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ABSTRACT

We consider visual domains in which a class label specifies the content of an im-
age, and class-irrelevant properties that differentiate instances constitute the style.
We present a domain-independent method that permits the open-ended recom-
bination of style of one image with the content of another. Open ended simply
means that the method generalizes to style and content not present in the training
data. The method starts by constructing a content embedding using an existing
deep metric-learning technique. This trained content encoder is incorporated into
a variational autoencoder (VAE), paired with a to-be-trained style encoder. The
VAE reconstruction loss alone is inadequate to ensure a decomposition of the la-
tent representation into style and content. Our method thus includes an auxiliary
loss, leakage filtering, which ensures that no style information remaining in the
content representation is used for reconstruction and vice versa. We synthesize
novel images by decoding the style representation obtained from one image with
the content representation from another. Using this method for data-set augmen-
tation, we obtain state-of-the-art performance on few-shot learning tasks.

In any domain involving classification, entities are distinguished not only by class label but also
by attributes orthogonal to class label. For example, if faces are classified by identity, within-class
variation is due to lighting, pose, expression, hairstyle; if masterworks of art are classified by the
painter, within-class variation is due to choice of subject matter. Following tradition (Tenenbaum &
Freeman| 2000), we refer to between- and within-class variation as content and style, respectively.
What constitutes content is defined with respect to a task. For example, in a face-recognition task,
identity is the content; in an emotion-recognition task, expression is the content. There has been a
wealth of research focused on decomposing content and style, with the promise that decompositions
might provide insight into a domain or improve classification performance. Decompositions also
allow for the synthesis of novel entities by recombining the content of one entity with the style
of another. Recombinations are interesting as a creative exercise (e.g., transforming the musical
composition of one artist in the style of another) or for data set augmentation.

We propose an approach to content-style decomposition and recombination. We refer to the method
as STOC, for Style Transfer onto Open-Ended Content. Our approach is differentiated from past
work in the following ways. First, STOC can transfer to novel content. In contrast, most previous
work assumes the content classes in testing are the same as those in training. Second, STOC is
general purpose and can be applied to any domain. In contrast, previous work includes approaches
that leverage specific domain knowledge (e.g., human body pose). Third, STOC has an explicit
objective, leakage filtering, designed to isolate content and style. No such explicit objective is found
in most previous work, and as a result, synthesized examples may fail to preserve content as style is
varied and vice versa. Fourth, STOC requires a labeling of entities by content class, but explicit style
labels are not required. In contrast, some previous work assumes supervised training of both style
and content representations.

Figure|[I|shows examples of content-style recombination using STOC on the VGG-Face (Parkhi et al.|
2015) data set. In each column, the content of the image in the top row is combined with the style
of the image on the bottom row to synthesize a novel image, shown in the middle row. The images
in the top and bottom rows are of identities (content) held out from the training set. Style is well
maintained, and content is fairly well transferred, at least to the degree that the faces in the middle
row are more similar to top-row than bottom-row faces. The training faces are labeled by identity,
but style is induced by the training procedure.



Figure 1: Examples of content-style recom-
bination using STOC on the VGG-Face data
set. The middle face in each column com-
bines content of the top face with style of the
bottom face.

1 PAST RESEARCH ON STYLE TRANSFER

A growing body of work has demonstrated impressive style transfer with models that can translate
images from one specific domain (or content class) to another. Although some of these approaches
require paired samples from both domains ([sola et al., 2017), several recent methods such as Cycle-
GAN do not (Tzeng et al.|[2017; [Zhu et al.l 2017; |Choi et al.,[2018). CycleGAN has been extended
to exploit constraints in video (Bansal et al 2018), yielding impressive sequences in which the
mannerisms and facial movements of one individual are transferred to another. These methods are
dependent on having many examples from pairs of content classes, and a model is custom trained
for that pair. Therefore, the models do not attempt to learn an explicit representation of content or
to decompose style and content.

Some domain-to-domain translation models do perform disentangling—of the information in an
entity that is shared between domains and the information that is not shared (Gonzalez-Garcia et al.,
2018} [Huang et al, 2018)). [Huang et al.| (2018) refer to this as content-style decomposition, but the
range of content is quite restricted. For example, a model might be trained to transform cats into
lions, but it cannot subsequently be used to transform cats into, say, panthers. An early proposal
for style transfer (Kingma et al., 2014), based on variational autoencoders, can translate between
more than two domains, but the model is unable to handle novel domains in the test set. Similarly,

Structured GANs can only be applied with a fixed set of classes. An open-ended
method such as STOC can process novel content.

