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ABSTRACT

State-of-the-art neural machine translation methods employ massive amounts of
parameters. Drastically reducing computational costs of such methods without
affecting performance has been up to this point unsuccessful. To the best of our
knowledge, we are the first to propose a quantization strategy inclusive of all com-
ponents of the Transformer (Vaswani et al., 2017). We are also the first to show
that it is possible to avoid any loss in translation quality with a fully quantized
network. Indeed, our 8-bit models consistently score equal or higher BLEU than
the full-precision variant on multiple translation datasets. Comparing ourselves to
all previously proposed methods, we achieve state-of-the-art quantization results.

1 INTRODUCTION

The idea of using neural networks for machine translation was proposed only recently (Kalchbrenner
& Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014). Nonetheless, the approach has reached
impressive levels of translation. (Ahmed et al., 2017; Ott et al., 2018; Edunov et al., 2018). A
key element of this success was to allow the decoder to attend to all hidden states of the encoder
(Bahdanau et al., 2014). A few variations to this additive attention mechanism were proposed, such
as multiplicative attention and self-attention (Luong et al., 2015; Cheng et al., 2016; Lin et al., 2017).
The latter formed the basis of the Transformer network (Vaswani et al., 2017), which achieved state-
of-the-art machine translation. Inspiring a new wave of work, numerous natural language processing
tasks reached new heights (Devlin et al., 2018; Liu et al., 2019). Unfortunately, these models make
use of an enormous amount of parameters. Inference on resource-limited hardware such as edge-
devices is thus impractical.

A solution to reduce the computational burden of these neural networks is to lower numerical pre-
cision. Consequently, numerical values can be represented using fewer bits (Tang & Kwan, 1993;
Marchesi et al., 1993). This method called quantization has the advantage of providing good com-
pression rates with minimal loss in accuracy. It is also conveniently supported by most hardware.
Properly quantizing the Transformer would allow computational speed gains at inference, as well as
deployment on more constrained devices.

In this work, we propose a custom quantization strategy of the entire Transformer architecture, where
quantization is applied during the training process. Our method is easy to implement and results are
consistent with the full-precision Transformer. We test our approach on multiple translation tasks
such as WMT14 EN-FR and WMT14 EN-DE and obtain state-of-the-art quantization results. On
most tasks, our quantized models score equal or higher BLEU compared to full-precision. We are, to
the best of our knowledge, the first to fully quantize the Transformer architecture without impairing
translation quality.

2 BACKGROUND

In this section, we review a broad spectrum of quantization and pruning methods for neural network
compression.
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2.1 QUANTIZATION

Over the years, a large range of methods have been proposed to quantize neural networks. These
include, among many others, binary (Courbariaux et al., 2016), ternary (Lin et al., 2015; Li et al.,
2016), uniform affine (Jacob et al., 2017) and learned (Zhang et al., 2018) quantization.

Quantization has been applied to RNNs (Jordan, 1990), LSTMs (Hochreiter & Schmidhuber, 1997)
and GRUs (Cho et al., 2014). Ott et al. (2016) propose an exponential quantization method for RNN
weights. They compare their method with binary and ternary quantization on language modeling
and speech recognition. They reach the conclusion that binary weights are ineffective for RNNs,
while ternary and exponential quantization perform well. Hubara et al. (2016) quantize weights and
activations of RNNs and LSTMs to 2, 4 and 6-bit. He et al. (2016) propose modifications to the
gates and interlinks of quantized LSTM and GRU cells, as well as a balanced quantization method
for weights. Wu et al. (2016) successfully quantize the stacked LSTM neural machine translation
model to 8-bit without any loss in translation quality. Wang et al. (2018) propose to use different
quantization methods for different RNN components.

