. The intuition behind the introduction
of these constraints is as follows: by minimizing ξ+ at least one pre-activation value is forced to
be greater (or equal) than 1. Simmetrically, minimizing ξ− promotes at least one pre-activation to
be below −1. This effectively fulfills Predicate 8 and penalize the apparition of dead units. We
show how to differentiate the Separation Constraints with regards to the parameters in the Appendix
Section A.3.

At a global network scale, we can aggregate all the slack variable in a single optimization objective
as follows,

gU (ξ
+, ξ−) =

1

2

D∑
k=1

nk∑
j=1

(ξ+jk + ξ−jk). (13)

3.2 MODELLING POINT BASED SEPARATION CONSTRAINT (SEP-P )

The derivation of the Point Based Separation Constraints (Sep-P ) follows a parallel process to
Sep-U . In order to avoid the presence of dead points it suffices to fulfill Predicate 9. Similarly to
the former derivation, we introduce a set of slack variables for each each point on the batch. That is,
given xi ∈ X, and uk1 , . . . , u

k
n unit functions in a layer `k, we define slack variables ξ−ik, ξ

+
ik in the

context of the following constraints,

max
j=1,...,nk

{wk
j · xi + bkj } ≥ 1− ξ+ik,

min
j=1,...,nk

{wk
j · xi + bkj } ≤ −1 + ξ−ik,

ξ+jk, ξ
−
jk ≥ 0.

(14)

Observe that the minimization of the slacks makes that for any data point at least one activation is
above 1 and another is below -1.

We can summarize all the point-based slack variables in a single optimization objective as follows,

gP (ξ
+, ξ−) =

1

2

D∑
k=1

|X|∑
i=1

(ξ+ik + ξ−ik). (15)

3.3 TRAINING WITH SEPARATING CONSTRAINTS

The new optimization objectives can now be added to the original loss objective using a simple
scalarization (Boyd & Vandenberghe (2004)) as follows,

argmin
θ,ξ+,ξ−

L(T , θ) + λ
(
gU (ξ

+, ξ−) + gP (ξ
+, ξ−)

)
, (16)

where λ is a hyper-parameter that introduces a trade-off between the constraint fulfillment and the
main loss function.
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In terms of memory complexity, the former constraints introduce a very small memory overhead.
In particular, Sep-U places a pair of constraints on each of the units of the network, so the com-
plexity with respect to Sep-U scales with the size of the network as 2

∑D
k=1 nk. Alternatively,

Sep-P places a pair of constraints in each of the points of the data set or selected subset X. In prac-
tice, one can use X as the training batch. Thus, the memory complexity scales with the size of the
batch and the number of layers, i.e. 2D|X|. Furthermore, since the resulting gradient of both types
of constraints depends only on the input of the layer that is already computed in the forward pass,
we only add the cost of storing the slacks. Therefore, the total cost in terms of number of constraint
is the addition of the former terms, i.e. 2

∑D
k=1 nk + 2D|X|.

4 EXPERIMENTS AND RESULTS

In this section we explore the application of the proposed constraints in different datasets. For
that task we train all methods with different choices of depth and width parameters. The network
architecture used is rectangular, i.e. networks with a fixed layer width for all the layers.

Datasets: Due to the large amount of computational resources required for the depth and width grid
training, we are forced to chose three controlled datasets in our experimentation: the MOONS dataset
(sampling 100 points, 85 for training and 15 for validation), the MNIST dataset as described in
LeCun and Cortes. LeCun & Cortes (2010) and the CIFAR-10 dataset described in Krizhevsky
(2009).

Experimental setting: We compare the combination of Sep-U and Sep-P (Sep-UP from now
on) to feed-fordward ReLU networks (Glorot et al., 2011) and Batch Normalization as described in
Ioffe & Szegedy (2015) using the same architecture.

For the MOONS dataset, we use depths from 1 to 120 in steps of 10, and width from 1 to 25 in steps of
1 between 1 and 5, and steps of 5 afterwards. In the case of the MNIST dataset, we use depth from 2
to 64 and width from 2 to 8 in steps of 4. Finally, for CIFAR-10we use depths in {2, 10, 25, 30, 40}
with a fixed width of 10 due memory constraints.

Training Parameters: All the networks used were optimized using Adam (Kingma & Ba, 2014).
More specifically, for the MOONS dataset we used a learning rate of 0.01 for 5000 epochs and a batch
size of 85. Meanwhile, for both MNIST and CIFAR-10 we used a learning rate of 0.0001 for 50
epochs and a batch size of 1024. We used convolutional layers with a (3, 3) kernel size for both
MNIST and CIFAR-10. We used λMOONS = 10−4 λMNIST = λCIFAR = 10−8 for Sep-UP .
Our experiments were conducted using Keras (Chollet et al., 2015) and TensorFlow (Abadi
et al., 2015), fixing the random seed to an arbitrary value of 10.

As initialization scheme, we used Glorot uniform from Glorot & Bengio (2010) for all the methods
and datasets.

