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ABSTRACT

Applying resolution-preserving blocks is a common practice to maximize informa-
tion preservation in video prediction, yet their high memory consumption greatly
limits their application scenarios. We propose CrevNet, a Conditionally Reversible
Network that uses reversible architectures to build a bijective two-way autoencoder
and its complementary recurrent predictor. Our model enjoys the theoretically
guaranteed property of no information loss during the feature extraction, much
lower memory consumption and computational efficiency. The lightweight nature
of our model enables us to incorporate 3D convolutions without concern of memory
bottleneck, enhancing the model’s ability to capture both short-term and long-term
temporal dependencies. Our proposed approach achieves state-of-the-art results
on Moving MNIST, Traffic4cast and KITTI datasets. We further demonstrate the
transferability of our self-supervised learning method by exploiting its learnt fea-
tures for object detection on KITTI. Our competitive results indicate the potential
of using CrevNet as a generative pre-training strategy to guide downstream tasks.

1 INTRODUCTION

Deep learning has enjoyed tremendous success in recent years due to its ability to capture complex
dependencies and non-linearities in large datasets (Krizhevsky et al. (2012); He et al. (2016); Gomez
et al. (2017)). Excellent performance has been achieved on a wide range of supervised machine
learning tasks, ranging from image classification (He et al. (2016)) and object detection (Ren et al.
(2015)) to speech recognition (Amodei et al. (2016)). Despite the significant breakthrough in
supervised learning, the potential of applying deep architectures to unsupervised learning problems
remains largely unexplored. Lately there has been a surge of interest in the task of video prediction,
i.e., to predict future frames of a video sequence (Wang et al. (2017; 2018); Denton et al. (2017);
Denton & Fergus (2018); Villegas et al. (2017); Lee et al. (2018)). The significance of video prediction
primarily lies in its potential of discovering dynamics in the physical world. The self-supervised
nature of video prediction aligns well with how humans learn, without requiring large amounts of
labeled data. In addition, videos can provide an abundant and virtually unlimited source of visual
information. This allows video prediction models to serve as a generative pre-training strategy of
feature representation learning for a variety of downstream supervised tasks.

To date, most of the existing models for video prediction employ a hybrid of convolutional and
recurrent layers as the underlying architecture (Wang et al. (2017); Shi et al. (2015); Lotter et al.
(2016)). Such architectural design enables the model to simultaneously exploit the ability of convo-
lutional units to model spatial relationships and the potential of recurrent units to capture temporal
dependencies. Despite their prevalence in the literature, classical video prediction architectures
suffer from two major limitations. Firstly, in dense prediction tasks such as video prediction, models
are required to make pixel-wise predictions, which emphasizes the demand for the preservation of
information through layers. Prior works attempt to address such demand through the extensive use of
resolution-preserving blocks (Wang et al. (2017; 2018); Kalchbrenner et al. (2016)). Nevertheless,
these resolution-preserving blocks are not guaranteed to preserve all the relevant information, and
they greatly increase the memory consumption and computational cost of the models. The second
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Figure 1: The pipeline of our proposed CrevNet where a single two-way autoencoder serves as both
encoder and decoder. CrevNet �rst observes a warm-up video sequence and then starts a multi-frame
video prediction without refeeding its own predictions.

drawback of existing video prediction models is that they cannot ef�ciently take advantage of 3D
convolutions, as that would make these already cumbersome architectures even larger. 3D convolu-
tions have been shown to be a very effective alternative to RNNs to capture temporal relations in a
variety of video tasks (Liu et al. (2018); Carreira & Zisserman (2017)), and thus desirable to exploit.

Recently, reversible architectures (Dinh et al. (2014); Gomez et al. (2017); Jacobsen et al. (2018))
have attracted attention due to their light memory demand and their information preserving property
by design. However, the effectiveness of reversible models remains greatly unexplored in the video
literature. In this paper, we introduce a novel, conditionally reversible video prediction model,
CrevNet, in the sense that when conditioned on previous hidden states, it can exactly reconstruct the
input from its predictions. The contribution of this work can be summarized as follows:

� We introduce a two-way autoencoder that uses the forward and backward passes of an invert-
ible network as encoder and decoder (Fig 1). The volume-preserving two-way autoencoder
not only greatly reduces the memory demand and computational cost, but also enjoys the
theoretically guaranteed property of no information loss. The lightweight nature of our
model enables us to incorporate 3D convolutions without concern of memory bottleneck.

