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ABSTRACT

It has widely shown that adversarial training (Madry et al., 2018) is effective in
defending adversarial attack empirically. However, the theoretical understanding
of the difference between the solution of adversarial training and that of stan-
dard training is limited. In this paper, we characterize the solution of adversarial
training for linear classification problem for a full range of adversarial radius ε.
Specifically, we show that if the data themselves are ”ε-strongly linearly separa-
ble”, adversarial training with radius smaller than ε converges to the hard margin
solution of SVM with a faster rate than standard training. If the data themselves
are not ”ε-strongly linearly separable”, we show that adversarial training with ra-
dius ε is stable to outliers while standard training is not. Moreover, we prove that
the classifier returned by adversarial training with a large radius ε has low confi-
dence in each data point. Experiments corroborate our theoretical finding well.

1 INTRODUCTION

Despite the impressive performance of deep neural networks on various learning tasks, the widely
existing adversarial examples (Goodfellow et al., 2014; Szegedy et al., 2017) has thwarted its ap-
plication in the safety-sensitive scenarios (Kurakin et al., 2016; Chen et al., 2015). A well trained
neural network can be vulnerable to certain small adversarial perturbation added to the original data,
despite the perturbations is almost imperceptible to human.

Adversarial training (Madry et al., 2018) is an effective method to train a robust deep neural net-
work that can resist adversarial samples to some extent. However, the theoretical understanding of
adversarial training is quite limited. In this paper, we try to unveil the mystery of adversarial train-
ing. Specifically, in this paper for adversarial training, we consider the attack in l2 norm, i.e. the
following objective

min
θ

1

N

N∑
i=1

max
‖x−xi‖2≤ε

`(x,θ). (1)

This is in contrast with the standard training objective minθ
1
N

∑N
i=1 `(x,θ). To obtain a clear

theoretical characterization, we focus on the linear classifier.

In fact, for linearly separable data, Soudry et al. (2017); Ji & Telgarsky (2018) have proven that
the linear classifier trained by gradient descent (GD) with logistic loss converges to the hard margin
solution of SVM with a rate of O((log t)−1). However, we find things become much different for
adversarial training. We first prove that for ”ε-strongly linearly separable” data (Definition 1), GD
can find the hard margin classifier with a faster rate of O((log t)−(1+ε

∗)), with the same exponential
tail loss used in Soudry et al. (2017). Here ε∗ = (|S|ε(ε1−ε))/N , where ε1 is the distance between
the support vectors and the hard margin solution of SVM, and |S| is the number of support vectors
corresponding to hard margin classifier. This result shows that we can find a robust solution much
faster by adversarial training if the data themselves are more separable than the adversarial radius.

When the data are not ε-strongly linearly separable, adversarial training gives significantly different
solutions from the standard training. To further illustration, we consider the following case, most
of the data are ε-strongly linearly separable while there several outliers are not or even not linearly
separable. Then the classifier returned by standard training is heavily affected by these outliers,
since the classifier returned by standard training converges to the hard margin classifier while it can
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be sensitive to outliers. However, we can show the stability of adversarial training to outliers, i.e.
the classifier returned by adversarial training is slightly affected by outliers. Next, we also show that
adversarial training leads to a classifier with relatively lower confidence in each data point than that
of standard training. We then give a formal characterization for this phenomenon under the case of
a large ε. The low confidence in each training data naturally induces a high training loss. A simple
generalization error bound informs the high loss on test set, which interprets the widely observed
poor test performance of adversarial training.

1.1 RELATED WORK

Plenty of work trying to obtain a large margin solution to promote model robustness. Cisse et al.
(2017); Hein & Andriushchenko (2017) regularize the training with the Lipschitz constant of the
model to enhance robustness. Another line of work (Elsayed et al., 2018; Lee et al., 2019a; Serra
et al., 2018; Croce et al., 2019) uses a first order approximation to compute the margin of deep neural
network, and then find a large margin solution by setting the approximation to be the optimization
objective. However, none of these works come up with a theoretical guarantee.

Our paper is also related with Soudry et al. (2017); Ji & Telgarsky (2018) who prove that gradient
descent with logistic loss converge to the hard margin classifier for linearly separable data but with
a rate of O((log t)−1) or on non-linearly separable data with rate of O(log log t/ log t). Nacson
et al. (2018) extend this result to stochastic gradient descent. Gunasekar et al. (2018) study the
convergence under other optimization methods. Lyu & Li (2019) provides a similar result for the
homogeneous neural networks. However, they all target the standard optimization problem rather
than the adversarial training.

Ilyas et al. (2019) studies adversarial training via the lens of robust/non-robust features. They claim
that adversarial attacks are attributed to the presence of non-robust features and adversarial training
can be viewed as explicitly preventing the classifier from learning useful but non-robust features.
Their theory is presented under the parameter estimation framework, which is different from the
conventional adversarial training. Moreover, they do not discuss the convergence direction of adver-
sarial training.

2 NOTATIONS AND ASSUMPTIONS

In this section, we introduce the notations and assumptions we used in this paper. We consider a
binary classification problem.

Notations. Dataset is represented as {xi, yi}Ni=1, where xi ∈ Rd and yi ∈ {−1, 1}. The loss
function is represented by `(·). ‖ · ‖ means l2 norm in this paper. The objective of standard training
can be represented as

L0(w) =
1

N

N∑
i=1

`(wT yixi), (2)

where w ∈ Rd is a linear classifier. Adversarial training has the objective of

L(w) =
1

N

N∑
i=1

max
‖x−xi‖≤ε

`(wT yix), (3)

where ε is the adversarial radius. An intuitive explanation of adversarial training is that it requires
the classifier perform well in the ε-ball centered at each data xi. In this paper, wt is the iterate at
step t of gradient descent (GD) under adversarial training. We use ŵ to represent the solution of
SVM (8). Now, we give the definition of ε-strongly linearly separable data.
Definition 1 (ε-strongly linearly separable). 1 The dataset is ε-strongly linearly separable, if there
exists w∗ such that ∀xi,w∗T yixi > 0 and w∗T yixi > ε‖w∗‖.

The ε-strongly linearly separable means there exists a linear classifier that does not only give a right
prediction to each data point but also ensures all data are away from the linear classifier larger than

1Please notice that ε-strongly linearly separable is a stronger condition compared with linearly separable.
It distinguishes with the separability under soft margin which allows some w∗T yixi < 0 but w∗T yixi >
ε‖w∗‖.
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ε. In addition, linearly separable refers to choosing ε = 0 in Definition 1. We now define confidence
of classifier.
Definition 2 (Confidence). For a given linear classifier w of binary classification problem, the
logits is 1/(1 + e−w

Txi) and e−w
Txi/(1 + e−w

Txi) for category 1 and −1. Then max{1/(1 +

e−w
Txi), e−w

Txi/(1 + e−w
Txi)} is the confidence of w on data xi.

The confidence measures how confident the classifier is about the prediction. In the sequel, we use
xi to represent yixi for simplify the notations. We introduce the assumptions used in this paper.
Assumption 1. The loss function `(·)2 satisfies that ∀u, `(u) > 0, `′(u) < 0, l′′(u) ≥
0, limu→∞ `(u) = limu→∞ `′(u) = 0, and the `(u) has Lipschitz gradient.3

Assumption 2. The l(·) and l′(·) have exponential tail, which means there exists some constant u0
and C1, C2 satisfies that ∀u > u0, C1e

−u ≤ l(u) ≤ C2e
−u as well as l′(u).4

Assumption 3. ThewTxi−ε‖w‖ has the range of [c1,∞) for eachxi, where c1 > −∞. ‖w‖ ≥ c2
for some constant c2.5.