4.1 RESULTS

Figure 1 shows the results obtained in the MOONS dataset. Our proposal Sep-UP is able to train
networks successfully without increasing the width up to 60 layers deep (see Figures 1c and 1f),
while ReLU breaks down at only 30 layers (see Figures 1a and 1d) and ReLU + BN suffers from
severe accuracy degradation (see Figures 1b and 1b).

Observe that no configuration with lower width than 2-3 is successful in achieving maximum accu-
racy. We understand that there exists a minimum width required and this is related to the complexity
of the problem. When using wider layers, the rest of the width is instrumentally used to enable the
training of deeper networks. As previously commented, the larger the layer’s width, the higher the
chances of finding active units that do not cause dead points and dead units during initialization. In
opposition, Sep-UP succesfully overcomes that constraint.

Notice that though Sep-UP is superior to all its competitors, it starts showing performance degra-
dation after reaching depth 60 with the minimum width of 3. Considering that the number of param-
eters increases with the depth and width of the network and that we have a finite number of trained
epochs, we conjecture that the displayed degradation is strictly due to the lack of convergence of the
constrained network.
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(d) ReLU validation
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(e) ReLU + BN validation

1 30 60 90 120
Depth

1
2
3
4
5

10
15
20
25

W
id

th

0.6
0.7
0.8
0.9
1.0
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Figure 1: Depth vs width accuracy heatmap a for a grid of rectangular networks with width from 1
to 25 and depth from 1 to 120, trained using Adam with a learning rate of 0.01 in the MOONS dataset
for 5000 epochs. The color shows the accuracy attained of each of the combinations of width and
depth, with clear beige at 1 and black at 0.5. Notice how ReLU breaks down at 20 layers and ReLU
+ BN requires more units per layer as increasing depth, while Sep-UPworks with the minimum
width (3) up to 60 layers deep.
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(d) ReLU validation
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Figure 2: Depth vs width accuracy heatmap a for a grid of rectangular networks with width from
2 to 8 and depth from 2 to 68, trained using Adam with a learning rate of 0.0001 in the MNIST
dataset for 50 epochs. The color shows the accuracy attained of each of the combinations of width
and depth, with clear beige at 1 and black at 0.1. Notice how ReLU breaks down at 20 layers and
ReLU + BN accuracy degrades with depth, while Sep-UP shows constant accuracy disregarding
the number of layers.

The separation constraint also proves successful on convolutional networks, as tested in MNIST
and CIFAR-10 datasets. Figure 2 shows a similar behaviour to the MOONS dataset (Figure1).
ReLU breaks down after a few layers, ReLU + BN delays the degradation of accuracy, while
Sep-UP remains functional regardless of the depth. In the case of our experiments with the
CIFAR-10 dataset (as presented on Figure 3) all the methods degrade with depth, but Sep-UP is
the most robust. In regards to accuracy ReLU performs best closely followed by Sep-UP , while
ReLU + BN clearly overfits. The poorer accuracy values shown are due to a limited choice of
width, clearly inferior to the minimum required by the dataset, and a potential lack of convergence
of the separating constraints.
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Figure 3: Depth vs Width accuracy heatmap a for a grid of rectangular networks with width 10 and
depth from 2 to 40, trained using Adam with a learning rate of 0.0001 in the CIFAR-10 dataset for
50 epochs. The color shows the accuracy attained of each of the combinations of width and depth,
with clear beige at 1 and black at 0.1. Observe how Sep-UP shows inferior degradation in accuracy
as depth increases compared to ReLU + BN .

Additional results in the Appendix further elaborate the contributions of each term Sep-U and
Sep-P , independently.

4.2 RESULTS USING ZERO INITIALIZATION

In order to test the invariace to initialization scheme of Sep-UP , we use Zero Initialization. As its
name states, in this initialization scheme all weights and biases are set to zero. However, a small
variation of the scheme must be introduced in order to break symmetry for the constraints to apply.
Since all the units are initialized to the same value (zero), we use Annealed Dropout (Rennie et al.,
2014). Additionally, instead of adding ξ+ and ξ− pairs as in Equations 13 and 15, we use a convex
combination with a small perturbation ρ. In our experiments, we use a value of ρ = 0.01.

(
1

2
+ ρ)ξ+ + (

1

2
− ρ)ξ− (17)

Figure 4 summarizes the results found using zero initalization with our constraint formulation. In
comparison to Glorot, we observe that zero initalization requires wider networks. Indeed, at a depth
of 60, Zero initialization requires a width of 25 units while the Glorot scheme work with only 2
units. However, if we contrast ReLU + BN to our constraint formulation we find that it is unable to
train networks of past depth 50, while Zero initialization achieves 70 layers.

Figure 4 shows the results using zero initialization. Although reported values and behavior are
slightly worse compared to Glorot initialization, our results are promising. Notice how at depth of
60 layers, the zero initialization requires a width of 25 units in contrast to 2 required for Glorot.
In addition, zero initialization rquires only 70 layers to reach perfect accuracy in contrast to the
100 required in Glorot (see Figures 1c and 1f). Moreover, in comparison to ReLU + BN , zero
initialized networks show superior performance and behavior (check Figures 1b and 1e).