Many of the above techniques are described as unsupervised because no cross-domain correspon-
dence between examples is required. However, from our perspective, the separation of examples by
domain is a form of supervision, the same form we leverage in STOC.

Previous techniques that allow for open-ended content have typically required supervisory signals
for both content and style. That is, labels must be provided for the content class of each training
sample as well as for each of a specified set of style dimensions such as pose and lighting
et all}, 2016} [Kulkarni et all, 2015 [Reed et al, 2014). Analogy constraints of the form z1 : x5 ::
Y1 : Yo have also been explored as a supervisory signal for style, specifying that two samples of one
class X have the same stylistic variation as two samples of another class, Y’ 2015).

Methods have been developed that can transfer style to novel content without requiring explicit style
labels but instead rely on domain-specific knowledge. For example, Jetchev & Bergmann| (2017)
demonstrate the transfer of novel articles of clothing onto novel individuals, but their approach
assumes that style transfer can be applied to only a masked region of the image. Other work has
leveraged constraints inherent in a video sequence, either in a strong manner by extracting pose from
the video (Brand & Hertzmannl, [2000; [Chan et al.|, 2018 [Hsu et al, 2003), or in a weaker fashion
by decomposing a video sequence into stationary (content) and nonstationary (style) components
(Denton & Birodkarl[2017;[Tulyakov et al}2018). Neural Style Transfer and related methods
let al., 20165 L1 et all 2017; Wang et al.l 2017) can do open-ended content-style recombination.
However, it is limited in that it defines style as image texture (neural net features with a high degree of
spatial correlation), and content as all other image features. While the method generates impressive
results on texture transfer tasks such as translating a painting from one style to another, it is incapable
of e.g., recombining faces with different pose, as shown in Figure [T}

2 OUR APPROACH

Our approach builds on a Variational Autoencoder (VAE) architecture (Kingma & Welling|, [2013).
We divide the latent code layer of the VAE into content and style components, as in the SSVAE

(Kingma et al2014) and other recent work on probabilistic generative modeling (Siddharth et al.]




2017; [Sohn et al.l [2015). The content component is produced by a separately trained classifier, to
be described shortly, which we will refer to as the content encoder. The style component uses the
standard VAE encoding of posterior distributions over style vectors, with a prior determined by the
variational loss. It is produced by a separate network called the style encoder. The content and
(sampled) style serve as input to a decoder net, which synthesizes an image containing the two. The
VAE reconstruction loss encourages the style vector to represent any additional input variability that
cannot be attributed to class (content). Content-style recombination can be achieved in the obvious
manner, by synthesizing an output that is based on content of one input and style of another.

We explore four variants of this model. The baseline model, which we refer to as CC for content
classifier, uses a content encoder that is separately trained to be a one-hot classifier using a cross-
entropy loss. This model cannot handle open-ended content because the training procedure requires
data from all potential content classes. Nonetheless, it is useful as a reference point for comparison
to other models. Our second variation uses a content encoder that produces an embedding rather than
a one-hot encoding of class. The content encoder is trained with a deep metric learning objective, the
histogram loss (Ustinova & Lempitskyl [2016), which has been shown to have state-of-the-art per-
formance on few-shot learning (Scott et al.,|2018). The embedding is Lo normalized, in accordance
with the fact that the histogram loss uses cosine distance. Because the content encoder produces a
distributed representation of content, it can encode novel classes and is thus in principle adequate for
handling open-ended content. We call this variation of the model CE for content embedding. Both
CC and CE use the standard VAE loss, denoted £y4 . However, this loss does not explicitly dis-
entangle content and style. Impurities—residual style information in the content representation and
vice-versa—are problematic for content-style recombination. We thus propose two additional vari-
ations that add a decomposition loss aimed specifically at isolating content and style: predictability
minimization (PM), which aims to orthogonalize representations, and leakage filtering (LF), which
aims to filter out leaks and thereby obtain better style transfer.