Due to the properties of loss function, the adversarial training objective (3) with radius ε has an
explicit formula

L(w) =
1

N

N∑
i=1

`
(
wTxi − ε‖w‖

)
. (4)

The adversarial training objective equation 4 is optimized by the gradient descent, i.e.,

wt+1 = wt − η∇L(wt) = wt − η
N∑
i=1

`′
(
wT
t xi − ε‖wt‖

)(
xi − ε

wt
‖wt‖

)
, (5)

where η is the learning rate.

3 ADVERSARIAL TRAINING CONVERGES FASTER TO HARD MARGIN FOR
ε-STRONGLY LINEARLY SEPARABLE DATA

In this section, we theoretically characterize where adversarial training converges when the data
themselves are ε-strongly linearly separable. We first have the following key lemma which ensures
the loss of adversarial training with radius ε can converge to zero on ε-strongly linearly separable
data. The proof of this lemma is delegated to Appendix A.
Lemma 1. The adversarial training objective equation 4 is convex and L-smooth for some positive
constant L. Then if the data are ε-strongly linearly separable (1), the iterates {wt} returned by
GD under adversarial training satisfy 1): limt→∞ L(wt) = 0, 2): limt→∞ ‖wt‖ = ∞. and 3):
limt→∞w

T
t xi − ε‖wt‖ =∞

The distance of xi away from linear classifier wt is |wT
t xi|/‖wt‖. Then, the convergence result

in the Lemma 1 does not inform us the robustness of trained classifier. Fortunately, the results in
Soudry et al. (2017); Ji & Telgarsky (2018) claim that the iterates of standard training updated by
GD can converge to hard margin classifier with the rate of O((log t)−1). Now, we give the main
result of this section. The conclusion is similar to Theorem 3 in Soudry et al. (2017) while the
convergence is much sharper.
Theorem 1. For any ε-strongly linearly separable data (Definition 1), and loss function `(·) satisfies
Assumption 1 and 2. If the Assumption 3 holds, then the gradient flow iterates w(t) ,

dw(t)

dt
= −∇L(w(t)) (6)

satisfies
w(t) = ŵ ·O (log t) + h(t), (7)

2The loss is set to be positive, differentiable, monotonically decreasing convex function. Lots of general
used loss functions are satisfied, such as e−u, log (1 + e−u) etc.

3It means that |`′(u)− `′(v)| ≤ L|u− v| for some positive constant L.
4Lots of loss functions we used such as log (1 + e−u), e−u are satisfied with this assumption.
5This assumption can be attained by re-scale the norm of w if necessary.
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for a large t. Here ŵ is the hard margin solution of SVM:

ŵ = arg min
w∈Rd

‖w‖ s.t.wTxi ≥ 1. (8)

‖h(t)‖ is in the order of o(log t). Then

lim
t→∞

∥∥∥∥ w(t)

‖w(t)‖ −
ŵ

‖ŵ‖

∥∥∥∥ ≤ O((log t)−(1+ε∗)), (9)

where ε∗ = |S|ε(ε1−ε)
N , {εi} is the sorted distance of data away from the hard margin solution of

SVM, and S = {i : ŵTxi = ε1‖ŵ‖}; |S| is the number of elements in set S. Finally, iterates {wt}
of adversarial training updated by GD with step size η satisfies

‖wk −w(kη)‖ ≤ O(η), (10)

for k ∈ N+. Then we can conclude

lim
t→∞

∥∥∥∥ wt
‖wt‖

− ŵ

‖ŵ‖

∥∥∥∥ ≤ lim
t→∞

∥∥∥∥ w(tη)

‖w(tη)‖ −
ŵ

‖ŵ‖

∥∥∥∥+O(η). (11)

We give a brief discussion to hard margin solution of SVM. Since the dataset is ε-strongly linearly
separable, by KKT condition, we have ε < 1/‖ŵ‖ which informs us all the distance between xi
and ŵ are larger than ε. Then, we present that perturbations smaller than ε can be defended by
ŵ. Hence, the linear classifier wt becomes robust for a large t, since it has the same direction
with ŵ. We then conclude adversarial training on ε-strongly linearly separable data helps iterates
{wt} converge to a robust solution with a fast rate. A detailed proof of this Theorem is delegated to
Appendix C.

For the theorem, we have several remarks about the adversarial training on ε-strongly linearly sepa-
rable data.

• Adversarial training converges to a robust solution, the same as standard training, with a
faster rate. The acceleration is determined by the constant ε∗ = (|S|ε(ε1 − ε))/N which
related with the true margin ε1 and the number of support vectors |S|.
• Large proportion of support vectors |S|/N , and an appropriate choice of ε (ε1/2 is the best)

increase the convergence rate.

We next study where adversarial training converges when the data are not ε-strongly linearly sepa-
rable.

4 ADVERSARIAL TRAINING WHEN DATA ARE NOT ε-STRONGLY LINEARLY
SEPARABLE

It’s hard to obtain the exact separability of data without verifying the hard margin solution of SVM
before adversarial training. Hence, understanding adversarial training on non-ε-strongly linearly
separable data is also crucial.

4.1 THE INFLUENCE OF OUTLIERS

We consider the case that clean data are ε-strongly linearly separable but the whole data set is not
ε-strongly linearly separable because of outliers. We investigate how the outliers affect standard
training and adversarial training.

4.1.1 STANDARD TRAINING IS UNSTABLE TO OUTLIERS

We now illustrate how standard training can be easily altered by outliers for both linearly and non-
linearly separable data.

As shown in Soudry et al. (2017); Ji & Telgarsky (2018), gradient descent converges to the hard
margin solution for the exponential loss and linear separable data. Although the hard margin solution
is believed to be a reasonably good classifier, it has potential to be non-robust, if one can intentionally
insert outliers to be support vectors. The following proposition presents that hard margin classifier
somehow can be non-robust.

4



Under review as a conference paper at ICLR 2020

Proposition 1. For two linearly separable datasets {x1
i }
N1
i=1 and {x2

i }
N2
i=1, let ŵ1 and ŵ2 be

their hard margin classifier respectively. Then, the hard margin classifier ŵ of union dataset
{x1

i }
N1
i=1

⋃
{x2

i }
N2
i=1 satisfies ‖ŵ‖ ≥ max{‖ŵ1‖, ‖ŵ2‖}.

This proposition can be derived from the definition of hard margin classifier, which suggests that
adding some extra outliers to dataset can easily effect the robustness of hard margin classifier, since
‖ŵ‖ ≥ max{‖ŵ1‖, ‖ŵ2‖} and one of wi can be extremely large. Hence, the non-robustness of
hard margin classifier can be attributed to some outliers. We use the next example to illustrate it.

Example 1. Suppose a dataset
{(
x1
i , 0
)}N1

i=1
is well linearly separable with large margin, which

means the hard margin classifier ŵ1 has a small norm. We insert some outliers which have the form{(
0,x2

i ,
)}N2

i=1
and N1 � N2. If the outlier is linearly separable with relatively small margin, the

corresponding hard margin solution is ŵ2, then we have ‖ŵ1‖ � ‖ŵ2‖.

We can show that hard margin classifier on the union dataset
{(
x1
i , 0
)}N1

i=1

⋃{(
0,x2

i

)}N2

i=1
is

(ŵ1, ŵ2). Then for each
(
x1
i , 0
)
, we have∣∣∣(ŵ1, ŵ2)T

(
x1
i , 0
)∣∣∣

‖ (ŵ1, ŵ2) ‖ =

∣∣ŵT
1 x

1
i

∣∣√
‖ŵ1‖2 + ‖ŵ2‖2

≤
∣∣ŵT

1 x
1
i

∣∣
‖ŵ2‖

�
∣∣ŵT

1 x
1
i

∣∣
‖ŵ1‖

. (12)

This shows the distance between each
{(
x1
i , 0
)}N1

i=1
and new hard margin classifier (ŵ1, ŵ2) be-

come extremely small due to a few outliers
{(

0,x2
i

)}N2

i=1
.