5 CONCLUSIONS

Through the Separation Constraints, we have shown that deeper networks can be trained without
increasing the width of the layers. Moreover, this increment can be done using very small width
values. In this sense we consider that effective training of deeper networks can be achieved by
better accommodating the network to the input data. This departs from many proposal that achieve
similar effects by modifying the architecture of the network or manipulating the data. We believe
that this work shows an alternative research path in the pursuit of effective and efficient learning
techniques for deep neural networks. This also opens the possibility of avoiding the use of pyramidal

7



Under review as a conference paper at ICLR 2020

1 30 60 90 120
Depth

1
2
3
4
5

10
15
20
25

W
id

th

0.6
0.7
0.8
0.9
1.0

(a) Sep-UPZero-init train

1 30 60 90 120
Depth

1
2
3
4
5

10
15
20
25

W
id

th

0.6
0.7
0.8
0.9
1.0

(b) Sep-UPZero-init val.

Figure 4: Depth vs width accuracy heatmap a for a grid of rectangular networks with (width from
1 to 25 and depth from 1 to 120), trained using Adam using a learning rate of 0.01, over the
MOONS dataset (5000 epochs and Zero Initialization). The color shows the accuracy attained of
each of the combinations of width and depth, with clear beige at 1 and black at 0.5. Notice how
although being inferior to Glorot (Figures 1c and 1f) is superior to ReLU + BN (Figures 1b and
1e).

architectures commonly employed in DNNs, thus removing the computational burden caused by the
additional units and reducing the dimensionality of the internal representations.

We additionally show that our proposal enables the use of Zero Initialization. The results are promis-
ing, and though further experimentation is still needed, they still manage to surpass Batch Normal-
ization in terms of depth, width, and accuracy. Nevertheless, the modifications used to break the
symmetry of constraints and units need further consideration in order to achieve the same perfor-
mance than random initialization.

Despite this article provides no information about the dynamics of the training process using Sepa-
ration Constraints, preliminary revision shows interesting properties. In particular, training displays
slight instabilities which appear as the units/points are reactivated. Although this does not hinder
the training process, further study is needed in order to guarantee a smoother convergence.

The extension of this work to other activation functions is still to be explored. However, we conjec-
ture that in cases where the activation function display a flat region, e.g. ELU, tanh, or even sigmoid,
the current proposal can be applied with minor changes.

Finally, while the separation constraints prevent the vanishing gradient effect, the exploding gradient
problem still remains. Extending the Separation Constraint with an upper bound on the magnitudes
of the pre-activation, similar to ε-insensitive loss, might address it. It could be also helpful to explore
other activation functions whose gradient vanishes with high pre-activations, such as the logistic
family.
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Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, New
York, NY, USA, 2004. ISBN 0521833787.

François Chollet et al. Keras. https://keras.io, 2015.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

8

https://www.tensorflow.org/
https://keras.io


Under review as a conference paper at ICLR 2020

Scott C. Douglas and Jiutian Yu. Why relu units sometimes die: Analysis of single-unit error
backpropagation in neural networks. CoRR, abs/1812.05981, 2018. URL http://arxiv.
org/abs/1812.05981.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-
ral networks. In In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS10). Society for Artificial Intelligence and Statistics, 2010.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Ge-
offrey Gordon, David Dunson, and Miroslav Dudk (eds.), Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine
Learning Research, pp. 315–323, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL
http://proceedings.mlr.press/v15/glorot11a.html.

Rachid Guerraoui et al. When neurons fail. In 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 1028–1037. IEEE, 2017.

Seyyed Hossein Hasanpour, Mohammad Rouhani, Mohsen Fayyaz, Mohammad Sabokrou, and
Ehsan Adeli. Towards principled design of deep convolutional networks: Introducing simpnet.
CoRR, abs/1802.06205, 2018. URL http://arxiv.org/abs/1802.06205.

Michael Hauser and Asok Ray. Principles of riemannian geometry in neural networks. In NIPS,
2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. CoRR, abs/1502.01852, 2015a. URL
http://arxiv.org/abs/1502.01852.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015b. URL http://arxiv.org/abs/1512.03385.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische Uni-
versität München, 91(1), 1991.

Sepp Hochreiter. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.
2001.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
CoRR, abs/1608.06993, 2016. URL http://arxiv.org/abs/1608.06993.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Yann LeCun, Sumit Chopra, and Raia Hadsell. A tutorial on energy-based learning. 2006.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
May 2015. ISSN 0028-0836. doi: 10.1038/nature14539. URL http://dx.doi.org/10.
1038/nature14539.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value
of network pruning. CoRR, abs/1810.05270, 2018. URL http://arxiv.org/abs/1810.
05270.

Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying relu and initialization:
Theory and numerical examples. arXiv preprint arXiv:1903.06733, 2019.

9

http://arxiv.org/abs/1812.05981
http://arxiv.org/abs/1812.05981
http://proceedings.mlr.press/v15/glorot11a.html
http://arxiv.org/abs/1802.06205
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://arxiv.org/abs/1810.05270
http://arxiv.org/abs/1810.05270


Under review as a conference paper at ICLR 2020

Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic models. 2013.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML’13, pp. III–1310–III–1318. JMLR.org, 2013. URL http:
//dl.acm.org/citation.cfm?id=3042817.3043083.