2.1 PREDICTABILITY MINIMIZATION

Predictability minimization (Schmidhuber}|1992) encourages statistical independence between com-
ponents of a representation via a loss that imposes a penalty if one component’s activation can be
predicted from the others. We apply this notion to style and content representations to minimize
content predictability from style. (Because our content encoder is frozen when training the rest of
the network, we do not implement the reverse constraint.) We build a content prediction net, or
CPN, which attempts to predict, for training sample x, the output of the content encoder, 2, from
the output of the style encoder, {3, o}, (The style encoder specifies the multivariate Gaussian
style posterior obtained from the VAE.) Predictability minimization involves an adversarial loss:

Lpy = Lyvag + /\gnin rne:aLXI[-EXNX||zfc — CPN(us, o),
CPN s

where 0 cpy and 6, are parameters of the CPN and style encoder, respectively, and A is a scaling

coefficient. Training proceeds much as in a generative adversarial network (Goodfellow et al.;,[2014)).

2.2 LEAKAGE FILTERING

One way to ensure the success of style-content recombination is to remove all style information from
2$ and to remove all content information from z5 ~ N (s, o). Another way is to simply ensure
that the decoder filters out any leakage of content from z; or leakage of style from z in forming the
reconstruction. Leakage filtering (LLF) achieves this alternative goal via constraints that guide the
training of the decoder as well as the style encoder.

The constraints of leakage filtering are illustrated in Figure 2] In the left panel, we select a pair of
samples of the same class, {x, x’}, from the complete set P, and use a decoder D to recombine the
style of x” with the content of x to synthesize an image q. Because x and x’ have the same content
class, q should be identical to x’. When they are not, style information may be leaking from z5. In
the right panel, we select a pair of samples of different classes, {x,y}, from the complete set P,
and transfer the style of y onto x to create a new image r. Because x and r should share the same
content, the content embeddings z¢ and z5 should be similar; because y and r do not share the same
content, z¢ and z{ should be dissimilar. These constraints are violated when content information
leaks from the style representation, zy . Just as the histogram loss was used to determine the content



embedding, we repurpose the loss to quantify the similarity/dissimilarity constraints in the content
embedding. Here, however, the loss is used to adjust only parameters of decoder, 6, and the style
encoder, 6.

The histogram loss is based on two sets of pairwise similarity scores, ST for pairs that should be
similar and S~ for pairs that should be dissimilar, as evaluated by a similarity function s; we use
the cosine similarity. The histogram loss penalizes the overlap in the distributions of S* and S~.
We populate ST and S~ with similarities of real-to-recombined samples as well as real-to-real, to
ensure that the real-to-recombined similarities match the distributions of real-to-real:

St ={s(25,20), s(25,28) | {x,x'} € PT,q = D(2,25)} and
S = {5(:8, 25), (22, 2) | {x,y} € P™yx = D(:5,25)}

X1y
The histogram loss penalizes the overlap between h*(.) and 1~ (.), the empirical densities formed
from the sets of similarity values in S and S, respectively. The full LF loss is defined as:

Cor = Lan + 0 (“Bpumrersampiesagy osPrial <) + e (B | [ 0] ).
where \; and )\, are scaling coefficients. Because leakage filtering imposes a cost when the decoder
fails to reconstruct an image, we have found the VAE reconstruction loss to be unnecessary. In the
simulations we report, we replace L4 g with L1, the KL-divergence term of the VAE loss.

3 EXPERIMENTS WITH FIXED CONTENT

We begin with a data set having a fixed set of content classes, the MNIST handwritten digits (LeCun,
1998)). Details of training, validation, and model architecture are presented in the Appendix. A
qualitative comparison of content-style recombination of held-out test samples for CC, CE, PM,
and LF variations is shown in Figure 3] In each case, loss weightings are hand tuned by visually
inspecting recombinations from the validation set. In general, if too much weight is placed on
reconstruction, the model will ignore content, and every row will look identical. If too much weight
is placed on the decomposition loss or KL divergence, then there will be too much uniformity in a
column, with little style transfer. In each grid of digits, the blue top row indicates the input digit
(from the test set) used to specify content. The green leftmost column indicates the input digit
used to specify style. Each gray digit is a sample from the network, with content specified by the
corresponding blue digit, and style specified by the corresponding green digit. To the extent that
content-style recombination is effective, all digits in a row should have the same style, all digits
in a column should have the same class, and the two columns of each content should be identical
despite variation in the blue digits. CC is superior to CE, but this result is unsurprising: representing
content as a probability distribution over a fixed set of classes is a stronger constraint than a content
embedding. Variant LF appears to be superior to either PM or CE, and surprisingly LF appears to
be as good as, or better than, CC: the inductive bias of leakage filtering allows it to overcome the
limitations of the weaker supervisory signal of the content embedding.