With regards to CNNs (LeCun et al., 1989), various works have explored quantizing the architecture.
Gong et al. (2014) compare matrix factorization, binarization, k-means clustering, product quanti-
zation and residual quantization on CNNs. Wu et al. (2015) apply quantization to both kernels and
fully connected layers of convolutional neural networks. Rastegari et al. (2016) evaluate the use of
binary weights on AlexNet (Krizhevsky et al., 2012). Zhou et al. (2016) use low bitwidth weights,
activations and gradients on CNNs.

Quantization has also been jointly used with other compression methods. Han et al. (2015) combine
pruning, quantization, weight sharing and Huffman coding, while Polino et al. (2018) use quantiza-
tion with knowledge distillation (Hinton et al., 2015) for higher compression rates.

2.2 PRUNING

LeCun et al. (1990) were the first to propose a Hessian based method to prune neural net weights,
with Hassibi et al. (1994) later improving the method. More recently, See et al. (2016) show that
pruning a fully trained model and then retraining it can increase performance over the original non-
pruned model. Gradually pruning in tandem with training has also been shown to increase perfor-
mance (Zhu & Gupta, 2017). Liu et al. (2017) prune nodes instead of weights by applying a penalty
in the loss on the γ parameters of batch normalization layers. Narang et al. (2017b) make better
use of hardware by applying pruning and weight decay in blocks to minimize the number of loaded
weight matrix chunks. Chen et al. (2018) combine quantization with block based low-rank matrix
approximation of embeddings.

Pruning methods have also been adapted to specific architectures. Liu et al. (2015) propose an
efficient sparse matrix multiplication algorithm for CNNs. For RNNs, Narang et al. (2017a) show
sparse pruning to work well on the architecture. In order to maintain dimension consistency, Wen
et al. (2017) propose to prune all basic LSTM structures concurrently. Park et al. (2018) introduce
simple recurrent units (SRUs) for easy pruning of RNNs.

3 QUANTIZATION STRATEGY

3.1 QUANTIZATION METHOD

Our quantization methodology was chosen to be uniform, meaning that the step size between two
quantized values is constant. This choice, which is an additional constraint, was made for practical
reasons. It indeed simplifies all computations required during inference, enabling the exploitation of
hardware resources more efficiently. If the performance with uniform quantization is already on par
with full-precision, then more weighty methods are unnecessary. The uniform quantization scheme
employed is further described by Jacob et al. (2017).
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Given an element x of a tensor X, we apply the quantization function Q:

Q(x) = x− xmin

s
(1)

s =
xmax − xmin

2k − 1
(2)

where xmin and xmax defines the endpoints of the quantization interval. When quantization is
applied to weights, these values are respectively min(X) and max(X). However, when quantization
is applied to activations, those values are running estimates. The latter are computed during training,
where for every forward pass, the xmin and xmax variables are updated via an exponential moving
average with a momentum of 0.9. The value k is the bit precision. For example, in the context of
8-bit quantization, k = 8.

At training time, we simulate quantization by first quantizing and then rescaling to the original
domain: ⌊

clamp(x;xmin, xmax)− xmin

s

⌉
∗ s+ xmin (3)

where the clamp function associates all the values outside the [xmin, xmax] range to the closest
endpoint and b·e represents rounding to the nearest integer. During backpropagation, we use the
straight-through estimator (Hinton, 2012) and set the gradients of clamped values to zero. The only
exception is for the LayerNorm’s denominator, where values can still be clamped, but gradients are
never zeroed. Once training is finished, s and xmin are frozen along with the weights.

3.2 WHAT TO QUANTIZE

We choose to quantize all operations which can provide a computational speed gain at inference. In
this regard, we quantize all matrix multiplications, meaning that the inputs and weights of MatMuls
will both be k-bit quantized. The other operations we quantize are divisions, but only if both the
numerator and denominator are second or higher rank tensors. For all other operations, such as sums,
the computational cost added by the quantization operation outweighs the benefit of performing the
operation with reduced precision. Hence, we do not quantize such operations.