� We propose the reversible predictive module (RPM), as illustrated in Fig 2b, which extends
the reversibility from spatial to temporal domain. RPM, together with the two-way autoen-
coder, provides a conditionally reversible architecture (CrevNet) for spatiotemporal learning.
CrevNet achieves the state-of-the-art results on Moving MNIST, Traf�c4cast and KITTI.

� We evaluate the effectiveness of features learnt from self-supervision by adapting our
CrevNet for object detection on KITTI. Our competitive results indicate the potential of
using CrevNet as a generative pre-training strategy to guide downstream CV tasks.

2 APPROACH

We �rst outline the general pipeline of our method. Our CrevNet consists of two subnetworks, an
autonencoder network with an encoderE, decoderD and a recurrent predictorP bridging encoder
and decoder. Letx t 2 Rw� h� c represent thet th frame in videox, wherew, h, andc denote its width,
height, and the number of channels. Givenx0:t � 1, the model predicts the next framex̂ t as follows:

x̂ t = D(P(E(x t � 1)jx0:t � 2)) (1)
In the case of 3D convolution,x t 2 Rk � w � h � c denotes the short video clip fromt to t + k � 1
instead of a single frame at timestept, wherek is the temporal dimension of input or output. During
the multi-frame generation process without access to the ground truth frames, the model uses its
previous predictions instead.

2.1 THE INVERTIBLE TWO-WAY AUTOENCODER

We propose a bijective two-way autoencoder based on the additive coupling layer introduced in
NICE (Dinh et al. (2014)). We begin with describing the building block of the two-way autoencoder
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Figure 2: The network architecture of CrevNet (Better viewed in color). The input video frames are
�rst reshaped and split channelwise into two groups. These two groups are passed to the two-way
autoencoder (a) for feature extraction, and then to the predictor made up of multiple reversible
predictive modules (b). The transformed high-level features produced by predictor are then passed
back through the decoding pass of (a), shown here as a representative block (c) to yield its prediction.

(Fig 2a). Formally, the inputx is �rst reshaped and split channelwise into two groups, denoted asx1

andx2. During the forward pass of each building block, one group, e.g.x1, passes through several
convolutions and activations and is then added to another group,x2, like a residual block:

x̂2 = x2 + F1(x1) x̂1 = x1 + F2(x̂2) (2)

whereF is a composite non-linear operator consisting of convolutions and activations, andx̂1 and
x̂2 are the updatedx1 andx2. Note thatx1 andx2 can be simply recovered from̂x2 andx̂1 by the
inverse computation (Fig 2c) as follows:

x1 = x̂1 � F 2(x̂2) x2 = x̂2 � F 1(x1) (3)

Multiple building blocks are stacked in an alternating fashion betweenx1 andx2 to construct a
two-way autoencoder, as shown in Fig 2a. A series of the forward and inverse computations builds
a one-to-one and onto, i.e. bijective , mapping between the input and features. Such invertibility
ensures that there is no information loss during the feature extraction, which is presumably more
favorable for video prediction since the model is expected to restore the future frames with �ne-
grained details. To enable the invertibility of the entire autoencoder, our two-way autoencoder uses a
bijective downsampling, pixel shuf�e layer (Shi et al. (2016)), that changes the shape of feature from
(w; h; c) to (w=n; h=n; c� n2). The resulting volume-preserving architecture can greatly reduce its
memory consumption compared with the existing resolution-preserving methods.

We further argue that for generative tasks, e.g. video prediction, we can effectively utilize a single
two-way autoencoder, and to use its forward and backward pass as the encoder and the decoder,
respectively. The predicted framex̂ t is thus given by

x̂ t = E� 1(P(E(x t � 1)jx0:t � 2)) (4)

whereE� 1 is the backward pass ofE. Our rationale is that, such setting would not only reduce the
number of parameters in the model, but also encourage the model to explore the shared feature space
between the inputs and the targets. As a result, our method does not require any form of information
sharing, e.g. skip connection, between the encoder and decoder. In addition, our two-way autoencoder
can enjoy a lower computational cost at the multi-frame prediction phase where the encoding pass
is no longer needed and the predictor directly takes the output from previous timestep as input, as
shown in Fig 1, sinceE(E� 1) is an identity mapping .