For a quantitative evaluation of the quality of synthetic digits, we investigate performance of a
classifier trained from scratch on synthetic digits and tested on natural digits; we call this procedure
natural evaluation with synthetic training, or NEST. If the synthetic digits do not look natural or have
little stylistic variation, test performance is poor. To synthesize digits, we first select a prototype
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Figure 2: The logic of the leakage-filtering loss. Left panel: Leakage of style from the content
embedding will cause x’ and q to differ. Right panel: Leakage of content from the style embedding
will cause x and r to have dissimilar content embeddings and y and r to have similar embeddings.



(a) Content Classifier (CC) (b) Content Embedding (CE)
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(c) Predictability Minimization (PM) (d) Leakage Filtering (LF)
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Figure 3: Content-style recombination on MNIST of alternative models. Black digits are synthesized
from the style of green digit to the left and content of blue digit above.

content representation: The prototype content embedding for a digit class is the training instance
that minimizes the sum squared Euclidean distance to all other instances of the same class. The
prototype for CC is simply the one-hot vector for the given class. The classifier used for training has
the same architecture as our content encoder, with 10 softmax outputs trained with a cross-entropy
loss. Training is performed on minibatches of 40 samples with randomly-selected content and style
provided by a random instance in (natural digit) training set, likely of a different class.

Figure ] shows the mean probability of the correct class, a more sensitive metric than classification
accuracy. Both PM and LF outperform the baseline CE, indicating that our losses to isolate content
and style are doing the right thing. LF is clearly superior to PM, and in fact even beats CC, which
is surprising because LF allows for open-ended content whereas CC does not. Because the VAE
provides a prior over style, it is possible to simply sample style from the prior, rather than transferring
it from another example. We repeated the NEST simulation using styles drawn from the prior and
obtained similar results. Having shown the superiority of LF on a fixed set of classes, we next
investigate performance of LF with open-ended content.

4 EXPERIMENTS WITH OPEN-ENDED CONTENT

We experiment with LF on two many-class data sets: Omniglot and VGG Face
Parkhi et al}, 2015). Details of data sets and split into training, validation, and test is in the Ap-
pendix. To improve the quality of our generated images in these more complex domains, we incor-
porate a WGAN-GP (Gulrajani et al.,[2017) adversarial loss. This additional objective requires an-
other scaling hyperparameter for the W-GAN loss, but training is otherwise identical to the MNIST
procedure. We use a ResNet architecture for the content-style encoders, the decoder, and the critic

@ 1.00 5<0.0001 Figure 4: Naturally Evaluated, Synthetically
5 Trained (NEST) results on MNIST. Mean prob-
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network of the WGAN-GP. For the VGG-Face data set, we include U-Net (Ronneberger et al.|[2015))
skip connections from both the style and content encoders to the decoder. Additional details can be
found in the Appendix.

4.1 QUALITATIVE RESULTS

Figure [5] shows Omniglot characters with recombined content and style. Content is inferred from
the blue character at the top of the column, a novel class from the test set. Style is inferred from the
green character on the left, drawn from the training set. The content classes are repeated in order to
determine how successful the model is at ignoring stylistic variation from the sample used to provide
content. The three same-class digits in a given row are not always identical, but there is certainly
more variation in a column (varying style) than there is in a row triplet (varying samples providing
the content). All characters in a row appear to share stylistic features: e.g., they are very small, have
wavy lines, are bold, or are boxy in shape.

Figure [6] shows examples of VGG Faces with recombined content (the face in the top row) and
style (the face in the left column). Looking across a row, the model preserves many aspects of style,
including pose, lighting conditions, and facial expression. In the last row, even glasses are considered
a stylistic feature, surprising given the strong correlation of glasses presence across instance of an
individual. Looking down a column, many identity-related features are preserved, including nose
shape, eyebrow shape, and facial structures like strong cheekbones.