More precisely, we quantize all weights of the Transformer, excluding biases. The latter are summed
with the INT32 output of matrix multiplications and thus provide no additional computational effi-
ciency from being quantized. Furthermore, the memory space of biases is insignificant in compari-
son to the weight matrices, representing less than 0.1% of total weights. For positional embeddings,
memory gain is also minimal, but since these will be summed with the quantized input embeddings,
we likewise quantize them. These embeddings also stay fixed, we can thus quantize them once
prior to training. The γ weights of LayerNorms are also quantized. As for activations, we quantize
the sum of the input embeddings with the positional encodings in both the encoder and decoder.
In the Multi-Head Attention, we quantize the (Q,K, V ) input, the softmax’s numerator, the soft-
max’s denominator, the softmax’s output and the Scaled Dot-Product Attention’s output. For the
position-wise feed-forward networks, we quantize the output of the ReLUs and of the feed-forward
networks themselves. Finally, for all LayerNorms, we quantize the numerator x−µ, the denominator√
σ2 + ε, their quotient and the output of the LayerNorm.

3.3 BUCKETING

Instead of using a single set of (s, xmin) per quantized tensor, we can quantize subsets of the latter
with each its own set of (s, xmin) (Alistarh et al., 2016). Even though this adds more scalars, the
memory cost is insignificant overall. Furthermore, the added flexibility can greatly alleviate the
precision loss resulting from trying to fit all values of a tensor into a single domain with lower
numerical precision.

We use this bucketing method for all weight matrices, with the number of subset equal to the out-
put dimension. For activations, we use bucketing when quantizing: the sum of input embeddings
with the positional encoding, the Q,K, V inputs, the Scaled Dot-Product Attention’s output, the
feed-forward’s output, the LayerNorm’s numerator, the LayerNorm’s quotient and the LayerNorm’s
output.
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Table 1: Our quantization strategy achieves better BLEU scores than all other quantization methods
for the Transformer on the WMT14 EN-DE, WMT14 EN-FR and WMT17 EN-DE test set.

Method Fully Size (Gb) Compr. BLEU
Quantized [EN-DE, EN-FR] EN-DE (2014) EN-FR EN-DE (2017)

Vaswani et al. (2017) [2.02, 1.94] 1x 27.3 38.1 -
Cheong & Daniel (2019) 0.69 2.92x - - 27.38
Bhandare et al. (2019) ≥ 0.96 ≤ 2.1x 27.33 - -
Fan (2019) ≥ 0.51 ≤ 3.99x 26.94 - -
Our method X [0.51, 0.49] 3.95x 27.60 39.91 27.60

3.4 DEALING WITH ZEROS

Unlike Jacob et al. (2017), we do not nudge the domain so that the zero value gets perfectly mapped.
The only zero values which we have to deal with are the padding, the output of ReLU layers and
dropouts. Since padding has no effect on the final output, we completely ignore these values when
quantizing. For ReLUs, we fix the xmin estimate of those quantization layers to 0, which guarantees
the perfect mapping of the value. Finally, quantization is applied before any dropout operation.
Indeed, even though the zeros added to the output of the quantization layer might not be part of the
domain, this only happens during training.

4 RELATED WORK

Recently, simple quantization solutions have been applied to the Transformer. Cheong & Daniel
(2019) apply k-means quantization and binarization with two centroids over the weights of the
network. For both methods, a look up table associated with each quantized layer is used to map
indices to their corresponding centroids. Similarly, Fan (2019) compares binary, 4 and 8-bit uniform
quantization of the Transformer weights. A big disadvantage with quantizing only the weights of a
network is that operations must still be performed in full-precision. Even though there is a reduced
memory usage of parameters, these constantly have to be casted back to full-precision. Achieving
quantization of both weights and activations is thus much more beneficial. The first attempt at doing
so for the Transformer applied 8-bit quantization on weights and inputs of feed forward layers and
binarizes the (Q,K) input of the Multi-Head Attention (Tierno, 2019). The scaling factor

√
dk is

approximated by a constant which can be computed as a right bitshift. The method though results
in huge drop in translation accuracy. Achieving better performance, Bhandare et al. (2019) quantize
certain MatMul operations and use the KL divergence to estimate the most suited parameters for
each quantization range. They restrain from quantizing all MatMuls, reporting that this resulted in
poor accuracy.