P. Ramachandran, B. Zoph, and Q. V. Le. Swish: a Self-Gated Activation Function. ArXiv e-prints,
October 2017.

Steven J Rennie, Vaibhava Goel, and Samuel Thomas. Annealed dropout training of deep networks.
In 2014 IEEE Spoken Language Technology Workshop (SLT), pp. 159–164. IEEE, 2014.

Camilon Rey-Torres, Carles Riera-Molina, and Eloi Puertas-Prats. A naive explanation model for
relu based classification phenomena, 2019. to be released on ArXiv.

Carles Riera and Oriol Pujol. Solving internal covariate shift in deep learning with linked neurons.
arXiv preprint arXiv:1712.02609, 2017.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and improving
convolutional neural networks via concatenated rectified linear units. CoRR, abs/1603.05201,
2016. URL http://arxiv.org/abs/1603.05201.

Yeonjong Shin and George E. Karniadakis. Trainability and data-dependent initialization of over-
parameterized relu neural networks. CoRR, abs/1907.09696, 2019. URL http://arxiv.
org/abs/1907.09696.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
CoRR, abs/1409.4842, 2014. URL http://arxiv.org/abs/1409.4842.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. CoRR, abs/1905.11946, 2019. URL http://arxiv.org/abs/1905.11946.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.
URL http://arxiv.org/abs/1605.07146.

10

http://dl.acm.org/citation.cfm?id=3042817.3043083
http://dl.acm.org/citation.cfm?id=3042817.3043083
http://arxiv.org/abs/1603.05201
http://arxiv.org/abs/1907.09696
http://arxiv.org/abs/1907.09696
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1605.07146


Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 UNIT BASED AND POINT BASED SEPARATION CONSTRAINT EXPERIMENT

In order to justify the decision of combining Sep-U and Sep-P into Sep-UP , we provide Fig-
ure 5 showing the same experiment than Figure 1 for Sep-U and Sep-U . We find how although
Sep-U is able to train deeper and thinner networks it suffers from inferior accuracy (see Figures 5a
and 5c), requiring the use of the layer width increase technique. Contrarily, Sep-P is able to train
without increasing the width from 1 to 40 layers deep, but it breaks down afterwards. Provided how
complementary are their strengths and weaknesses, it is sensible to combine them, resulting in the
superior performance (larger constant width area together with greater accuracy in higher depths) of
Sep-UP , see Figures 1c and 1f.
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Figure 5: Depth vs width accuracy heatmap a for a grid of rectangular networks with width from 1
to 25 and depth from 1 to 120, trained using Adam with a learning rate of 0.01 in the MOONS dataset
for 5000 epochs. The color shows the accuracy attained of each of the combinations of width and
depth, with clear beige at 1 and black at 0.5. Notice how Sep-U enables train thinner and deeper
networks (120 layers of single unit), but with reduced performance compared to Sep-UP . It also
requires increasing the width of the layers in order to achieve perfect accuracy as ReLU + BN .
Alternatively, Sep-P shows a constant width area between 1 and 40 layers, but its performance is
much worse above. This justifies the decision of combining them both into Sep-UP to combine
their strengths.

A.2 PROBABILITY OF A POINT TO BE DEAD IN A NEURAL NETWORK

We conjecture that difficulty arising when training neural network as the depth increases or the width
decreases, is due the incorrect positioning of the hyperplanes of the units after initialization which
causes the apparition of dead points (recall Remark 2.3), that ultimately break back-propagation. In
this section we offer a formal treatment of this idea.
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Theorem A.1 (The probability of a point to be dead increases with depth and decreases with width).
Let F : Rn1 → RnD be a feed-forward neural network composed by a collection of D ∈ N layer
functions ` : Rnk−1 → Rnk with k ∈ 1, . . . , D, we denote D as the depth of the network. The layers
are composed by a collection of nk ∈ N ReLU unit functions u : Rnk−1 → R+, we denote nk as
the width of the layer. Let the network be initialized following a random distribution. Then, given a
point x ∈ Rn1 we say that the probability of the point dying (Recall Definition 7) increases with D
and decreases with nk.
Lemma A.2 (Probability of a point to be dead for a ReLU unit follows Bernoulli). Let be a point
x ∈ Rn1 and a ReLU unit u parametrized by a weight vector w ∈ Rn and a bias b ∈ R initialized
following a random distribution, then the probability of point x being dead for u follows a Bernoulli
distribution of unknown parameter p.

P (x ∈ lower(u)) ∼ Bernoulli(p) (18)

Proof. Since the unit is initialized randomly according to a given distribution (i.e. normal, uniform,
Glorot, ...), the probability of its hyper-plane parametrized by w, b facing x is an unknown p accord-
ing to the distribution used. Therefore, the probability of x belonging to lower(u) (Recall Equation
3) must be p.