2.2 REVERSIBLE PREDICTIVE MODULE

In this section, we describe the second part of our video prediction model, the predictorP, which
computes dependencies along both the space and time dimensions. Although the traditional stacked-
ConvRNN layers architecture is the most straightforward choice of predictor, we �nd that it fails to
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establish a consistent temporal dependency when equipped with our two-way autoencoder through
experiments. Therefore, we propose a novel reversible predictive module (RPM), which can be
regarded as a recurrent extension of the two-way autoencoder. In the RPM, we substitute all standard
convolutions with layers from the ConvRNN family (e.g. ConvLSTM or spatiotemporal LSTM) and
introduce a soft attention (weighting gates) mechanism to form a weighted sum of the two groups
instead of the direct addition. The main operations of RPM used in this paper are given as follows:

h1
t = ConvRNN(x1

t ; h1
t � 1) ConvRNN

gt = � (W2 � ReLU(W1 � h1
t + b1) + b2) Attention module

x̂2
t = (1 � gt ) � x2

t + gt � h1
t Weighted sum

wherex1
t andx2

t denote two groups of features at timestept, h1
t denote the hidden states of ConvRNN

layer,� is sigmoid activation,� is the standard convolution operator and� is the Hadamard product.
The architecture of reversible predictive module is also shown in Fig 2b. RPM adopts a similar
architectural design as the two-way autoencoder to ensure a pixel-wise alignment between the input
and the output, i.e. each position of features can be traced back to certain pixel, and thus make it
compatible with our two-way autoencoder. It also mitigates the vanishing gradient issues across
stacked layers since the coupling layer provides a nice property w.r.t. the Jacobian (Dinh et al. (2014)).
In addition, the attention mechanism in the RPM enables the model to focus on objects in motion
instead of background, which further improves the video prediction quality. Similarly, multiple RPMs
alternate between the two groups to form a predictor. We call this predictor conditionally reversible
since, givenht � 1, we are able to reconstructx t � 1 from x̂ t if there are no numerical errors:

x t � 1 = E� 1(P � 1(E(x̂ t )jht � 1)) (5)

whereP � 1 is the inverse computation of the predictorP. We name the video prediction model using
two-way autoencoder as its backbone and RPMs as its predictor CrevNet. Another key factor of
RPM is the choice of ConvRNN. In this paper, we mainly employ ConvLSTM (Shi et al. (2015)) and
spatiotemporal LSTM (ST-LSTM, Wang et al. (2017)) to enable a fair comparison with baselines.

2.3 3D CONVOLUTIONS

3D convolutions are proposed to address the shortcomings of standard 2D convolutions. The major
difference between 2D-CNNs and 3D-CNNs is that at each time step 2D-CNNs take as input one
video frame, while 3D-CNNs read in and output a short video clip containingk continuous video
frames. By applying convolutions on the temporal dimension along with the spatial dimension,
models equipped with 3D convolution �lters can not only extract representative spatiotemporal
features, but also learn to produce consistent video clip at each generation, which further improve
the quality of long-term prediction. In some cases, e.g. sequences are too short, we will use 2
consecutive frames stacked in the channel dimension instead as input at each timestep to assemble a
valid warm-up sequence for ConvRNN.

3 EXPERIMENTS

3.1 LONG-TERM PREDICTION—MOVING MNIST

Moving MNIST (Srivastava et al. (2015)) is a synthetically generated dataset that contains an in�nite
number of sequences of length 20. Each sequence shows how 2 digits move at a constant speed and
bounce inside a64� 64 frame, where each handwritten digit is randomly sampled from the MNIST
dataset. By assigning different initial locations and velocities to each digit, it is possible to generate
an unlimited number of sequences, thus enabling us to accurately evaluate the performance of each
model without the concern of data insuf�ciency issues. In the default setting, models are trained to
predict10 future frames after observing10 prior frames in the sequence. Although the dynamics
of Moving MNIST seems to be simple at �rst glance. It is quite hard to generate consistent future
frames in the task of long-term prediction as digits can bounce or occlude each other frequently.

Datasets and Setup:The general architecture of CrevNet used on Moving MNIST is composed of a
36-layer two-way autoencoder and 8 RPMs. All variants of CrevNet are trained by using the Adam
optimizer with a starting learning rate of5 � 10� 4 to minimize MSE. The training process is stopped
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after300; 000iterations with the batch size of 16 and evaluated with a �xed test set containing5; 000
sequences. To ensure that all samples in the test set are unseen by the model, digits in the training set
and the testing set are separately sampled from two mutually exclusive subsets of MNIST.