All of these methods omit quantizing the whole Transformer architecture, resulting in suboptimal
computational efficiency. Furthermore, these solutions all fail to avoid impairing translation quality.
Our method achieves both.

5 EXPERIMENTS

In this section, we present the results of our full quantization scheme on various tasks. We first com-
pare our method on a machine translation setup. We then present the results of numerous ablation
studies. We also compare the impact of delaying quantization on translation quality. Finally, we
evaluate our method on two language model tasks.

5.1 FULL QUANTIZATION

We apply our quantization strategy on both the base and big Transformer (Vaswani et al., 2017). The
training setup of all presented models is the same as in the original paper, with the exception that the
dropout ratio is set to 0.1 in all cases. We refer readers to the original paper for experimental details.
Our models were first evaluated on the WMT 2014 / 2017 English-to-German and WMT 2014
English-to-French translation tasks. Section A contains results for additional languages. Reported
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Table 2: Performance of our quantization method on the WMT14 EN-DE and WMT14 EN-FR test
set for a fixed number of training steps.

Model Method Precision EN-DE EN-FR
PPL BLEU Size (Gb) Compr. PPL BLEU Size (Gb) Compr.

Base Baseline 32-bit 4.91 26.42 2.02 1x 3.23 38.36 1.94 1x
Default Approach 8-bit 74.04 0.21 0.51 3.95x nan 0 0.49 3.95x
Post-Quantization 8-bit 4.97 26.44 0.51 3.95x 3.26 38.30 0.49 3.95x
Our method 8-bit 4.67 26.98 0.51 3.95x 3.23 38.55 0.49 3.95x
Post-Quantization 6-bit 6.00 24.84 0.38 5.25x 3.98 35.02 0.37 5.24x
Our method 6-bit 5.09 26.98 0.38 5.25x 3.38 37.07 0.37 5.24x
Our method 4-bit 11.96 18.32 0.26 7.81x 48.21 1.59 0.25 7.8x

Big Baseline 32-bit 4.03 26.85 6.85 1x 2.72 40.17 6.69 1x
Post-Quantization 8-bit 4.27 26.55 1.73 3.97x 2.78 39.78 1.68 3.97x
Our method 8-bit 4.24 27.95 1.73 3.97x 2.80 40.17 1.68 3.97x
Post-Quantization 6-bit 5.12 24.86 1.30 5.28x 3.08 37.92 1.27 5.28x
Our method 6-bit 4.78 26.76 1.30 5.28x 2.87 39.59 1.27 5.28x
Our method 4-bit 33.11 10.22 0.87 7.88x 42.42 2.81 0.85 7.88x

perplexity is per token and BLEU was measured with multi-bleu.pl1 on the newstest20142

test set. We used beam search with a beam size of 4 and a length penalty of 0.6, as in (Vaswani et al.,
2017). Another difference is that no checkpoint averaging was performed.

We compare our results with the original Transformer and other 8-bit quantization methods in Table
1. All models are base Transformers. Original uncompressed size is the same in all cases. Most work
do not report their compressed model size. For those, we give lower bounds based on their reports.
Our BLEU score was computed on the test set using the checkpoint with the highest validation
accuracy of 2 million training steps. Validation was computed every training epoch. Our objective
here was to train quantized models up to convergence. Very similar BLEU scores can be obtained
with much fewer training (see below). As for other methods, Cheong & Daniel (2019) retrain for
10k steps a 200k steps pretrained Transformer. Fan (2019) also does the same but does not mention
the number of retraining steps. Bhandare et al. (2019) and the original Transformer paper both do
not mention the number of training steps. Out of all methods, we are the only one quantizing every
component of the model (see section 4).