This indicates the solution returned by standard training is somewhat very sensitive to a few outliers
because outliers can easily alter the hard margin classifier.

We now give a more general description of outliers based on the understanding of Example 1. Given
two datasets {x1

i }
N1
i=1 and {x2

i }
N2
i=1 with N1, N2 data respectively, where N1 � N2. {x1

i }
N1
i=1 them-

selves are ε-strongly linearly separable , but {x2
i }
N2
i=1 are not. Then, dataset {x2

i }
N2
i=1 is considered

as outliers. Outliers themselves can even be not linearly separable. We use the next example to
illustrate another behavior of standard training to non-linearly separable outliers.

Example 2. Dataset {(x11
i ,x

12
i )}N1

i=1 ∈ Rd1+d2 is ε-strongly linearly separable but
{(0,x22

i )}N2
i=1 ∈ Rd1+d2 is not linearly separable. Let S = span{x12

1 , · · · ,x12
N1
} =

span{x22
1 , · · · ,x22

N2
}. Without loss of generality, we assume {x11

i }
N1
i=1 themselves are linearly sep-

arable but the hard margin classifier of them ŵ11 has relatively small margin compared to the
{x12

i }
N1
i=1, i.e., ‖ŵ11‖ � ‖ŵ12‖, where ŵ12 is the hard margin classifier on {x12

i }
N1
i=1

6.

The union datasets {(x11
i ,x

12
i )}N1

i=1

⋃
{(0,x22

i )}N2
i=1 is not linearly separable because of the outliers

set {(0,x22
i )}N2

i=1. Even worse, we show in this case, the classifier returned by standard training
can make the prediction most based on the useful but non-robust information {x11

i }
N1
i=1 (Ilyas et al.,

2019).

The reason is as follows. The outliers {(0,x22
i )}N2

i=1 happens to be the ”Strongly Convex Part”
as in Theorem 4.1 of Ji & Telgarsky (2018), then the iterates {wt} updated by gradient de-
scent of standard training converge to a direction of the hard margin classifier ŵ11 of dataset
{ΠS⊥(x11

i ,x
12
i )}N1

i=1 = {(x11
i , 0)}N1

i=1, where ΠS⊥(·) is the projection operator of space S⊥. Then,
the presence of outliers {(0,x22

i )}N2
i=1 renders the classifier returned by standard training on union

datasets with poor robustness while the true hard margin classifier on dataset {(x11
i ,x

12
i )}N1

i=1 is
robust.

The two examples that standard training converges to non-robust solution at the presence of outliers
also demonstrates that standard training can easily capture the ”non-robust but useful information”.
The first is to classify outliers {(0,x22

i )}N2
i=1 into correct category renders the classifier (ŵ1, ŵ2) to

be non-robust. The second describes that the outliers mute the information from {(0,x12
i )}N1

i=1 for
dataset {(x11

i ,x
12
i )}N1

i=1. Then, the classifier turns into a non-robust but useful classifiers.

6The hard margin classifier of {(x11
i ,x

12
i )}N1

i=1 ŵ1 satisfies ‖ŵ1‖ ≤ min{‖ŵ11‖, ‖ŵ12‖} which leads to
a even more robust solution.
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4.1.2 ADVERSARIAL TRAINING IS STABLE TO OUTLIERS

Now, we turn to the behavior of adversarial training on the above two examples. Lemma 1 shows
that the iterates {wt} of adversarial training on ε-strongly linearly separable data updated by GD
can satisfy limt→∞ ‖wt‖ = ∞. But the non-ε-strongly linearly separability of data ensures there
exists some xki such that wT

t x
k
i − ε‖wt‖ ≤ 0 for each specific t. Hence, ‖wt‖ can not go to

infinity, otherwise we end up with an infinite loss. This is the essential distinction caused by non-ε-
strongly linearly separability. Now, we give a formal analysis to the stability of adversarial training
to outliers.

Due to Lemma 1, iterates of adversarial training updated by GD converge to a minimum w∗. Then,
let l′

(
w∗Txki − ε‖w∗‖

)
= pki , we have

∇L(w∗) =
1

N1 +N2

2∑
k=1

Nk∑
i=1

pki

(
xki − ε

w∗

‖w∗‖

)
= 0. (13)

It gives

ε
w∗

‖w∗‖

2∑
k=1

Nk∑
i=1

pki =

2∑
k=1

Nk∑
i=1

pki x
k
i =

2∑
k=1

Xkpk, (14)

where Xk = (xk1 , · · · ,xkNk
) and pk = (pk1 , · · · pkNk

). This implies that the direction of vector w∗
is decided by a linear combination of data points. Xkpk represents the contribution brought by
{xki }

Nk
i=1.

When data are ε-strongly linearly separable, by Assumption 2, we see pki /p
k′

j = o(1) (‖wt‖ goes to
infinity) for any support vector xki and non-support vector xk

′

j of w∗/‖w∗‖. Hence, the direction
of w∗ is mostly decided by support vectors. This is consistent with the conclusion that hard margin
solution of SVM ŵ satisfies (KKT condition) ŵ =

∑2
k=1

∑Nk

i=1 α
k
i x

k
i , where αki = 0 for non-

support vectors. Then, hard margin classifier is only decided by the linear combination of support
vectors, which could be potential instability of standard training to outliers, since outliers can easily
alter support vectors.

However, things become different for non-ε-strongly linearly separable data. Since ‖wt‖ can not go
to infinity, we have the relation pki /p

k′

j = O(1). Then the following inequality

λ
1
2

min
(
XT

2 X2

)
‖p2‖

λ
1
2
max (XT

1 X1) ‖p1‖
≤ ‖X2p2‖
‖X1p1‖

≤
λ

1
2
max

(
XT

2 X2

)
‖p2‖

λ
1
2

min (XT
1 X1) ‖p1‖

, (15)

informs us the stability of adversarial training to outliers, where λmin(A), λmax(A) are respectively
the smallest and largest eigenvalue of matrix A. From equation 13, we see the direction of w∗ can
be decided by both dataset {x1

i }
N1
i=1 and {x2

i }
N2
i=1. Since p1i has the same scale with p2j for every i, j

and N1 � N2, we see ‖p1‖ � ‖p2‖, then ‖X1p1‖ � ‖X2p2‖. Hence, equation 15 implies that
X2p2 has little contribution to the direction of w∗. Thus, w∗ can not be the hard margin classifier
on union dataset. In addition, w∗ is mostly decided by data {x1

i }
N1
i=1 which tells the stability of

adversarial training to outliers.

We now provide a discussion to the stability of adversarial training via the lens of robust/non-robust
but useful features proposed by Ilyas et al. (2019). First, we quote the definition of non-robust but
useful feature here.
Definition 3 (non-robust but useful feature (Ilyas et al., 2019)). For a given distribution (x, y), if
E(x,y)[y ·f(x)] ≥ ρ for some ρ > 0, but E(x,y)

[
inf‖δ‖≤ε y · f(x+ δ)

]
≤ 0, then f(·) is non-robust

but useful feature.

The definition of robust feature can be generalized for f(·) with E(x,y)

[
inf‖δ‖≤ε y · f(x+ δ)

]
≥

0. We see the feature is defined by classifier f(·) which is w for linear case. Then, the hard
margin solution of SVM ŵ1, ŵ2 for {x1

i }
N1
i=1 and {x2

i }
N2
i=1 in Example 1 and 2 are respectively

robust feature and non-robust feature. Further more, let w∗ be the classifier (feature) captured by
adversarial training. We note thatw∗ being stable to outliers means adversarial training can prevent
the classifier capture information from non-robust but useful features in sharp contrast with standard
training. This interprets the conclusion in Ilyas et al. (2019) while they only empirically verify it.
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We can also understand other scenarios from equation 15 that are not limited to N1 � N2. If
N1 ≈ N2, we see adversarial training can preserve a part of information from robust features.
Moreover, N2 � N1 means that most features are non-robust, and then adversarial training is also
helpless.