As the lower set (Recall Definition 3) pre-activation is truncated, its gradient with respect the pa-
rameters will be zero (See Rey-Torres et al. (2019, Section 2)). Therefore, any point belonging to
lower(u) will be dead in regards to u.

Lemma A.3 (Probability of a point to be dead for a ReLU layer). Let `k be a layer composed of
nk ∈ N ReLU units u initialized following the same random distribution. Let be a point x ∈ Rnk−1 .
Then the probability of x being dead for `k is:

P (x ∈ Z(`k)) = P (x ∈ lower(u))nk (19)

Proof. Similarly to the unit case, points belonging to the zero set of a layer (Recall Definition 4)
have zero gradient with respect the parameters of the layer due the truncation (See Rey-Torres et al.
(2019, Section 2)).

The probability of a point belonging to the zero set of a layer P (x ∈ Z(`k)) is equal to the proba-
bility of belonging to all the lowers of the units of the layer P (∀u ∈ `|x ∈ lower(u)). Since unit
parameters are sampled independently during initialization and the probability of a point being dead
for a unit follows Bernoulli, then the probability of a point belonging to Z(`k) is the product of the
probabilities of belonging to the lower of each of the units.

Lemma A.4 (The probability of a point to be dead for a layer diminishes with its width). Let `k
be a layer composed of nk ∈ N ReLU units u initialized following a random distribution. Let be a
point x ∈ Rnk−1 . Then the probability of x being dead diminishes with nk:

lim
nk→∞

P (x ∈ Z(`)) = 0 (20)

Proof. The probability of a point being dead for a layer is the multiplication of the probabilities of
being dead of each of its units, recall Lemma A.3. Therefore, as the probabilities are lower than 1
since the upper set of a unit is never empty, in the limit where nk tends to infinity the probability
tends to zero.

Note how Lemma A.4 can explain why increasing width allows us to train deeper networks (See
Hasanpour et al. (2018); Huang et al. (2016)), it simply improves the chances of finding a hyper-
plane that allows the points to live.
Definition A.1 (Dead point set in a neural network). Let F : Rn1 → RnD be a feed-forward neural
network composed by a collection of D ∈ N layer functions ` : Rnk−1 → Rnk with k ∈ 1, . . . , D,
we denote D as the depth of the network. The layers are composed by a collection of nk ∈ N
ReLU unit functions u : Rnk−1 → R+, we denote nk as the width of the layer. Then, we define the
set of dead points of a neural network following Equation 7 as.

Z(F ) = {x|(∃k|1 < k ≤ D : `k−1 ◦ . . . `1(x) ∈ Z(`k)) : x} (21)
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Lemma A.5 (Probability of a point to be dead for a ReLU feed-forward network). Let F : Rn1 →
RnD be a feed-forward neural network composed by a collection of D ∈ N layer functions ` :
Rnk−1 → Rnk with k ∈ 1, . . . , D, we denote D as the depth of the network. The layers are
composed by a collection of nk ∈ N ReLU unit functions u : Rnk−1 → R+, we denote nk as the
width of the layer. Let the network be initialized following a random distribution. Then, given a
point x ∈ Rn1 we say that the probability of the point dying (Recall Definition 7) is

P (x ∈ Z(F )) = 1−
D∏
i=1

(1− P (x ∈ Z(`i))) (22)

Proof. The probability of not dying in a given layer is equal to 1 minus the probability of dying.

P (x ∈ Z(`)) = 1− P (x /∈ Z(`)) (23)

As the sampling of the parameters during intialization is independent among layers, the probabiliity
of not dying in any of the layers of the network is the multiplication of the probabilities of not dying
in each of the layers.

P (x /∈ Z(F )) =
D∏
i=1

(1− P (x /∈ Z(`i))) (24)

The probability of a point to be dead for a network is equal to the probability of being dead at least
in one layer, see 7. This is equivalent to 1 minus the probability of not dying in any of the layers.

P (x ∈ Z(F )) = 1− P (x /∈ Z(F )) (25)

Plugging Equation 24 into Equation 25 results in Equation 22.

Lemma A.6 (The probability of a point to be dead for a layer increases with its depth). Let F :
Rn1 → RnD be a feed-forward neural network composed by a collection of D ∈ N layer functions
` : Rnk−1 → Rnk with k ∈ 1, . . . , D, we denote D as the depth of the network. Let the network be
initialized following a random distribution. Then, given a point x ∈ Rn1 we say that the probability
of the point dying as it traverses the network (Recall Definition 7) increases with D.

lim
D→∞

P (x ∈ Z(F )) = 1 (26)

Proof. Since the hyper-planes of the units split the space in two half-spaces, the probability of point
not being dead is always lower than 1.