In Table 2, we show performance of our method on the WMT14 EN-DE and WMT14 EN-FR for a
fixed amount of training steps. We compare our results with two full-precision Transformers: base
and big variants. Training the quantized models was about twice as slow as training the baselines.
We also compare with two other quantization approaches. The first one is the ”default” approach,
which is to naively quantize every possible operation. The second approach applies our quantization
strategy post-training (see section 5.3 for details). In all cases except for post-quantization, BLEU
was computed on the test set using the checkpoint which scored the highest accuracy on the valida-
tion set. Towards the end of training, we ran one validation epoch for every 100 training steps. As
for post-training quantization, the BLEU score was computed on the test set using the best scoring
BLEU score on the validation set out of 20 trials. The latter varied by about 0.2 BLEU. For the
big Transformer variants, best results were obtained when not bucketing the Scaled Dot-Product
Attention’s output and the sum of the decoder’s input embeddings with the positional encoding.
The reason for the default approach’s nan in the EN-FR task is because quantizing every operation
causes numerical instability in the LayerNorm’s denominator, normally provided by the ε.

Generally, fully quantizing the Transformer seems to result in no loss in translation accuracy. We
believe the reason for this might be the lower numerical precision acting as a regularization effect.
Looking for such an effect in the training and validation curves, differences were too subtle for any
conclusions to be made.

All models use full-precision biases, s and xmin. This amounts to 6.52 Mb in the base models
and 13.04 Mb in the big models. Without bucketing, this would amount to 2.17 Mb and 4.33 Mb
respectively. All in all, these represent less than 2% of the total size of our quantized models. We

1https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/
multi-bleu.perl

2https://www.statmt.org/wmt14/translation-task.html
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Table 3: Effect of quantizing single activations of the Transformer on the translation quality. Results
are on the WMT14 EN-FR test set.

Module Quantized Activation No Bucketing Bucketing
PPL BLEU PPL BLEU

Encoder (Input Embedding + Positional Encoding) 3.20 38.61 3.20 39.08

Decoder (Input Embedding + Positional Encoding) 3.20 39.35 3.20 39.36

Multi-Head
Attention

Input (Q,K, V ) 3.21 39.06 3.21 39.29
LayerNorm Output 3.21 39.09 3.20 38.78

Scaled
Dot-Product

Attention

Softmax Numerator 3.20 39.32 3.21 39.01
Softmax Denominator 3.21 39.35 3.21 39.11
Softmax Output 3.22 39.41 3.22 38.87
Output 3.21 38.73 3.21 39.02

Feed-forward
ReLU Output 3.21 39.43 3.22 38.93
Feed-forward Output 3.54 38.03 3.20 39.27
LayerNorm Output 3.21 38.67 3.21 39.04

LayerNorm
Numerator 3.53 37.75 3.21 38.86
Denominator 1748 0 - -
Quotient 3.22 38.97 3.21 39.02

Table 4: Variations to our quantization scheme evaluated on the WMT14 EN-FR translation task.

Method PPL BLEU

No Bucketing 3.58 36.49
No Gradient Clipping 2549.30 0
No LayerNorm Denominator Quantization 3.20 37.97
8-bit Quantized Weights, Full-precision Activations 3.19 37.94

believe the small increase in model size is worth it in the case of bucketing. We show in section 5.2
that training without leads to poorer translation.

Although 6-bit quantization seems to perform well, the compression advantage over 8-bit is usually
lost. Most hardware store INT6 using either 8 or 32 bits. Dedicated hardware is needed to get
the full compression advantage. Unless 6-bit quantization results in better models, sticking to 8-bit
seems like the best choice for most hardware.