4.2 CONFIDENCE OF ADVERSARIAL TRAINING

In this subsection, we give a characterization to the confidence of classifier returned by adversarial
training where data is not ε-strongly linearly separable. As shown in Section 4.1.2, ‖wt‖ converges
to some constant when data is not ε-strongly linearly separable. According to Definition 2, the
confidence of classifier is decided by |wT

t xi| on each xi. Then, a bounded ‖wt‖ corresponds to a
relatively low confidence in each xi.

To give a formal description to the confidence of wt, we discuss an extremely large ε ≥
1
2 maxi,j ‖xi − xj‖, which means each ε-ball centered at xi has overlap with each other. For a
xi, larger |w∗Txi| corresponds with higher prediction confidence. For a given dataset {xi}Ni=1, let
N1, N2 respectively be the number of data in each category and xk,i represents the data from the
k-th category. Then we have following theorem descriping the confidence of classifier.

Theorem 2. Let l(u) = e−u, for classifier w∗ returned by adversarial training on non-linearly
separable data, |w∗Txk,i| is either smaller than ε‖w∗‖ or satisfies

e(|w
∗Txk,i|−ε‖w∗‖) ≤ 1

Nk′

Nk′∑
j=1

max
x:‖x−xk′,j‖≤ε

e(−w
∗Tx+ε‖w∗‖), if w∗Txk,i ≥ ε‖w∗‖,

e(|w
∗Txk,i|) ≤ 1

Nk′

Nk′∑
j=1

e(−w
∗Txk′,j−ε‖w

∗‖), if w∗Txk,i ≤ −ε‖w∗‖,w∗Txk′,j ≥ 0,

(16)

for k′ 6= k.

Our results also applies to l(·) discussed in this paper. A more explicit upper bound for those
w∗Txk,i ≥ ε‖w∗‖ is referred to equation 56. We notice that ‖w∗‖ is bounded on non-ε-strongly
linearly separable data. Then, this theorem implies that |w∗Txi| on each xi can not be extremely
large. Hence, a relatively low confidence in each xi. A detailed proof of this Theorem is delegated
to Appendix D. Here we use ε ≥ 1

2 maxi,j ‖xi − xj‖ is out of simplicity, a large ε for adversarial
training can also correspond to a similar result.

Theorem 2 informs the training loss of classifier w∗ is at a relatively high level. Then, a simple
generalization error bound (Vapnik, 1995) can tell that w∗ can also end up with a high error on test
data. This is an interpretation to the model trained by adversarial training always face a poor test
accuracy (Madry et al., 2018).

5 EMPIRICALLY STUDY

In this section, we compare adversarial training with standard training via linear classifier for two
scenarios, i.e., ε-strongly linearly separable data and non-ε-strongly linearly separable data. All
experiments are conducted with loss function `(u) = log (1 + e−u), and the update rule is GD with
learning rate 0.01.

5.1 EXPERIMENTS ON ε-STRONGLY LINEARLY SEPARABLE DATA

We first conduct a series of simulations to verify our conclusion on ε-strongly linearly separable data.
The dataset includes support and non-support vectors. We generate non-support vectors {xi}Ni=1 ∼
N (yi · 2 · 12, 0.3 · I2) and support vectors on the 1T2 xi = yi · 2. If there exists at least one support
vector in each category, the hard margin solution of SVM ŵ is 12. See Figure 1 for an example. The
distance of support vectors away from the hard margin classifier is

√
2. Hence, the data are at most√

2-linearly separable. We respectively verify our conclusions in Theorem 1 of the convergence rate,
support vector number |S| and adversarial radius ε.
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(a) Dataset with 5000 support vec-
tors in each category.

(b) Dataset with 2500 support vec-
tors and 2500 non-support vectors
in each category.

(c) Dataset with 1 support vector
and 4999 non-support vectors in
each category.

Figure 1: Three types of datasets.

(a) Adversarial training with differ-
ent ε.

(b) Adversarial training with differ-
ent number of support vectors.

(c) Standard training with different
number of support vectors

Figure 2: Gap between the direction of iterates and direction of hard margin classifier.

We conduct adversarial training with different ε and standard training on three datasets: number of
support vectors and non-support vectors in each category are respectively (5000, 0); (2500, 2500)
and (1, 4999) (see Figure 1). The results can be referred to Figure 2. Some extra experiments are
delegated to Appendix E. We should highlight the direction of {wt} here can converge with rate of
O((log 0.01 · t)−1) and O((log 0.01 · t)−(1+ε∗)), respectively for standard training and adversarial
training due to equation 11.

The ”margin gap” in Figure 2 means distance between the direction of iterates wt/‖wt‖ and hard
margin solution of SVM 12/

√
2. In Figure 2, the label, for example ”Adv: 2500 support 2500 non

support: 0.1 varepsilon” means adversarial training with ε = 0.1 on dataset with 2500 support vec-
tors and 2500 non-support vectors in each category. From the results, we see that adversarial training
indeed accelerates convergence rate of wt/‖wt‖. On the other hand, both adversarial training and
standard training can benefit from the number of support vectors. Finally, as we claimed in Theorem
1, the best adversarial radius ε is ε1/2 which is

√
2/2 here.

5.2 EXPERIMENTS ON NON-ε-STRONGLY LINEARLY SEPARABLE DATA

In this subsection, we conduct experiments on linearly separable (but non-ε-strongly linearly sepa-
rable) and non-linearly separable data. More extra experiments can be referred to Appendix E.

We first discuss the stability of adversarial training to outliers on linearly separable data correspond-
ing to Example 1. We generate {(x1

i , 02)}10000i=1 ∼ (N (yi · 2 · 12, 0.3 · I2), 02) and {(02,x2
i )}100i=1 ∼

(02,N (yi · 0.5 · 12, 0.1 · I2)). The number of the two datasets in each category are 5000 and 50.
The dataset {(02,x

2
i )}100i=1 is linearly separable while non-ε-strongly linearly separable for ε = 1.5.

{(x1
i , 02)}10000i=1 is ε-strongly linearly separable for ε = 1.5. {(02,x2

i )}100i=1 can be viewed as out-
liers. Then, we compare the stability of adversarial training and standard training conducted on the
union dataset to outliers. The adversarial radius ε is 1.5. Detailed results can be referred to Figure
3a.

8
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(a) Non-ε-strongly linearly separable but
linearly separable data.

(b) Non-linearly separable data.

Figure 3: Adversarial and standard training on non-ε-strongly linearly separable but linearly sepa-
rable data and non-linearly separable data.

(a) Frequency of confidence for data point
under adversarial training

(b) Frequency of confidence for data point
under standard learning

Figure 4: The confidence distributions of adversarial training and standard training when data are
linearly separable but ε ≥ 1

2 maxi,j ‖xi − xj‖. The y-axis is number of data.

For linearly separable data, the solid lines in Figure 3a are the norm of iterates returned by adversarial
training and standard training. The dash lines in Figure 3a, for example, ”Adv-sep/whole” means
the ratio between the norm of classifier decided by the ε-strongly linearly separable part that is
the first two dimensions of iterates and whole norm of iterates (‖w1‖/‖w‖, where w ∈ R4 =
(w1,w2) ∈ R2+2). The first and the last two dimensions of iterates are with respect to robust and
non-robust features. We have two observations for adversarial training, first, the norm of iterates
can converge to some constant rather than infinity. Second, The direction of iterates is mostly
decided by {(x1

i , 02)}10000i=1 , since the ”Adv-sep/whole” can converge to 1 as the iterate steps growing
up. However, we have an opposite observation for standard training, which means the direction of
classifier obtained by standard training is easily effected by some outliers {(02,x2

i )}100i=1.