4.2 APPLICATION TO DATA AUGMENTATION

Next, we explore using STOC for data augmentation and evaluate on few-shot learning tasks. Data
augmentation is the process of synthesizing variations of a training sample by transformations
known to preserve some attribute of interest to a task (e.g., object class), in hopes that a predic-
tive model will become invariant to the introduced variations. Domain-specific techniques are very
common, especially in perceptual domains, e.g., image translation and flipping. Style transfer using
STOC provides a domain-agnostic method.

Recently, other researchers have used machine learning to augment data. Several methods make
use of generative adversarial nets to refine images produced by CAD programs (Shrivastava et al.,
2017; |Sixt et al, [2018)), but these obviously rely on significant domain knowledge. |DeVries &
Taylor|(2017) generate new samples of a class by interpolating the hidden representations of labeled
samples of that same class. [Zhu et al|(2018) generates augmented faces for emotion recognition.
Emotion is defined as the content class and a CycleGAN-like architecture is used to translate from
one emotional expression to another. This approach works only for a fixed set of known classes and
therefore cannot be directly compared to STOC. Two papers (Rezende et al.| 2016 |Antoniou et al.,
2017) introduce methods for generating new samples that share a class with a given input sample,
and are shown to work with novel classes. Only |Antoniou et al.| (2017)) demonstrates performance
on a data-augmentation task, so we choose this paper as our primary point of comparison.

Because data augmentation should have the greatest effect in data-sparse domains, we evaluate STOC
augmentation on few-shot learning, where the goal is to obtain accurate classification based on a
small number of samples. Our evaluation procedure follows |Scott et al.| (2018). The data set is
divided by content-class into source (S) and target (7)) domains. S is split by class into a training



and validation set, used to train STOC. We use 7 for evaluation. Within 7, each class has N samples,
which are split into k support samples (which together make up 75), and (N — k) query samples
(Ty). Testing proceeds in episodes, where a subset of n classes is drawn from 7 for testing. We
then generate the augmented set (7,) using the content of 7, and style drawn from S. A classifier
is then trained using 75, = {7s, 7, }. Performance is reported on the classification accuracy of 7.
We evaluate two different methodologies. First, we compare our method to other state-of-the-art
one-shot learning methods on the Omniglot dataset. Second, we consider the case of training a new
classifier from scratch on only 7T,.

One-Shot Learning with Omniglot. We investigate the common one-shot Omniglot task, where the
number of classes per episode (n) is 20, and the number of examples per class (k) is 1. To generate
T., we synthesize m stylistic variations of each member of 7,. We experiment with two settings,
m = 0 (no augmentation) and m = 40. Also, we found that limiting the variability introduced by
style transfer to be important, so instead of replacing the style of the samples of the support set with
the style of a training example, we linearly interpolate between them.

demonstrated that the histogram-loss embedding achieves state-of-the-art perfor-
mance on this task. We use the histogram embedding of the content-encoder network that is trained
for STOC, ensuring that there is no performance difference between the content embedding used to
train the style transfer model and the embedding used for few-shot learning. To evaluate an episode,
we first embed the 7, set using the content encoder. For each query sample, we compute its content
embedding. We then compute the L, distances between the query embedding and each embedding
in T,. For each embedding in 7;,, we assign a weight to determine the contribution strength of that
sample to the overall decision. Each real support sample is assigned a weight w,, and each of the
m augmented samples is assigned a weight w, = (1 — ws)/m. The probability distribution over
classes is computed via a weighted softmax on the squared distance between the query sample and
the samples in Tg,.

For each episode, we record the average classification accuracy for all the query samples. We run
400 episodes, each with different random subsets of test classes, and report average accuracy across
the replications. Table [T]shows the results for our model with and without data augmentation, along
with reported results from the literature. For this task, we find that the baseline histogram perfor-
mance is already very good. Although the improvement from data augmentation is small, it brings

Figure 6: Examples of content-
style recombination using the
VGG-Face data set. The images
in the matrix are formed by re-
combining the content (identity)
of the image in the top row with
the style of the image in the left
column. The top row contains
samples from identities held out
from training. The left column
contains other samples from the
data set.
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Model Name \ Test Accuracy