Model MNIST-2 MNIST-3 Memory FLOPS
SSIM MSE Human SSIM MSE (1 sample) (1 frame)

ConvLSTM (Shi et al. (2015)) 0.707 103.3 0.923 0.695 127.3 1043 MB 107.4 G
FRNN (Oliu et al. (2018)) 0.819 68.4 0.848 0.791 90.4 717 MB 80.1 G
VPN (Kalchbrenner et al. (2016)) 0.870 70.0 0.831 0.820 85.6 5206 MB 309.6 G
PredRNN (Wang et al. (2017)) 0.869 56.8 0.837 0.822 83.1 1666 MB 192.9 G
PredRNN++ (Wang et al. (2018)) 0.898 46.5 0.781 0.864 68.4 2017 MB 106.8 G
E3D-LSTM (Wang et al. (2019)) 0.910 41.3 0.706 0.870 62.4 2695 MB 381.3 G
CrevNet + ConvLSTM 0.928 38.5 0.602 0.886 57.2 130 MB 0.919 G
CrevNet + ST-LSTM 0.949 22.3 0.558 0.916 40.6 195 MB 1.618 G

Table 1: Quantitative evaluation of different methods on Moving MNIST. All metrics are averaged
over the 10 predictions. Lower MSE and higher SSIM indicates better prediction accuracy.

We compare CrevNet to six popular benchmark models from the literature: (i) ConvLSTM (Shi et al.
(2015)), (ii) FRNN (Oliu et al. (2018)), (iii) VPN (Kalchbrenner et al. (2016)), (iv) PredRNN (Wang
et al. (2017)) , (v) PredRNN++ (Wang et al. (2018)), and (vi) E3D-LSTM (Wang et al. (2019)),. All
baselines are implemented and optimized by following their corresponding protocols. To test our
model in a more challenging setting, we also extend Moving MNIST to a 3-digit version where digits
are more likely to occlude each other.

Results: The performance of each model in terms of per-frame MSE and the Structural Similarity
Index Measure (SSIM) (Wang et al. (2004)) is presented in Table 1. CrevNet outperforms all previous
methods by a wide margin on both metrics while memory consumption of all CrevNet variants is
signi�cantly lower than that of other baselines. In particular, CrevNet with ConvLSTM only uses 130
MB memory per sample and is still capable of yielding results better than any baselines.

To analyze the contribution of each module, we conduct an ablation study on both ConvLSTM
and ST-LSTM with respect to 3D convolution, two-way autoencoder and RPM and summarize
the results in Table 2. Note that we do not include the quantitative results of the combination of
two-way autoencoder and stack-ConvRNN predictor because it fails to produce consistent long-term
generations and we choose UNet (Ronneberger et al. (2015)) as an alternative to our two-way
autoencoder. We can observe a signi�cant improvement over ConvLSTM after we embed it into
our CrevNet framework, indicating the effectiveness of reversible architectures. Also, integrating
3D convolution can consistently enhance the performance of all architectures. To further show the
superior performance of CrevNet, we evaluate it on a harder 3-digit setting. Results are shown in
the right column of Table 1. Compared with the 2-digit setting, all models suffer a deterioration in
quantitative performance due to the more frequent occurrence of overlapping digits. Nevertheless,
our CrevNet still achieves the best result.

Figure 3: An extremely hard sequence of Mov-
ing MNIST where two digits are continuously
overlapped during the warm-up phase.

Model ConvLSTM ST-LSTM
MSE SSIM MSE SSIM

Stacked-RNN 103.3 0.707 56.8 0.869
3D Stacked-RNN 85.8 0.785 46.2 0.878

UNet+StackedRNN83.5 0.793 58.8 0.865
UNet+RPM 63.4 0.855 50.2 0.896

CrevNet w/o 3D 50.2 0.888 40.4 0.916
CrevNet + 3D 38.5 0.928 22.3 0.949

Table 2: An ablation study w.r.t. 3D convolution,
RPM and two-way autoencoder. All metrics are
averaged over the 10 predictions.

In Fig 3 , our qualitative analysis shows how each model performs on an extremely hard case
of Moving MNIST where two digits are continuously overlapped during the warm-up phase.
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Figure 4: The visual comparison of Traf�c4cast. The red boxes track some dynamics successfully
captured by our CrevNet. Better viewed large.