Then, we present the results on non-linearly separable data with respect to Example 2, we
generate 5000 {(x11

i ,x
12
i )}10000i=1 ∼ (N (yi · 0.5 · 12, 0.1 · I2),N (yi · 2 · 12, 0.3 · I2)) and 50

{(02,x2
i )}100i=1 ∼ (02,N (−yi · 0.5 · 12, 0.5 · I2)) in each category. Here {(02,x2

i )}100i=1 is the source
of non-linearly separability. {x12

i }10000i=1 corresponds with a robust hard margin classifier while
{x11

i }10000i=1 is not. {(02,x2
i )}100i=1 can be viewed as outliers. We conduct adversarial training with

ε = 0.7. The results can be referred to Figure 3.

Figure 3b refers to non-linearly separable data, where the solid lines in it are also the norm of it-
erates. The first and the last two dimensions of iterates are respectively decided by the ”useful but
non-robust” part and ”robust” part. The non-linearly separability is from the last two dimensions of
data brought by outliers {(02,x2

i )}100i=1. The dash lines in Figure 3b, for example, ”Adv:sep-nrob”
and ”Adv-non sep-rob” are respectively the proportion in norm for the norm of the first and the last
two dimensions of iterates (‖w1‖/‖w‖ and ‖w2‖/‖w‖, where w ∈ R4 = (w1,w2) ∈ R2+2).

9
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We see standard training can easily capture the information from ”useful but non-robust” (first two
dimensions) part while the information from the ”robust” part (last two dimensions) is muted at-
tributes to outliers {(02,x

2
i )}100i=1. But adversarial training can oppositely capture the information

from ”mostly robust” part.

Finally, we see the confidence of the classifier obtained by adversarial training with ε ≥
1
2 maxi,j ‖xi − xj‖. We generate 5000 samples {xi}10000i=1 ∼ N (±0.5 · 12, 0.1 · I2) in each cate-
gory. The data are linearly separable but non-ε-strongly linearly separable for ε = 1, besides that,
1 ≥ 1

2 maxi,j ‖xi − xj‖. We compare the confidence in each data point for classifiers returned by
adversarial training with ε = 1 and standard training. The distributions of confidence via classifiers
in data can be referred to Figure 4. We see the classifier obtained by adversarial training corresponds
with nearly 50% confidence in all data. However, the confidence of classifier returned by standard
training is almost 100% in all data. Hence, a large ε for adversarial training can hurt the prediction
confidence of classifier.

6 CONCLUSION

In this paper, we give a theoretical characterization to adversarial training for linear classifiers under
various settings. We conclude that on ε-strongly linearly separable data, adversarial training helps
iterates converge to the hard margin classifier with a rapid rate compared with standard training. It
means iterates of adversarial training can be robust with less update steps. Furthermore, we charac-
terize the adversarial training on non-ε-strongly linearly separable data. We show both theoretically
and empirically that adversarial training can be more stable to the outliers of the dataset but standard
training is not. Finally, we discuss the confidence of the classifier obtained by adversarial training.
We prove that under the condition of ε ≥ 1

2 maxi,j ‖xi − xj‖, the confidence of classifier obtained
by adversarial training keeps in a low level. This reveals that a large ε for adversarial training is not
a wise choice.
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A PROOF OF LEMMA 1

Proof. We first give convexity to the adversarial training objective. For any two w1,w2, and 0 ≤
λ ≤ 1, by the convexity and monotone decreasing property of `(·), we have

1

N

N∑
i=1

`
(
λwT

1 xi + (1− λ)wT
2 xi − ε‖λw1 + (1− λ)w2‖

)
≤ 1

N

N∑
i=1

`
(
λwT

1 xi + (1− λ)wT
2 xi − ελ‖w1‖ − (1− λ)‖w2‖

)
≤ 1

N

N∑
i=1

λ`
(
wT

1 xi − ε‖w1‖
)

+ (1− λ)`
(
wT

2 xi − ε‖w2‖
)
,

(17)

which implies the convexity of adversarial training objective. On the other hand, if uT∇2L(w)u
can be bounded by L‖u‖2 for some L, then L(w) is L-smooth. We see that

∇2L(w) =
1

N

N∑
i=1

`′′(wTxi − ε‖w‖)
(
xi − ε

w

‖w‖

)(
xi − ε

w

‖w‖

)T
− ε

‖w‖3 `
′(wTxi − ε‖w‖)(‖w‖2I−wwT ).

(18)

Then, uT∇2L(w)u can be divided into two parts, we respectively compute them∣∣∣∣∣ 1

N

N∑
i=1

l′′(wTxi − ε‖w‖)
(

(uTxi)
2 − 2

ε

‖w‖u
Txiw

Tu+
ε2

‖w‖2 (uTw)2
)∣∣∣∣∣

≤ L0

N
‖u‖2

(
λmax

(
XTX

)
+ 2ε

N∑
i=1

‖xi‖+ 2ε2
)
.

(19)

Here X is matrix (xT1 , · · · ,xTN )T and λmax
(
XTX

)
is the largest eigenvalue of XTX. On the other

hand, according to Assumption 3,

uT
ε

‖w‖3 `
′(wTxi − ε‖w‖)(‖w‖2I−wwT )u ≤ 2ε

C1

c2
‖u‖2. (20)

Combining the two above equations, we conclude that largest eigenvalue of∇2L(w) is bounded for
some constant, which result in the L-smoothness of adversarial training objective. It’s a well known
(Boyd & Vandenberghe, 2004) that for a convex and L-smooth function f(·), GD with step size
η = 1

L will ensure the iterates {xt} satisfies f(xt)− f(x∗) ≤ O
(
1
t

)
. Since the adversarial training

loss goes to zero only if wT
t xi − ε‖wt‖ goes to infinity for each xi. It reveals our two conclusions

limt→∞ ‖wt‖ =∞ and limt→∞w
T
t xi − ε‖wt‖ =∞.

B ORDER OF NORM

In this section we give the order of ‖w(t)‖ on ε-strongly linearly separable data, which is highly
related to the convergence rate of

∥∥∥ w(t)
‖w(t)‖ −

ŵ
‖ŵ‖

∥∥∥. Our proof is based on the gradient flow, we first
bound the difference between flow iterates w(t) and wt.

Lemma 2. Let wt be the iterates updated by GD equation 5, then for dw(t)
dt = −∇L(w(t)), we

have
‖w(kη)−wk‖ ≤ O(η). (21)

Proof. Let
w̄(kη) = w((k − 1)η)− η∇L(w((k − 1)η)). (22)

12
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Then by Lipschitz gradient of L(·), we see

‖w(kη)− w̄(kη)‖ =

∥∥∥∥∥
∫ kη

(k−1)η

∇L(w(u))−∇L(w((k − 1)η))du

∥∥∥∥∥
≤
∫ kη

(k−1)η

L ‖w(u)−w((k − 1)η)‖ du

=

∫ kη

(k−1)η

L

∥∥∥∥∥
∫ u

(k−1)η

∇L(w(s))ds

∥∥∥∥∥ du
= O(η2).

(23)

Then we have

‖w(kη)−wk‖ ≤ ‖wk − w̄(kη)‖+ ‖w(kη)− w̄(kη)‖
≤ ‖w((k − 1)η)−wk−1‖+ η ‖∇L(w((k − 1)η))−∇L(wk−1)‖+O(η2)

≤ (1 + ηL) ‖w((k − 1)η)−wk−1‖+O(η2)

≤ · · · ≤ (1 + ηL)k ‖w(0)−w0‖+O(η)

= O(η),

(24)

for w(0) = w0, which results in the conclusion.

Before proving the Theorem 1, we give a lemma to illustrate thatw(t) will converge to the direction
of ŵ.

Lemma 3. There exists a t0, for t > t0, we have

w(t) = ρ(t)ŵ + h(t), (25)

for some ρ(t) and h(t). Here ρ(t) goes to infinity and ‖h(t)‖ is in the order of o(ρ(t)).