Matching Nets (Vinyals et al.|[2016) 0.938

Prototypical Networks (Snell et al.|[2017) 0.960

Matching Nets (DAGAN replication) (Antoniou et al./[2017) 0.969
Matching Nets + DAGAN Augmentation (Antoniou et al.[[2017) 0.974
Conv. ARC (Shyam et al.|2017) 0.975

Histogram Embedding (our implementation) (Ustinova & Lempitsky![2016) 0.974
STOC (ours) 0.975

Table 1: Average query accuracy for the one-shot learning task with the Omniglot data set, with
k = 1 samples per class in the support set and n = 20 classes per episode.

the histogram embedding performance up to the level of Conv-ARC (Shyam et al.l 2017, which
is a complex, articulated, recurrent architecture with attention that performs explicit comparisons
between samples. DAGAN (Antoniou et al., 2017)) shows a bigger improvement, but it makes use
of an auxiliary sample-selection network, the details of which are not explained.

Standard Classifiers with Omniglot and VGG-Face. We also trained standard classifiers from
scratch on 7g,. The classifiers are convolutional nets with 4 strided convolutional layers, followed
by a ReLU activation, batch norm, and dropout with a rate of 0.5. Each convolutional layer has
a kernel size of 5 and 64 filters. To train the nets, we split 7 into training (75%) and validation
(25%) sets, and use the validation set to determine the number of epochs to train for. Minibatches
are composed of some mixture of real and augmented samples, and we used the validation set to
determine the ratio. We generate new 7, augmentations for every minibatch. For omniglot, we also
experiment with adding “standard” data augmentations (rotations, shifts, and dilations; see appendix
for details). For VGG-Face, we do not add augmentations because the images have been already
been carefully pre-processed to normalize face rotation, shift, and zoom. Table 2] shows the results
on the test samples for both Omniglot and VGG-Face data sets. For Omniglot, we report results on
the whole set of 1299 test classes, varying k, the number of samples per class in the support set.
To compare our results with DAGAN (Antoniou et al.,[2017), we select a random subset of the 212
Omniglot classes, which is the size of the DAGAN test set, and we use the same test set size as
DAGAN for VGG Face. For omniglot, standard augmentation improves accuracy over baseline in
every case, and the additional augmentation from STOC further improves performance. Likewise,
for VGG-Face, STOC augmentations improve performance. We demonstrate that STOC performance
on data augmentation is about on par with DAGAN, even though DAGAN was specifically designed
for this task. STOC and DAGAN have different goals, and it is valuable to study both approaches
for data augmentation. The fact that both models perform similarly might point to a limitation to the
potential benefit of synthetic data for training.

STOC Antoniou et al.|(2017)
Test Accuracy Test Accuracy

Data set n k | Baseline | Std. Aug. | Std. Aug. + STOC | Std. Aug. | Std. Aug. + DAGAN

5 0.261 0.560 0.631
Omniglot | 1299 | 10 | 0.426 0.679 0.688

15 0.543 0.696 0.703

5 0.435 0.683 0.807 0.690 0.821
Omniglot | 212 | 10 | 0.571 0.833 0.857 0.794 0.862

15 0.643 0.821 0.879 0.820 0.874

5 0.087 0.272 0.045 0.126
VGG Face | 497 | 15 0.263 0.448 0.393 0.429

25 0.371 0.504 0.580 0.585

Table 2: Results for training standard classifiers on un-augmented and on augmented data. The
columns, from left to right: the tested data set, the number of classes in the training/test data sets
(n), the number of samples per class in the support set (k), the baseline (un-augmented) test accuracy,
the accuracy of a model with standard data augmentation, and the accuracy of a model with both
standard data augmentation and STOC augmentation. We have also listed the test accuracy from
Antoniou et al.[(2017), where appropriate.



5 CONCLUSION

STOC is effective in transferring style onto open-ended content—content that is novel with respect
to the training data. This is a challenging task: content class boundaries cannot be determined pre-
cisely in a setting where the number of potential classes is unbounded. As a result, it is easy for
some style information to seep into a content representation. We introduced the leakage-filtering
loss, a novel approach to isolating content and style. Traditionally, researchers have focused on dis-
entangling style and content: inducing representations that separate style and content into different
vector components. Given the difficulty of this challenge with only content labels and no explicit la-
bels or domain knowledge pertaining to style, we instead focus on ensuring that the decoder, which
combines style and content to reconstruct images, does not use any residual style information in the
content representation or any residual content information in the style representation. Our results
yield impressive visual quality and achieve significant boosts in performance when STOC is used
for augmenting data sets to train a de novo classifier. We also explored data augmentation for few-
shot learning and achieved performance that matches state of the art, a complex highly articulated
and computation intensive model. We suspect that beating state-of-the-art on few-shot learning is
becoming increasingly difficult, given that state-of-the-art is now bumping against the ceiling on
performance in the paradigm that is typically used for evaluation.
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A APPENDIX