5.2 ABLATION STUDIES

To compare the effect of bucketing and better understand which operation is more sensitive to quan-
tization, we evaluate the effect of quantizing to 8-bit single operations of the Transformer, with and
without bucketing. By single operation, we mean quantizing the operation of a module for all Trans-
former layers. Table 3 shows results on the WMT14 EN-FR translation task. BLEU was computed
on the test set after 100k steps of training. The only operations underperforming our full-precision
baseline of 38.36 BLEU are the LayerNorm’s numerator when not bucketed and the denominator.
The latter cannot be bucketed because all dimensions of the variance tensor vary per batch. Solely
quantizing the LayerNorm’s denominator with no bucketing works, but results are poor. To success-
fully quantize this element without causing performance loss, we suspect quantizing other elements
in the network helps.

To further validate our quantization scheme, we evaluated four models trained with alterations to our
design choices. Results are presented in Table 4). All models are 8-bit quantized base Transformers,
trained in the same fashion as in section 5.1 on the WMT14 EN-FR task.
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Table 5: Impact of delaying quantization on translation quality. Results are on the WMT14 EN-DE
and WMT14 EN-FR test set.

Quantization Start
(training step)

EN-DE EN-FR
PPL BLEU PPL BLEU

Base (no quantization) 4.91 26.42 3.23 38.36
100 4.67 26.98 3.23 38.55

10000 4.99 26.63 3.21 38.62
50000 4.98 26.84 3.21 38.50
80000 5.03 26.41 3.21 38.43

Post-Quantization 4.45 25.50 3.22 37.96

Table 6: Evaluation of our quantization method on the WikiText-2 and WikiText-103 language
modeling tasks.

Precision Size (Gb) Compression WikiText-2 WikiText-103
Loss PPL Loss PPL

32-bit 243.04 1x 5.65 284.15 5.91 369.20
8-bit 61.22 3.97x 5.64 282.67 5.94 377.79
6-bit 46.04 5.28x 5.64 281.48 5.93 376.44
4-bit 30.86 7.87x 5.65 284.26 5.94 378.67

5.3 DELAYING QUANTIZATION

Our method’s goal is to increase computational efficiency when inferring with the Transformer. To
this end, our quantization scheme only requires us to learn s and xmin. Although we do so with
our quantization scheme throughout the whole training, this is not a necessity. Quantization could
also be applied later on while training. Results for different starting points are compared in Table 5.
The earliest we start quantizing is at 100 steps, since we need at least a few steps to assess the xmin

and xmax running estimates. We consider this to be training with quantization ”from scratch”. Post-
training quantization is also an option, where once the model is fully trained, we keep the weights
fixed, but compute the s, xmin and xmax over a few hundred steps. All models were evaluated
on the WMT14 EN-DE and WMT14 EN-FR translation tasks. BLEU was measured on the test
set using the checkpoint which scored the highest accuracy on the validation set during training.
Validation was computed every 100 training steps towards the end of training. From our observed
results, quantizing the model early on seems preferable. This reinforces our belief that quantization
helps training via regularization.

Learning quantization parameters adds a significant computational cost during training. A major
advantage to delaying quantization is to perform more training steps in the same given amount of
time. Therefore, when training time is a constraint, a possible strategy is to train a model without
quantization, perform more training steps and finally post-quantize the model. Another advantage of
post-quantization is that the method is quick to perform. This makes it easy to run many iterations
and search for the best performing candidate.