Proof. Let

r(t) = w(t)− ‖w(t)‖
‖ŵ‖ ŵ, (26)

‖r(t)‖ = o (‖w(t)‖) will implies the conclusion. Since `′(·) has exponential tail Assumption 2,
there exists a t0, for t > t0, we have

d

dt
‖r(t)‖ =

ṙT (t)r(t)

‖r(t)‖ = − 1

‖r(t)‖

(
1− w(t)T ŵ

‖w(t)‖‖ŵ‖

)
∇L(w(t))Tr(t)

≤ C

N‖r(t)‖ (1− cos(w(t), ŵ))

N∑
i=1

exp
(
−w(t)Txi + ε‖w(t)‖

)(
xi − ε

w(t)

‖w(t)‖

)T
r(t).

(27)
Then, we see

N∑
i=1

exp
(
−w(t)Txi + ε‖w(t)‖

)(
xi − ε

w(t)

‖w(t)‖

)T
r(t)

=

N∑
i=1

exp

(
−r(t)Txi −

‖w(t)‖ŵTxi
‖ŵ‖ + ε‖w(t)‖

)(
xi − ε

w(t)

‖w(t)‖

)T
r(t)

≤
N∑
i=1

exp

(
−‖w(t)‖ŵTxi

‖ŵ‖ + ε‖w(t)‖
)
− ε exp

(
−r(t)Txi −

‖w(t)‖ŵTxi
‖ŵ‖ + ε‖w(t)‖

)
w(t)T

‖w(t)‖r(t)

≤ N exp (−(ε1 − ε)‖w(t)‖) ,
(28)

where ŵ is the hard margin classifier and ε is the distance between support vectors and ŵ. Here we
use the relationship that ze−z ≤ 1 for any z and w(t)Tr(t) ≥ 0. Since

(1− cos(w(t), ŵ)) = − r(t)T ŵ

‖w(t)‖‖ŵ‖ , (29)
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and r(t)T ŵ ≤ 0, we have

d

dt
‖r(t)‖ ≤ −CN r(t)T ŵ

‖r(t)‖‖w(t)‖‖ŵ‖ exp (−(ε1 − ε)‖w(t)‖) ≤ CN

‖w(t)‖ exp (−(ε1 − ε)‖w(t)‖) . (30)

Similar to Theorem 3 in Su et al. (2015), by exponential tail of l(·) Assumption 2, we have

C1 exp
(
−w(t)Txi + ε‖w(t)‖

)
≤ `

(
w(t)Txi − ε‖w(t)‖

)
≤ N‖ŵ −w0‖

2t
, (31)

for some constant C1 and any xi. Then we see

log
2C1

N‖ŵ −w0‖
+ log t ≤ w(t)Txi − ε‖w(t)‖. (32)

On the other hand, by the definition of hard margin classifier and Lemma 1, there exists xi such that
w(t)Txi ≤ ε1‖w(t)‖. Combining this and equation 32, we have

1

ε1 − ε

(
log

C1

N‖ŵ −w0‖
+ log t

)
≤ ‖w(t)‖. (33)

Plugging this into equation 30, and we see that there exists a t1 such that 1
2 log t ≥ log N‖ŵ−w0‖

C1
,

then

‖r(t)‖ ≤ ‖r(t0 ∧ t1)‖+
(ε1 − ε)N2‖ŵ −w0‖

CC1

∫ t

t0∧t1

1

t log t
dt = O(log log t), (34)

for t ≥ t0 ∧ t1. Combining these, we conclude that ‖r(t)‖ is in the order of o(‖w(t)‖).

Next, we use a lemma to illustrate the explicit order of ρ(t)

Lemma 4. ρ(t) in Lemma 3 is on the scale of log t
ε1−ε , where {εi} is the sorted distance of {xi}Ni=1 to

hard margin solution of SVM ŵ.

Proof. From Lemma 3 and 3, we have

w(t) = ρ(t)
ŵ

‖ŵ‖ + h(t), (35)

where ρ(t)→∞ and ‖h(t)‖ = o(ρ(t)). Specifically, the h(t) can be chosen to be orthogonal with
ŵ, otherwise we can use a decomposition in a direct sum. For ‖w(t)‖, we have

‖w(t)‖ =
√
ρ(t)2 + ‖h(t)‖2

=
√
ρ(t)2 + ‖h(t)‖2 − ρ(t) + ρ(t)

=

(√
ρ(t)2 + ‖h(t)‖2 + ρ(t)

)(√
ρ(t)2 + ‖h(t)‖2 − ρ(t)

)
√
ρ(t)2 + ‖h(t)‖2 + ρ(t)

+ ρ(t)

=
‖h(t)‖2

ρ(t) +
√
ρ(t)2 + ‖h(t)‖2

+ ρ(t).

(36)

On the other hand, for t large enough,

d

dt
‖w(t)‖ = −∇L(w(t))T

w(t)

‖w(t)‖

≤ C1

N

N∑
i=1

exp
(
−w(t)Txi + ε‖w(t)‖

)(
xi − ε

w(t)

‖w(t)‖

)T
w(t)

‖w(t)‖

=
C1

N

N∑
i=1

exp

(
−ρ(t)

ŵTxi
‖ŵ‖ + h(t)Txi + ερ(t) + ε

‖h(t)‖2

ρ(t) +
√
ρ(t)2 + ‖h(t)‖2

)(
ŵTxi − ε‖ŵ‖

‖ŵ‖

)

≤ C2

N

N∑
i=1

exp (−(εi − ε)ρ(t)) (εi − ε).

(37)
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for some constant C1, C2. Since ρ(t) goes to infinity and ‖h(t)‖ = o(ρ(t)), the derivation of
‖h(t)‖2

ρ(t)+
√
ρ(t)2+‖h(t)‖2

will o(ρ′(t)). Similar to equation 37, we can get the lower bound of d
dt‖w(t)‖.

In summary, we have

C3

N
exp (−(ε1 − ε)ρ(t)) (ε1 − ε) ≤ ρ′(t) ≤ C2 exp (−(ε1 − ε)ρ(t)) (εN − ε) (38)

for constant some C3. Hence we can conclude that

log t

ε1 − ε
+ C5 ≤ ρ(t) ≤ log t

ε1 − ε
+ C4, (39)

for some constant C4, C5. It results in ρ(t) = O(log t).

We have proven that w(t) will converge to the direction of ŵ. Now, we will show w(t) will have
the same support vector with ŵ when t is large. It’s a key fact of proving Theorem 1.
Lemma 5. There exists t0 such that w(t) will have the same support vectors with ŵ for t > t0.

Proof. Let S = {i : ŵTxi = ε1‖ŵ‖}, for i ∈ S, j /∈ S, we have

w(t)T

‖w(t)‖ (xi − xj) =

(
ρ(t) ŵ

‖ŵ‖ + h(t)
)T

‖w(t)‖ (xi − xj)

≤ 1

‖w(t)‖

(
ρ(t)

ŵT

‖ŵ‖ (xi − xj) + ‖h(t)‖‖xi − xj‖
) (40)

Since xi is the support vector of ŵ, ŵT

‖ŵ‖ (xi − xj) > 0. Then, ‖h(t)‖ = o(ρ(t)) shows that
w(t)T

‖w(t)‖ (xi − xj) ≤ 0 for a large t. Then we get the conclusion.

C PROOF OF THEOREM 1

In this section, we give a fully characterization to the proof of Theorem 1.