A.1 DATA SETS

MNIST. The MNIST database is divided into a development set consisting of 60,000 images and a
test set of 10,000. We further divide the development set into a training set of 48,000 and validation
set of 12,000, which is used to determine model hyper-parameters such as the number of epochs to
train, and relative weights on the various loss functions.

Omniglot. Omniglot is composed of 20 instances of 1,623 different classes of hand-written char-
acters from 50 different alphabets. Following convention (Scott et al.l 2018} |Snell et al., 2017;
Triantafillou et al., 2017), we augment the data set with all 90° rotations, resulting in 6,492 classes.
The classes are split randomly into 4,154 training, 1,039 validation, and 1,299 test classes.

VGG Faces. We use the same subset of the data as (Antoniou et al.| 2017), splitting the data into
1,750 training classes, 53 validation classes, and 497 test classes.

A.2 NETWORK ARCHITECTURES AND PARAMETER SETTINGS

Architecture for MNIST. The content and style encoders have the same network architecture: two
convolutional layers with 5 x 5 kernels and 64 filters, followed by a fully connected layer. Each
convolutional layer includes batch normalization and leakly ReL.U activation function. The three
variations with content embeddings (CE, PM, LF) use the same content encoder network with 50
dimensions. Figure[/|shows a two-dimensional t-SNE visualization of the embedding of the content
encoder, with four randomly sampled digits of each class from the test set. Some within-class
variation is preserved, but the digit classes are still well separated. CC has a 10-dimensional (one
hot) content representation. All four variations use 50 dimensions for the style representation. The
content representation is Lo normalized to have a unit length, required for the histogram loss. The
generator network consists of a linear projection from the 100-dimensional combined content and
style representation to a 6 x 6 x 32 tensor. This tensor is then up-sampled twice using transposed,
fractionally-strided convolutions, each with a kernel size of 5 x 5 and 64 filters. Finally, the output
of the generator is normalized to lie within [—1, 1] using a hyperbolic tangent activation. The inputs
to the network are also normalized to lie in this range. All networks were trained with the Adam
optimizer (Kingma & Bal, [2014) with a learning rate of 2 * 10~*. For predictability minimization,
the CPN network consists of simple feed-forward net with one 100-dimensional hidden layer and a
leaky ReL.U activation.

Architecture for omniglot. For the content and style encoders, we start with a simple convolutional
layer, followed by three ResNet blocks, with three convolutional layers each and a skip-connection
at the end. We add a final convolutional layer to reduce the output channels to 3 (RGB). The out-
put is normalized with a hyperbolic tangent function to lie within [—1,1]. The content and style
representations are both 100-dimensional. After each convolution, we use a leaky ReLU activation,
and then batch re-normalization (loffe, |2017). Each convolutional layer has a 3 x 3 kernel and 48
filters. For the decoder and WGAN-GP critic, we use the an identical architecture, except that each

iy

Figure 7: Example t-SNE visualization of the histogram embedding of MNIST digits.
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convolutional layer has 64 filters. As noted in |Gulrajani et al.| (2017), batch normalization violates
the assumptions of WGAN-GP, so our critic net uses layer normalization (Ba et al., 2016). The
model was trained for 100 epochs, using the Adam optimizer and a learning rate of 10™%. We set the
coefficient on the KL-divergence loss to 1, and the coefficients on A; and Ay of £ » to 20, and the
WGAN-GP loss is multiplied by 0.5. We set the gradient penalty weight parameter of WGAN-GP
to 10.