5.4 LANGUAGE MODELING

To evaluate if our quantization scheme generalizes well to other tasks, we evaluate it on a lan-
guage modeling benchmark. As the setup, we use PyTorch’s language modeling toy exam-
ple3 on the WikiText-2 and WikiText-103 corpus. The task consists of predicting the sequence
{xt+1, · · · , xt+n+1} from the input sequence {xt, · · · , xt+n}. We trained four Transformer mod-
els, one full precision and three with our quantization method. In each case, the model consists of
two Transformer encoder layers, with the embedding and hidden size set to 200. Multi-Head Atten-

3https://github.com/pytorch/examples/tree/master/word_language_model
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tion has two heads with keys and values of size 64. The final word projection layer’s weights are
shared with the embedding layer. Models were trained for 10 epochs with a batch size of 20 and
sequence length of 35. Learning rate is set to 5, dropout to 0.2 and gradient clipping to 0.25. Loss
is computed on every element of the output sequence. We refer readers to the PyTorch example (see
3) for any extra details. Results are presented in Table 6. Validation loss was computed every epoch
to determine the best candidate. Loss and perplexity are computed on the test set and averaged over
10 trials for WikiText-2 and 3 trials for WikiText-3.

6 CONCLUSION

We proposed a quantization strategy for the Transformer, quantizing all operations which could pro-
vide a computational speed gain, for a fully quantized architecture. All of our design decisions were
aimed at maximizing computational efficiency while making sure our method would be compatible
with as many different types of hardware as possible.

With our method, we achieve higher BLEU scores than all other quantization methods for the Trans-
former on multiple translation tasks and avoid any loss in BLEU compared to full-precision. Specif-
ically, out of 41 experiments, 8-bit quantization performed equal or better to full-precision in 36
cases.

We are very excited about the possibilities this work opens and plan on applying our method to
other tasks. We also intend to extend our work to variations of the Transformer, as well as further
exploring the compression of these networks.
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Table 7: Evaluation of our quantization method on the WMT14 EN-CS, WMT14 RU-EN and
WMT14 ES-EN translation datasets.

Model Method Precision EN-CS RU-EN ES-EN
PPL BLEU PPL BLEU PPL BLEU

Base Baseline 32-bit 6.90 22.71 3.56 32.62 5.59 29.99
Our method 8-bit 6.81 23.06 3.53 33.08 5.60 29.88

Big Baseline 32-bit - - - - 5.32 30.06
Our method 8-bit - - - - 5.35 30.15

A ADDITIONAL DATASETS

We evaluated our quantization method on additional translation datasets (see Table 7). All models
are trained following the same setup as in section 5.1, except the big model was only trained for one
epoch. Vocabulary size is set to 30k for all models. Since there is no test set for WMT14 ES-EN,
we used the validation set as a test set and omitted computing any validation epochs during training.

B PRUNING USELESS NODES

We propose an additional compression method for the Transformer, which is independent of our
quantization method. Both though can be used conjointly to further compress the Transformer.

Once the model is fully trained and quantized, we can further compress it by removing useless nodes.
By useless, we mean nodes which do not cause any loss in translation quality when removed. We
choose to prune nodes instead of independently pruning weights, to avoid the need of any special
hardware or software, which is usually the case when trying to leverage sparse weight matrices
obtained by the latter method. Pruning nodes results in concretely shrunken models. When getting
rid of a node, we remove its corresponding set of weights from the layer outputting it and the
following layer receiving the node as input.

The only nodes of the Transformer which can be removed without causing alterations to other com-
ponents of the network are the nodes in between the two layers of each feed-forward network.
Fortunately, these consist of a substantial portion of the model’s weights. In the case of the base
Transformer, for a respective vocabulary of size 37000 and 32000, 39.96% and 41.65% of the total
weights are owned by the feed-foward networks. This number grows to 47.03% and 48.18% in the
big Transformer, for again, a respective vocabulary of size 37000 and 32000.

To evaluate which nodes can be safely pruned without affecting translation quality, we estimate the
maximum value xmax for each node of the ReLU output over a few hundred steps. This is done on
the training set, using the fully trained model and keeping all other weights frozen. These xmax are
computed before quantizing the ReLU output and do not replace the ones used by the quantization
process. Figure 1 shows the histogram of these running estimates for one ReLU layer in the encoder
and one in the decoder. All other ReLU layers share the same pattern, where in the encoder there
are always multiple xmax close to 0, while this not being the case for the decoder.