Restate of Theorem 1. For any ε-strongly linearly separable data (Definition 1), and loss function
`(·) satisfies Assumption 1 and 2. If the Assumption 3 holds, then the gradient flow iterates w(t) ,

dw(t)

dt
= −∇L(w(t)) (41)

satisfies
w(t) = ŵ ·O (log t) + h(t), (42)

for a large t. Here ŵ is the hard margin solution of SVM:

ŵ = arg min
w∈Rd

‖w‖ s.t.wTxi ≥ 1. (43)

‖h(t)‖ is in the order of o(log t). Then

lim
t→∞

∥∥∥∥ w(t)

‖w(t)‖ −
ŵ

‖ŵ‖

∥∥∥∥ ≤ O((log t)−(1+ε∗)), (44)

where ε∗ = |S|ε(ε1−ε)
N , {εi} is the sorted distance of data away from the hard margin solution of

SVM, and S = {i : ŵTxi = ε1‖ŵ‖}; |S| is the number of elements in set S. Finally, iterates {wt}
of adversarial training updated by GD with step size η will satisfy

‖wk −w(kη)‖ ≤ O(η), (45)

for k ∈ N+. Then we can conclude

lim
t→∞

∥∥∥∥ wt
‖wt‖

− ŵ

‖ŵ‖

∥∥∥∥ ≤ lim
t→∞

∥∥∥∥ w(tη)

‖w(tη)‖ −
ŵ

‖ŵ‖

∥∥∥∥+O(η). (46)
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Proof. Let w(t) = ρ(t) ŵ
‖ŵ‖ + h(t). Denoting the support vectors set by S, S = {i : ŵTxi =

ε1‖ŵ‖}. By the exponential tail of `′(u) (Assumption 2), there exists a t0, for t > t0, we have

1

2

d

dt
‖h(t)‖2

= −
(
∇L(w(t)) + ρ′(t)

ŵ

‖ŵ‖

)T
h(t) = −∇L(w(t))Th(t)

≤ C

N

(∑
i∈S

+
∑
i/∈S

)
exp (−w(t)xi + ε‖w(t)‖)

(
xi − ε

w(t)

‖w(t)‖

)T
h(t)

=
C

N

(∑
i∈S

+
∑
i/∈S

)
exp

(
−ρ(t)

ŵTxi
‖ŵ‖ − h(t)Txi + ερ(t) +

‖h(t)‖2

ρ(t) +
√
ρ(t)2 + ‖h(t)‖2

)(
xi − ε

w(t)

‖w(t)‖

)T
h(t)

≤ C

N

∑
i∈S

exp

(
−ρ(t)

ŵTxi
‖ŵ‖ − h(t)Txi + ερ(t)

)(
xi − ε

w(t)

‖w(t)‖

)T
h(t)

≤ − ε

N

∑
i∈S

exp (−‖h(t)‖‖xi‖ − (εi − ε)ρ(t))
‖h(t)‖2

ρ(t)
,

(47)
7Here we use a fact that xTi h(t) ≤ 0 for i ∈ S, due to ŵ is the hard margin classifier. In addition,

1 +
‖h(t)‖2

ρ(t) +
√
ρ(t)2 + ‖h(t)‖2

≤ exp

(
‖h(t)‖2

ρ(t) +
√
ρ(t)2 + ‖h(t)‖2

)
. (48)

With this, we can choose a t0 such that

∑
i∈S

exp

(
−ρ(t)

ŵTxi
‖ŵ‖ − h(t)Txi + ερ(t)

)(
xi − ε

w(t)

‖w(t)‖

)T
h(t)

‖h(t)‖2

ρ(t) +
√
ρ(t)2 + ‖h(t)‖2

+
∑
i/∈S

exp (−w(t)xi + ε‖w(t)‖)
(
xi − ε

w(t)

‖w(t)‖

)T
h(t) ≤ 0,

(49)

for t > t0. This concludes the equation equation 47. Let ‖h(t)‖‖xi‖ be C(t), we can first derive
that ‖h(t)‖ will converge to zero, then C(t) can be close to zero. By Gronwall’s inequality, we have

‖h(t)‖2 ≤ ‖h(t0)‖2 exp

(∫ t

t0

−εe
−C(u)

Nρ(u)

∑
i∈S

exp (−(εi − ε)ρ(u)) du

)
, (50)

C(t) can be arbitrary small when t > t0. Plugging this into equation 50, and combining Lemma 4,
we have

‖h(t)‖2 ≤ ‖h(t0)‖2 exp

(∫ t

t0

−ε(ε1 − ε)
N log u

∑
i∈S

u
−
(

εi−ε
ε1−ε

)
du

)

= ‖h(t0)‖2 exp

(
−
∑
i∈S

ε(ε1 − ε)
N

∫ t

t0

1

u log u
du

)

= ‖h(t0)‖2 exp

(
−|S|ε(ε1 − ε)

N
log log t

)
= O(log t)−ε

∗
,

(51)

where ε∗ = |S|ε(ε1−ε)
N . Since we have

w(t)

‖w(t)‖ =
ρ(t)

ρ(t) + ‖h(t)‖2
ρ(t)

ŵ

‖ŵ‖ +
h(t)

ρ(t) + ‖h(t)‖2
ρ(t)

, (52)

7Here we hide the constant C in the last inequality, which is decided by loss function l(·). C will usually
smaller than 1 in fact.
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(a) Adversarial training with different ε. (b) Adversarial training with different num-
ber of support vectors.

Figure 5: Gap between the direction of iterates and direction of hard margin classifier in l4 space.

(a) Adversarial training with different ε. (b) Adversarial training with different num-
ber of support vectors.

Figure 6: Gap between the direction of iterates and direction of hard margin classifier in l∞ space.

then we see ∥∥∥∥ w(t)

‖w(t)‖ −
ŵ

‖ŵ‖

∥∥∥∥ ≤
1− ρ(t)

ρ(t) + ‖h(t)‖2
ρ(t)

+
‖h(t)‖

ρ(t) + ‖h(t)‖2
ρ(t)

=
‖h(t)‖2

ρ(t)2 + ‖h(t)‖2 +
‖h(t)‖

ρ(t) + ‖h(t)‖2
ρ(t)

= O (log)−(1+ε∗)

(53)

when t goes to infinity. Since h(t) ≤ O(log t)−ε
∗
, for ε∗ = |S|ε(ε1−ε)

N . Combining Lemma 2, we
can get the conclusion.

D PROOF OF THEOREM 2

Proof. The xk,i will either satisfies |w∗Txk,i| ≤ ε‖w∗‖ nor |w∗Txk,i| ≥ ε‖w∗‖. We know
the first inequality represents the distance between xk,i and w∗ is smaller than ε. Then for
w∗Txk,i ≥ ε‖w∗‖, due to ε ≥ 1

2 maxi,j ‖xk,i − xk′,j‖ for any i, j, there exists x′k′,j ∈
B2(xk′,j , ε)

⋂
B2(xk,i, ε) with k′, k = 1, 2 and k′ 6= k. By triangle inequality, the distance be-

tween x′k′,j andw∗ is smaller than w∗Txk,i

‖w∗‖ − ε. Since xk′,j locates in different category with xk,i,
by the monotone decreasing property of `(·), we have

`(−w∗Txk,i + ε‖w∗‖) ≤ `(x′k′j) ≤ max
‖x−xk′,j‖≤ε

`(w∗Tx). (54)
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(a) Non-ε-strongly linearly separa-
ble but linearly separable data.

(b) Non-linearly separable data. (c) Frequency of confidence for
data point under adversarial train-
ing

Figure 7: Adversarial training in l4 space. Outliers are added into dataset of the first two subfig-
ure. The third subfigure is confidence distribution for adversarial training when data are linearly
separable but ε ≥ 1

2 maxi,j ‖xi − xj‖. The y-axis in the third pictures is number of data.

(a) Non-ε-strongly linearly separa-
ble but linearly separable data.

(b) Non-linearly separable data. (c) Frequency of confidence for
data point under adversarial train-
ing

Figure 8: Adversarial training in l∞ space. Outliers are added into dataset of the first two subfig-
ure. The third subfigure is confidence distribution for adversarial training when data are linearly
separable but ε ≥ 1

2 maxi,j ‖xi − xj‖. The y-axis in the third pictures is number of data.