As we can see, our model is the only model that can differentiate the overlapping digits. The
information-preserving property of the two-way autoencoder enables our method to reconstruct every
�ne detail of moving digits after occlusion while baselines typically only restore the basic shape of
these numbers. In fact, our CrevNet works almost perfectly on Moving MNIST, with most of its
generations being visually indistinguishable from groundtruth.

We perform a human study to assess the �delity of the video clips generated by different models. We
presented pairs of video clips to human judges, where each pair consists of a video clip from the test
set together with the prediction generated by the model. The judges were asked to decide which of
the two video clips is more likely to be the groundtruth. To make each trail blind, the judges were
not informed which model is used for generation and two sequences were randomly displayed on
either side of the screen. We totally collected 2439 responses made by 58 human subjects and then
calculated the probability that human judges answered correctly. The results are reported in Table 1.
The accuracy of 55.8 % suggests that subjects could hardly detect the difference and their decisions
were very close to random guesses.

3.2 SHORT-TERM PREDICTION—TRAFFIC FLOW FORECASTING

Next, we evaluate our model on a more complicated real-world dataset, Traf�c4cast (IARAI (2019)),
which collects the traf�c statuses of 3 big cities over a year at a 5-minute interval. Traf�c forecasting
can be straightforwardly de�ned as video prediction task by its spatiotemporal nature. However, this
dataset is quite challenging for the following reasons. (1). High resolution: The frame resolution of
Traf�c4cast is 495� 436, which is the highest among all datasets. Existing resolution-preserving
methods can hardly be adapted to this dataset since they all require extremely large memory and
computation. Even if these models can be �tted in GPUs, they still do not have large enough receptive
�elds to capture the meaningful dynamics as vehicles can move up to 100 pixels between consecutive
frames. (2). Complicated nonlinear dynamics: Valid data points only reside on the hidden roadmap
of each city, which is not explicitly provided in this dataset. Moving vehicles on these curved roads
along with tangled road conditions will produce very complex nonlinear behaviours. It also involves
many unobservable conditions or random events like weather and car accidents.

Datasets and Setup:Each frame in Traf�c4cast dataset is a 495� 436� 3 heatmap, where the last
dimension records 3 traf�c statuses representing volume, mean speed and major direction at given
location. The architecture of CrevNet is the same as the one we used on Moving MNIST. As we
mentioned before, the existing resolution-preserving methods cannot handle such high resolution
input. Thus, to make the comparison possible, we add U-Net encoder-decoder to the baseline models
including ConvLSTM and ST-LSTM. We train each model to predict next 3 frames (the next 15
minutes) from 9 observations and evaluate prediction with MSE criterion.

Model CrevNet UNet+ST-LSTM UNet+ConvLSTM Best Team 2nd Best Team

MSE 9:340� 10� 3 9:725� 10� 3 9:846� 10� 3 9:559� 10� 3 9:717� 10� 3

Table 3: Quantitative evaluation on Traf�c4cast. Lower MSE indicates better prediction accuracy.
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Figure 5: The visual comparison of next-frame predictions on Caltech Pedestrian.

Results: The quantitative comparison including the best two results on the leaderboard before the
submission of this paper is provided in Table 3. Unlike all previous state-of-the-art methods, CrevNet
does not suffer from high memory consumption so that we were able to train our model in a single
V100 GPU. The invertibility of two-way autoencoder preserves all necessary information for spatio-
temporal learning and allows our model to generate sharp and reasonable predictions. As illustrated
in Fig 4, our model can identify and remember the hidden roadmap of each city through the learning
of complicated nonlinear dynamics and accurately predict how traf�c system will evolve.

3.3 NEXT-FRAME PREDICTION AND BEYOND—CAR-MOUNTED CAMERA VIDEO

The real-world videos are usually long-term unpredictable because of the intrinsic randomness and
the lack of necessary information. Thus, the common practice for datasets like KITTI (Geiger et al.
(2012)), a car-mounted camera video dataset, is to perform next-frame prediction. In this section,
we further demonstrate the superior performance of our CrevNet by conducting experiments on
KITTI and Caltech Pedestrian (Dollár et al. (2009)). Compared with the previous two settings, car-
mounted camera videos dataset presents another level of dif�culty for video prediction as it describes
various nonlinear three-dimensional dynamics of multiple moving objects including backgrounds.
Furthermore, as our well-trained model is capable of generating authentic future frames, it should
spontaneously learn at least the shape and location of all moving objects, which indicates that the
learnt features are very informative for downstream tasks. For example, in the case of object detection,
these features can be incorporated to estimate more accurate locations and sizes of bounding boxes.
Therefore, we also explore the effectiveness of our self-supervised learning method on the 2D object
detection on KITTI.