P (x /∈ Z(`)) < 1 (27)

Therefore, the limit of the probability of x not dying in any of the layers when D tends to infinity is
zero, recall Equation 24.

lim
D→∞

P (

D∏
i=1

(1− P (x ∈ Z(`i))))) = 0 (28)

Which when plugged into Equation 22 leads to Equation 26.
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A.3 ON THE OPTIMIZATION OF THE CONSTRAINTS

In this section we show how to differentiate the Separation Constraints with regards to the weights.
Notice that under our formulation, we are examining the set diameter of the preactivation of a dataset
X . That is, given a unit u with vector parameters w ∈ Rn and b ∈ R, its preactivation is given by
the function

z = p(x) = w · x+ b (29)

given a finite discrete set X ⊂ Rn ( a compact set of Rn), we can define the extreme values of X
with regards to u as

zumin = min
x∈X

p(x)

zumax = max
x∈X

p(x)
(30)

on a similar argument, given a layer ` with units u1, u2, . . . , unk
with pre-activations denoted by

p1, p2, . . . , pnk
, we can define the extreme values of layer ` provided with a fixed x ∈ X as

zpmin = min
j=1...,nk

pj(x)

zpmax = max
j=1...,nk

pj(x)
(31)

notice that since X is a finite discrete set of Rnk , z?min, z
?
max exist (where ? stands for u or p). This

fact is instrumental in our Equations (10) to (12). Since X is bounded, and we are working in the
real number system, we can find numbers ξ?+, ξ

?
− such that

z?min ≤ −1 + ξ?−
z?max ≥ 1− ξ?+

(32)

notice that the parameters w ∈ Rnk and b are free in the definition of zu, while x is free in the
definition of zp. In this sense, for ξp± we can find wp

± ∈ Rnk and bp± ∈ R such that

ξp+ = max(1− (w+ · x+ b+), 0)
ξp− = max(1 + (w− · x+ b−), 0)

(33)

that constraints all possible configurations of parameters in units of `. Naturally, ξ± depend on w
and b. This is at the heart of the constraint formulation: choosing w and b so that zmin < 0 and
zmax > 0.

Meanwhile, given a fixed selection of w and b, since X ⊂ Rnk is discrete and bounded, we
must have that there exist x+ and x− points of X such that

ξu− ≤ max(1− (w · x− + b), 0)
ξu+ ≤ max(1 + (w · x+ + b, 0)

(34)

We wish to stress a geometric intuition, beyond calculations. We seek a combination of w and b
so that they ’cut’ through X in the case of Sep-U, noticing that the preactivation p defines a signed
distance from the separating hyperplane p(x) = 0.

The same argument is used in the field of Support Vector Machines, as cited in our references,
particularly Vapnik & Cortes’ Vector Support Networks from 1995 and Boyd & Vandenberghes’
Convex Analysis from 2004.

A.4 ON THE RELATION BETWEEN CONSTRAINTS AND PARAMETER UPDATE

Notice that up to Equation 12, we have only stated constraints upon the slack variables ξ± (that
involve the dataset and parameters w and b). In Equation 13 we introduce the objective function to
optimize the values of ξ±. Namely, the sum of all ξ.
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Since we have different indications of the ξ, we must define different objective functions for
unit-wise constraints or gU of Equation 13 and point-wise constraints or gP from Equation 15.
We presented the construct for unit-based constraints (transit between Equations 12 and 13) and
extended the notation for point-wise constraints on Equation 15.

If we wish to differentiate with regards to w and b equations describing the relation between
x and ξ unit-wise or point-wise, we must notice that∇wξu± as stated, must be defined by parts:

∇wξu− =

{
x−, p(x−) > −1
0, otherwise

(35)

∂ξu+
∂b

=

{
1, p(x−) > −1
0, otherwise

(36)

while for ξu+:

∇wξu+ =

{
−x+, p(x+) < 1

0, otherwise
(37)

∂ξu+
∂b

=

{
−1, p(x+) < 1

0, otherwise
(38)

while under the unit-based formulation x± is fixed by the geometry of X, for the point-wise formu-
lation, we must have

∇w−ξ
p
− =

{
x, p(x) > −1
0, otherwise

(39)

∂ξp−
∂b

=

{
1, p(x) > −1
0, otherwise

(40)

and for ξp+:

∇w+
ξp+ =

{
−x, p(x) < 1

0, otherwise
(41)

∂ξp+
∂b

=

{
−1, p(x) < 1

0, otherwise
(42)

that is parallel to the loss gradient∇wL.

A.5 EFFECT OF THE SEPARATION ON THE INTERNAL REPRESENTATIONS

In this section we explore the effect of the proposed constraints in the activation of the network.
For that task we train all methods fixing the architecture at 50 layers of 4 units each. We use the
MOONS dataset for easy visualization, in the same configuration than Section 4(sampling 100 points,
85 for training and 15 for validation) .

Experimental setting: We compare the combination of Sep-U , Sep-P and Sep-UP to feed-
fordward ReLU networks (Glorot et al., 2011) and Batch Normalization as described in Ioffe &
Szegedy (2015) using the same architecture.

Training Parameters: All the networks used were optimized using Adam (Kingma & Ba, 2014).
We used a learning rate of 0.01 for 1000 epochs and a batch size of 85. We used λ = 10−4 when
required. As initialization scheme, we used Glorot uniform from Glorot & Bengio (2010). We also
test the use of the Separation Constraints alone, without categorical crossentropy, to assess its effect
by itself. Our experiments were conducted using Keras (Chollet et al., 2015) and TensorFlow
(Abadi et al., 2015), fixing the random seed to an arbitrary value of 10.