Hence we have

`(−w∗Txk,i + ε‖w∗‖) ≤ 1

Nk′

Nk′∑
j=1

max
‖x−xk′,j‖≤ε

`(w∗Tx− ε‖w∗‖). (55)

Then, we have

N2`
(
−|w∗Tx1,i|+ ε‖w∗‖

)
+N1`

(
−|w∗Tx2,i|+ ε‖w∗‖

)
≤ (N1 +N2)`(0), (56)

if w∗ can correctly predict a point far from margin larger than ε in each category, for those
w∗Txk,i ≥ ε‖w∗‖ due to w∗ is minimum, then L(w∗) ≤ L(0). On the other hand, for
w∗Txk,i ≤ −ε‖w∗‖, we can immediately derive

`(w∗Txk,i) ≤ `(−w∗Txk′,j − ε‖w∗‖), (57)

by triangle inequality where w∗Txk′,j ≥ 0. Then we get the conclusion.

E EXTRA EXPERIMENTS

E.1 ADVERSARIAL TRAINING IN lp SPACE

Our conclusions are obtained for adversarial training in l2 space while it can be conducted in a more
general lp space (Goodfellow et al., 2014; Madry et al., 2018). It is meaningful to verify whether
these conclusions are still hold in lp space. Hence, we extend our experiments to lp space.
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The adversarial training objective within linear classifier can be formulated as

L(w) =
1

N

N∑
i=1

max
‖x−xi‖p≤ε

`(wTx), (58)

in lp space, where ‖ · ‖p is lp norm. It has an explicit formulation

L(w) =
1

N

N∑
i=1

`
(
wTxi − ε‖w‖q

)
, (59)

where 1
p + 1

q = 1. We conduct experiments for p = 4 and p =∞.

We empirically verify that adversarial training in lp space helps accelerating the convergence to hard
margin solution of SVM on ε-strongly linearly separable data. Besides that, adversarial training
can benefit from more support vectors and an appropriate adversarial radius ε. For non-ε-strongly
linearly separable data, we try to validate that adversarial training in lp space is stable to outliers
while it will obtain a classifier with low confidence on each data. All the experiments we conducted
here are following the settings in Section 5, expect for the p are respectively chosen as 4 and ∞.
In addition, we should notice that the distance between support vectors locate in 1Td x = ±d and
hard margin classifier 1d in lp space is d

‖1d‖q . Hence we should adjust the adversarial radius ε for
different p.

We first verify the conclusion for ε-strongly linearly separable data. The results for p = 4 and
p = ∞ can be respectively referred to Figure 5 and 6. Noticing that the distance between support
vectors and hard margin solution of SVM is d

‖1d‖q = d
1
p . Then for p = 4, p = ∞ and d = 2, we

have 2
1
4 ≈ 1.18, 20 = 1. From the results, we see that an appropriate adversarial radius (ε = ε1/2)

and more support vectors are helpful for adversarial training even in lp space.

Now, we pay our attention to non-ε-strongly linearly separable data. We respectively verify our
conclusions about stability and confidence of adversarial training. The experimental settings are
again same with Section 5. The results can be referred to Figure 7 and 8. We see that our conclusions
are still hold in lp space, i.e. classifier obtained by adversarial training is stable to outliers and the
confidence of it will consist keep in a low level for a large ε.

As a matter of fact, we can generalize our theoretical results to lp space by following the methods
in this paper. The inner product 〈·, ·〉 of linear classifier is derived from ‖ · ‖2 while l2 is a Hilbert
space, but lp space is not. The inner product we used does not math the lp space. Hence, we need
adding some extra bounded conditions to extend our conclusions to lp space.

E.2 ADVERSARIAL TRAINING FOR NEURAL NETWORK

Our conclusions are derived from linear classifier, but Du et al. (2019); Jacot et al. (2018); Lee et al.
(2019b); Arora et al. (2019) suggest that over-parameterized neural networks of sufficient width (or
infinite width) evolve as linear models with Neural Tangent Kernel (NTK). Hence our conclusions
can somehow represent the performance of adversarial training for neural network models. In this
subsection, we try to empirically verify our conclusions about adversarial training within neural
network model.

We use CIFAR10 (Krizhevsky et al., 2012) to conduct our experiments. CIFAR10 is a dataset with
10 categories. To simplify the experiments, we only keep the first two categories, which turns
the experiments into binary classification problem. The model we used for adversarial training is
ResNet20 (He et al., 2015), which is a CNN with 20 layers. The experiments are conducted in l2
and l∞ space.

Since we can not compute the exact distance between data and classifier, we use the loss on training
data 8 with perturbation to represent the robustness of trained model. The perturbations are founded
by running 10 steps projected gradient descent (PGD). We handle adversarial training by following
the settings in Madry et al. (2018). We use PGD to find the arg maxx:‖x−xi‖≤ε `(x,θ) for each xi.

8Here we only focus on training data because we do not discuss the generalization of model obtained by
adversarial training.
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(a) Adversarial training with different ε for
outliers exist or not.

(b) Frequency of confidence for data point
under adversarial training with an extremely
large ε.

Figure 9: Performance of adversarial training in l2 space

(a) Adversarial training with different ε for
outliers exist or not.

(b) Frequency of confidence for data point
under adversarial training with an extremely
large ε.

Figure 10: Performance of adversarial training in l∞ space

The steps of PGD is 10 for each xi. All the models are trained by stochastic gradient descent with
0.1 learning rate and 0.9 momentum parameter for 100 epochs. The loss function is set to be cross
entropy.

We first validate our conclusions for ε-strongly linearly separable data. Since neural network is not a
linear model, it is hard to construct extra support vectors like in Section 5. Hence, we can only verify
our conclusion that iterates of adversarial training converge faster to a robust solution, and it will
benefit from an appropriate choice of adversarial radius ε. To compare the influence of ε, we choose
ε = 0.25, 1.0, 2.0 in l2 space and ε = 2/255, 8/255, 16/255 in l∞ space. The size of perturbations
are from Madry et al. (2018). Besides that, the perturbations on training set 9 to verify the robustness
of trained model are 1.0 and 8/255 respectively in l2 space and l∞ space. The experimental results
in l2 and l∞ space can be referred to Figure 9a 10 and 10a. The label of curves, for example, ”Adv:
0.25 varepsilon” means adversarial training with ε = 0.25. From the figures, we see that the models
returned by adversarial training with ε = 1 and ε = 8/255 are respectively the most robust in l2 and
l∞ space. Hence, the conclusion that adversarial training can benefit from an appropriate choice of
ε also holds for neural network.

Then, for non-ε-strongly linearly separable data, we respectively discuss the influence of outliers and
a large ε. First, we construct 50 outliers {xi}100i=1 ∼ N (±0.078125 · 132×32×3, 0.045 · I32×32×3) in
each category in both l2 and l∞ space. The influence of outliers for adversarial training in l2 and
l∞ space can be respectively referred to Figure 9a and 10a. ”Adv with outliers: 0.25 varepsilon”

9We should highlight that the perturbations are recalculated after each epoch of training.
10We only list the results of adversarial leaning, because the loss on data with perturbation of standard

training will not converge (always larger than 2.0).
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means adversarial training with outliers added into dataset and ε = 0.25. From the results, we see
that outliers will barely effect the performance of adversarial training. Hence, we can conclude that
adversarial training is still stable to outliers, even the model is neural network. On the other hand, we
respectively choose ε equal to 4 and 32/255 in l2 and l∞ space to verify the confidence of classifier
returned by adversarial training. The distributions of confidence via adversarial training in l2 and
l∞ space can be respectively referred to Figure 9b and 10b. The results reveal that the confidence of
neural network trained by adversarial training with large ε is at a fairly low level in each data.

To summary, although our conclusion about adversarial training are derived from linear classifier,
the empirically results suggest it can be somehow extended to the case of neural networks. Thus, a
theoretical exploration for neural network is crucial in the future work.
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