Architecture for VGG-Faces. We start with the same ResNet architecture that we used for om-
niglot, but use 64 filters in each convolutional layer of the style and content encoders. We also
include U-Net skip connections from the output of each resnet block in both the content encoder and
the style encoder to the corresponding ResNet block input in the decoder. The WGAP-GP critic’s
architecture is identical to that of the decoder, except it has no U-Net skip connections. The content
representation has 200 dimensions, and the style representation has 600. The model was trained for
10 epochs, using the Adam optimizer and a learning rate of 10~%. We set the coefficient on the KL-
divergence loss to 1, and both of the coefficients on A\; and Ay of £, ;- to 5, and the WGAN-GP loss
is multiplied by 0.5. For VGG-Faces, we find a higher value of the weight on the gradient penalty
parameter (100) gives better training stability.

Minibatch Composition. For MNIST, minibatches were constructed of 4 samples of each of the
10 classes, with every possible positive- and negative comparison included in the £ » objective.
To train the content encoders for both omniglot and VGG-Faces, we construct minibatches by sam-
pling 20 classes, with 10 samples each, which is close to the recommended batch size of 256 from
Ustinova & Lempitsky|(2016). For performance reasons, we sample only 10 classes with 3 samples
each to train the style encoder, generator, and WGAN-GP critic. We sub-sample the between-class
comparisons such that their count equals the count of within-class comparisons.

Parameters for One-Shot Learning. We find that setting the weight on the real support data wg to
a value around 0.85 to give the best results. We also found that a relatively low temperature in the
softmax fuction works better than a high temperature (we used 7' = 0.05).

Standard Data Augmentation for Training Classifiers on Omniglot We selected three different
class-preserving standard augmentations for omniglot. We added random rotations between -20 and
20 degrees and random shifts between -3 and 3 pixels in both vertical and horizontal directions. We
also added croppings of the 28 x 28 original images to a random size as small as 25 x 25, and
rescaled the cropped image back to 28 x 28. The amount of standard augmentation was selected
based on the validation set.

A.3 EXPLORATION OF LOSS COEFFICIENTS ON MNIST

Figure [§] shows the effect of varying the weights on reconstruction and decomposition losses on
performance on the Naturally Evaluated / Synthetically Trained task, using the validation set. In
all cases, the KL-divergence loss L, was set to a constant (1). The effect of the weight on re-
construction loss is shown in Figure [8}(a). When the weight is too small, reconstructions become
blurry and the generated digits are not useful samples for training. When the weight is too large, the
network learns to ignore content, reconstructing only from style. In this case, the generated images
look better, but not of the intended class. The blue line in Figure[8}(b) shows the effect of the weight
on predictability minimization, with the reconstruction weight clamped to X. The green dotted line
shows performance with no predictability minimization. When the weight is too small, we hypoth-
esize that predictability minimization can still interfere with the network’s ability to reconstruct, but
without providing much benefit in terms of reducing representation redundancy. When the weight
is too large, the network can no longer generate good images. Figure[S}(c) shows the effect of both
coefficients of £, (A1 and A2) on NEST performance. Since there are two coefficients, we demon-
strate the effect of one when the other is held constant at its best setting. The left-hand plot shows
the effect of A1, which governs the component that filters leakage of style from z° when generating
an image. When this parameter is set too low, reconstructions are blurry and not useful for training.
We found that as long as this parameter is set to a high enough value, increasing it further does
not appear to affect the quality of generated images. The righthand plot of Figure [8}(c) shows the
effect of Ay, which governs the component that filters leakage of content from z° when generating
an image. Again, we find that as long as this parameter is not set too low, performance is relatively
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Figure 8: Explorations of loss weights for CE, PM, and LF.

insensitive to its value. This behavior is advantageous for LF: its insensitivity to relative weighting
means that not much hand-tuning is necessary, while CC and PM need a great deal of hand tuning.

A.4 EFFECT OF PREDICTABILITY MINIMIZATION ON CONTENT INFORMATION IN STYLE

If predictability minimization is working properly, it should reduce the amount of content infor-
mation recoverable from the style representation. To investigate the effect, we trained several
STOC models on MNIST using predictability minimization, and varied the weight on the PMloss.
After training, we train feedforward neural net with one hidden layer that predicts digit-class from
the posterior mean and variance of the style representation. As content information is removed
from style, the classifier should be increasingly inaccurate. The blue line in Figure 0] shows style-
conditional content classification accuracy as a function of the weight on the predictability minimiza-
tion decomposition loss. The dotted green line shows the accuracy when predictability minimization
is disabled. As expected, the accuracy decreases with greater weight on PM.
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