Table 1 summarizes the results. Figures 6, 7, 11, 10 and 8 show the activation plots for each of the
methods tested.
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Accuracy Loss
Train Val. Train Val.

ReLU 0.5176 0.4 0.6925 0.6938
ReLU + BN 0.8117 0.6 0.6331 0.6636
Sep-P 0.9294 0.8000 0.1765 0.6476
Sep-U 0.9058 0.8000 0.4161 1.5228
Sep-UP 0.9882 0.9333 0.6988 1.0810

Table 1: Maximal performance experiment using the MOONS dataset. From left to right, accuracy
and loss (for train and validation sets) for ReLU , ReLU + BN , and Sep-Cons in all its variants.
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Figure 6: Data transformed across a 50x4 ReLU classification network. Notice how the the dataset
is progressively mapped to zero as it traverses the network. This renders the output layer unable to
solve the problem.

In terms of accuracy ReLU reaches a trivial accuracy of 0.51 while ReLU + BN reaches 0.60,
both architectures fail to solve the problem, see Table 1. When comparing the results presented in
Figures 6 and 7, we find that at the fourth layer ReLU has collapsed the points of the dataset over a
line (parts 6b and 6c), while ReLU + BN still manages to warp the dataset. However, both methods
at layer 25th have collapsed the dataset into a small number of points (see Figures 7d, 7e for ReLU
+ BN and Figures 6d and 6e for ReLU ) that is then pushed to the point zero for ReLU (as shown in
the feature layer: 6f and 6g), while ReLU + BN collapses to few points (Figures 7f and 7g).

This collapse is congruent with our expectations, displaying the born-dead network condi-
tion from Lu et al. (2019). Note how layer after layer its effect is worse, as we predicted in A.2.
In addition, since the gradient is only back-propagated through the points lying on the upper
sets of units, geometric collapse also stops learning. Notice that the standarization and the affine
transformation (dependent on γ and β) from ReLU + BN are not able to prevent from killing the
dataset. Thus, training thin and deep neural networks is difficult with ReLU or ReLU + BN .

On the extent of our experimentation ReLU networks featuring separation constraints are
able to solve the problem with higher degrees of accuracy than ReLU and ReLU + BN (see the
figures in Table 1). Moreover, Figures 8h, 11h and 10h), show that the separation function behaves
intuitively in the sense of Hauser & Ray (2017).

The internal representations not only are non-trivial (as in ReLU + BN ) but also preserve
geometrical structures like shape and connectivity, as shown in Figures 11d, 10d or 8e. Indeed,
Figures 11c, 8c and 10c showcase how at the 4th layers a much a solution is already found. This
proves that the gradient of the main loss is back-propagated to the input, unlike ReLU and ReLU +
BN (Figures 6b, 6b, 7b, 7c).

The constraints enforce richer representations when used without main loss (cross-entropy),
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Figure 7: Data transformed across a 50x4 ReLU + BN network trained using Adam with a learning
rate of 0.01 in the MOONS dataset for 1000 epochs. The dataset is collapsed in few points at the fea-
ture layer. As the gradient cannot be backpropagated across the truncation after the affine transform
of γ and β despite the standarization, it fails in the same manner than ReLU only that with non-zero
activations. This results in topological mixing of the datasets. Therefore, the representational ca-
pability of the network is hindered to such extent that the resulting output, although non-trivial, is
totally arbitrary.
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Figure 8: Data transformed across a 50x4 Sep-UP network trained using Adam with a learning
rate of 0.01 in the MOONS dataset for 1000 epochs. The network displays internal representations
without collapsing the dataset like Sep-P and retaining discriminative power like Sep-U .
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Figure 9: Data transformed across a 50x4 network with no main loss (cross-entropy) with constraints
Sep-L and Sep-UP , versus ReLU and ReLU + BN . Notice how effectively ReLU and ReLU +
BN collapse the dataset into few points whereas Sep-UP force the network to learn representations
that preserve geometrical structure useful for back-propagation.

see Figure 9. whereas the representation reached by Sep-UP is more complex, yet preserves
connectivity. Furthermore, both avoid mapping the entire dataset to few values as observed with
ReLU (Figures 9e and 9f) and ReLU + BN (Figures 9b and 9c).

The only exception is Sep-U that apparently solves the problem at layer 25th on Figures 11d
and 11e, yet collapses the dataset in two points at the feature layer (Figures 11f and 11f). Our
intuition is is that, although Sep-U prevents dead units, it cannot prevent points from falling into
the intersection lower set of the units of a layer, resulting in a dead point). The Sep-P separation
constraint was designed precisely to prevent the presence of dead points. However, Sep-P allows
affine and dead units (as shown in Figures 10d and 10e), so the the decision function reached
becomes too linear (see Figure 10h).