Once the running estimates are computed, we prune its corresponding node if xmax < zσ where z
is a hyperparameter and σ the standard deviation of the xmax of the layer. We empirically found
z = 0.025 to work well, with higher thresholds causing BLEU to quickly decay. No retraining of
the model is performed after nodes have been pruned.

Using this pruning method, we can further compress the Transformer without affecting BLEU
scores. Table 8 shows results of our pruning method. Our approach has the advantage of being
adaptive, meaning the number of nodes pruned per layer will differ as opposed to a fixed pruning
ratio method. For example, in the case of the big Transformer trained on WMT14 EN-FR, 169 nodes
were pruned in the first ReLU of the encoder, while in the second, 1226 were pruned. Nodes in the
decoder rarely got pruned, at most 4 in the whole decoder.
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Figure 1: Histograms of the running estimates xmax of a ReLU layer in the encoder (left) and
decoder (right), one xmax per output node of the layer.

The threshold allows us to find the right ratio of nodes to prune per layer instead of the usual: decide
the ratio first and then prune. We compared with two such methods, where for each task, we fix the
ratio to the global percentage of nodes pruned in the encoder by our method. The first fixed pruning
method uses L1-norm to sort nodes to prune in ascending order, while the second sorts nodes using
the xmax, also in ascending order.

Since xmax is a running estimate, results varied per trial. The method only takes a few hundred
training steps to perform though, so running many trials is not an issue. We evaluated our method on
the validation set a few times until accuracy increased over the non-pruned model. Perplexity and
BLEU were then computed on the test set. Reported results are averaged over a few trials. When
accuracy was not improving, BLEU would either be the same or decreased by about 0.01−0.02.
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Table 8: Comparison of our adaptive pruning scheme versus fixed rate pruning methods for equal
pruning proportions. Total compression is of quantization combined with pruning.

Model Task Precision Method PPL BLEU Nodes Pruned
in Encoder FF

Base EN-DE 8-bit No pruning 4.39 27.60 0%
L1-norm, fixed 5.57 23.99 13.57%
xmax, fixed 4.57 27.33 13.57%

xmax, adaptive 4.40 27.60 13.57%

6-bit No pruning 5.09 26.98 0%
L1-norm, fixed 6.97 20.81 12.06%
xmax, fixed 5.41 26.20 12.06%

xmax, adaptive 5.09 26.98 12.06%

EN-FR 8-bit No pruning 2.90 39.91 0%
L1-norm, fixed 4.38 29.01 9.47%
xmax, fixed 3.18 39.40 9.47%

xmax, adaptive 2.90 39.91 9.47%

6-bit No pruning 3.38 37.07 0%
L1-norm, fixed 4.19 31.64 9.62%
xmax, fixed 3.68 36.91 9.62%

xmax, adaptive 3.38 37.07 9.62%

Big EN-DE 8-bit No pruning 4.24 27.95 0%
L1-norm, fixed 5.80 22.65 26.39%
xmax, fixed 4.47 27.43 26.39%

xmax, adaptive 4.25 27.95 26.39%

6-bit No pruning 4.78 26.76 0%
L1-norm, fixed 7.73 17.32 29.96%
xmax, fixed 4.92 26.86 29.96%

xmax, adaptive 4.78 26.76 29.96%

EN-FR 8-bit No pruning 2.80 40.17 0%
L1-norm, fixed 4.16 28.85 28.41%
xmax, fixed 2.91 39.40 28.41%

xmax, adaptive 2.80 40.17 28.41%

6-bit No pruning 2.87 39.59 0%
L1-norm, fixed 7.88 15.09 22.66%
xmax, fixed 2.91 39.25 22.66%

xmax, adaptive 2.87 39.59 22.66%
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