3.3.1 VIDEO PREDICTION

Datasets and Setup:We follow the same protocol used in PredNet (Lotter et al. (2016)) for prepro-
cessing and evaluation. We �rst center-crop all video frames and resize them into128� 160. We
compare our proposed method with 4 state-of-the-art benchmark models. Models are trained on
KITTI dataset to predict the next frame after 10-frame warm-up and are evaluated on Caltech Pedes-
trian. The architecture of CrevNet used on KITTI is composed of a 48-layer two-way autoencoder
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Figure 6: The visual comparison of 12-frame prediction on Caltech Pedestrian. Notice how well
CrevNet captures the detail and geometry of the buildings in the background, and the overall shading.

and 40 RPMs. Note that it is the memory ef�ciency of our method that allows us to deploy such deep
model. Since our model also possess good capability of long-term prediction. We add a 12-frame
prediction comparison with CycleGAN (Kwon & Park (2019)) and PredNet (Lotter et al. (2016)).

Model Next-Frame 3rd 6th 9th 12th Average

PSNR SSIM SSIM

Copy-Last-Frame 23.3 0.779 —– —– —– —– —–
Dual Motion GAN (Liang et al. (2017)) —– 0.899 —– —– —– —– —–
ContextVP (Byeon et al. (2018)) 28.7 0.921 —– —– —– —– —–

PredNet (Lotter et al. (2016)) 27.6 0.905 0.72 0.66 0.61 0.58 0.701
CycleGAN (Kwon & Park (2019)) 29.2 0.919 0.83 0.73 0.67 0.63 0.752

CrevNet 29.3 0.925 0.84 0.76 0.70 0.65 0.776

Table 4: Quantitative evaluation of different methods on the Caltech Pedestrian dataset. Higher PSNR
or SSIM means better prediction accuracy.

Results: Performance of different models in terms of PSNR and SSIM is displayed in Table 4.
CrevNet outperforms all baselines in both next-frame and multi-frame prediction regimes. Visual
comparisons are provided in Fig 5 and Fig 6. Especially, in the case of 12-frame generation, we can
observe that compared with our method, PredNet suffers severely from the famous error propagation
of RNN issue while CycleGAN produces realistic yet physically inconsistent predictions.

3.3.2 2D OBJECTDETECTION

Datasets and Setup:KITTI provides three prior frames of unlabeled data for each labeled image.
This allows us to run our CrevNet to extract useful spatiotemporal features for object detection. All
video sequences were recorded at 10 Hz with resolution of 1242� 375. We �rst resize each frame
to 416� 128 and �netune our best model on the video prediction task solely. The combinations of
features extracted by our two-way autoencoder and attention masks of the target frame are then fed
into the detection head for the further training. Note that we do not update the weights of CrevNet at
this stage to purely demonstrate the power of self-supervised learning. Two image-based detection
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models, SqueezeDet and RRC, are compared as baselines. We also add an experiment on transfer
learning of features learnt by PredNet on KITTI as comparison. To be consistent with related work,
we use SSD (Liu et al. (2016)) as detection head.

Backbone Add-ons Car Pedestrain Cyclist mAPE M H E M H E M H

SqueezeDet (Wu et al. (2017)) 90.4 87.1 78.9 81.4 71.3 68.5 87.6 80.3 78.1 80.4
RRC (Ren et al. (2017)) 90.61 90.23 87.44 84.16 75.33 70.39 84.96 76.49 65.46 80.56

Best Results on the Leaderboard 91.96 91.97 84.57 88.27 81.73 75.29 84.28 79.24 71.22 83.17

PredNet (Lotter et al. (2016)) 59.05 41.61 37.53 50.88 47.51 43.44 46.25 43.79 38.66 45.41

CrevNet attention mask 91.53 90.95 85.71 89.31 82.55 75.21 85.51 80.41 71.52 83.63
+ extracted features 91.94 91.84 85.97 89.66 83.17 75.80 87.33 80.91 72.21 84.31

Table 5: Quantitative evaluation of different methods on 2D KITTI detection in term of Average
Precision (AP). The numbers in the "Best Results on the Leaderboard " are achieved by different best
models on each class according to the default ranking mechanism on the Leaderboard.