Therefore, if we combine both Sep-U and Sep-Pwe should have best of both worlds, as
we say in Section A.1. Figure 8, shows how Sep-UP is able to separate both classes perfectly
(recall the 0.93 in accuracy from Table 1). Furthermore Sep-UP , produces a feature layer that
does not concentrates the dataset in two points like Sep-U , nor distributes the dataset linearly like
Sep-P .
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Figure 10: Data transformed across a 50x4 Sep-P network trained using Adam with a learning rate
of 0.01 in the MOONS dataset for 1000 epochs. The network displays a richer internal representation
without collapsing the dataset like Sep-U or ReLU + BN . However, plenty of dead units appear
since they are not penalized, causing underfitting.

0.2 0.0 0.2 0.4 0.6
0.2

0.1

0.0

0.1

0.2

0.3

(a) Input layer

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) 4th layer

0.0 0.2 0.4 0.6 0.8

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(c) 4th layer

0 5 10 15 20 25 30

0.0

0.5

1.0

1.5

2.0

(d) 25th layer

0 20 40 60 80

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

(e) 25th layer

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.0

0.5

1.0

1.5

2.0

(f) Feature layer

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0

1

2

3

4

5

6

7

8

(g) Feature layer

0.2 0.0 0.2 0.4 0.6

0.2

0.0

0.2

0.4

0.6

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

8.00E-01

9.00E-01

(h) Output

Figure 11: Data transformed across a 50x4 Sep-U network trained using Adam with a learning rate
of 0.01 in the MOONS dataset for 1000 epochs. Notice how dead units have been reduced. The interal
representations are much richer than ReLU or ReLU + BN . Despite collapsing the dataset in two
points at the feature layer, the classification performed in the output layer is approximately correct.
We conjecture that this is due the dead point addressed with Sep-P .
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A.6 RELATION BETWEEN SEPARATION CONSTRAINTS AND MAIN LOSS

In this section we explore the effect of the proposed constraints in the convergence of the network
during optimization. We train a network of 50 layers of 4 units each using Sep-UP . We use the
MOONS dataset, in the same configuration than Section 4 (sampling 100 points, 85 for training and
15 for validation).

Experimental setting: We analyze the interaction between of the main loss (cross-entropy) and
the loss arising from the Separation Constraints. We plot them, together with training accuracy in
Figure 12. Below we attach the decision boundaries at the most relevant epochs.

Training Parameters: The networks wes optimized using Adam (Kingma & Ba, 2014). We used a
learning rate of 0.01 for 17000 epochs and a batch size of 85. We used λ = 10−4. As initialization
scheme, we used Glorot uniform from Glorot & Bengio (2010). Our experiments were conducted
using Keras (Chollet et al., 2015) and TensorFlow (Abadi et al., 2015), fixing the random seed
to an arbitrary value of 10.

We see at Figure 12 how the use of the separation constraints enables back-propagation, and thus
cross-entropy minimization. According to it, the training begins minimizing the constraint loss
until a certain level is reached (approximately 10−2 circa epoch 250). During this phase, the
cross-entropy loss stays constant. Only when this critical point in the constraint loss is reached,
back-propagation is restored and the accuracy starts climbing up to 100%. However, using an
this additional loss (from the separation constraints) induces aggressive transient states (e.g.
instabilities) during training (approximately around epochs 6200, 11883 and 16432). We see also
how after each of the transient states, the network finds a new solution different from earlier ones.
Moreover, those solutions show an increasing level of complexity, in the form of smoother and
more rouded boundaries. For instance, the first solution (Figure 12f) is linear and the second is
composed of few lines (Figure 12h, whereas the last and second to last (Figure 12ai and 12ao) are
much more curved.

We conjecture that this behaviour must be due dead units and points being revived during
training. As a dead unit or point comes back from being dead, the weight configuration set by
the Separation Constraints is likely to be unrelated to cross-entropy. That causes a break down in
the convergence that we can see around epochs 6200, 11883 and 16432. As back-propagation is
now working for those points or units, their error is eventually corrected by normal cross-entropy
minimization and the network converges to a solution again. However, as now there is an additional
working unit or point involved, the network has greater representational expressiveness, which
results in a more complex decision boundary.
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Figure 12: Evolution of training throughout epochs (cross-entropy, constraint loss, accuracy, and
decision surface) in 50x4 network trained on the MOONS dataset. We used Adam with a lr of 0.01
for 17000 epochs and a batch size of 85 and Glorot uniform. We used λ = 10−4. Figure 12a shows
both cross-entropy and constraint loss for each epoch of the training phase in the horizontal axis,
whereas Figure 12b does the same for training accuracy. The rest of subfigures show the decision
surface at the indicated epoch. We see how learning only starts after the constraint loss has been
minimized below approximately 10−2, circa epoch 250. After that, back-propagation is restored
and cross-entropy falls quickly, reaching a solution at epoch 1135. However, around epoch 6205
the training breaks down and the next epochs are spent in a transient state, until the geometry of the
boundary changes and the network converges to a different solution (note how the solution found
at 1135 is composed of 5 lines, whereas 9162 consists of 7). This process occurs several times
(6200, 11883 and 16432), resulting in increasingly complex solutions (notice how solution at 16630
is much more rounded and smoother). We conjecture that this due to dead units and points recovered
during training by the Separation Constraint augment the capacity of the network.
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