Results: The results of all experiments and baselines can be found in Table 5. Surprisingly, our
CrevNet even outperforms the combination of the best model on each class in term of mAP. Since
our model is capable of capturing the motion information, it is sensitive to the small (hard) moving
objects. However, the motion information alone is not suf�cient for object detection due to the
appearance of relatively static objects. Therefore, we can observe a performance boost after we
incorporate the features extracted by our two-way autoencoder. Another advantage of our method is
that it can provide a better localization of bounding box since the learnt features of CrevNet remain
the pixel-wise alignment with the input and output frame. Finally, thanks to the lightweight nature of
our CrevNet, our best detection model can run at 6.8 FPS at the testing time.

4 RELATED WORK

Deep Learning in Video Prediction: Mainstream video prediction models can mostly be categorized
into two frameworks, stacked ConvRNNs and encoder-predictor-decoder models. The former
framework attempts to design a new spatiotemporal module and then stacks multiple such modules
to form the �nal model, while the latter usually utilizes an autoencoder to project video frames
into their latent representations and then employs a recurrent neural network to model the temporal
transformations. PredNet (Lotter et al. (2016)) is a good representative of stacked ConvRNNs
framework. In PredNet, each ConvLSTM layer produces a layer-speci�c prediction at every time
step to transmit an error term to the next layer. This model works well for predicting the next
frame, but fails to maintain its performance in a long-term setting. To tackle long-term predictions,
PredRNN (Wang et al. (2017)) proposed a new spatiotemporal LSTM, which allows memory to
�ow both vertically and horizontally. PredRNN++ (Wang et al. (2018)) further improved the results
by rearranging spatial and temporal memory in a cascaded mechanism, and by using a gradient
highway architecture to ease the optimization. E3D-LSTM (Wang et al. (2019)) effectively recalled
the previous memory states and also proposed to include 3D convolutions to enhance its performance.
ContextVP (Byeon et al. (2018)) introduced a fully context-aware architecture consisting of parallel
multi-dimensional LSTM units and blending units. Methods from stacked ConvRNNs family usually
yield more accurate deterministic predictions but they consume considerable GPU memory and
computational power as they abandon downsampling to prevent information loss.

The encoder-predictor-decoder framework, on the other hand, provides more �exibility than its
counterpart. MCNET (Villegas et al. (2017)) and DrNet (Denton et al. (2017)) decompose the content
and motion in videos by building their corresponding encoders and then integrate this disentangled
information to yield the next frame. Retrospective CycleGAN (Kwon & Park (2019)) combines
sequential adversarial loss with frame adversarial loss, which encourages the model to generate
frames that are visually similar to authentic images. In terms of modeling stochasticity, SVG (Denton
& Fergus (2018)) and SAVG (Lee et al. (2018)) utilize a prior inference network to mimic the
uncertainty in the environment, and then embed it into a deterministic generative model to produce
stochastic video frames. VPN (Kalchbrenner et al. (2016)) estimates the discrete joint distribution of
the raw pixel values in a video using the well-established PixelCNNs. It is worth noticing that VPN
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employs a resolution-preserving encoder to circumvent the information loss, showing the need for an
ef�cient information-preserving encoder in the community.

Comparison with Related Works: To the best of our knowledge, our CrevNet is the �rst condition-
ally reversible model in the video prediction literature. There are three prior arts, E3D-LSTM (Wang
et al. (2019)), FRNN (Oliu et al. (2018)) and VideoFlow (Kumar et al. (2019)), having some similari-
ties with our CrevNet. While E3D-LSTM also employs 3D convolutions, their implementation is
essentially equivalent to applying two 2D convolutional operations, as there is no shared �lter on the
temporal dimension. Similar to CrevNet, FRNN reduces its computational cost by eliminating the
need to re-encode the output of decoder. However, FRNN has a substantially different architecture
compared to CrevNet. While the encoder and decoder in our model do not need information sharing at
all, FRNN relies heavily on the sharing of the hidden states between them. Although VideoFlow also
utilizes invertible transformation. This approach is very different from ours because: (1). VideoFlow
is built upon Glow, a very memory-consuming architecture. Such memory limits preclude the use of
3D convolutions, or even from training the model with Adam. (2). They use ANN to model temporal
relationship. As such, VideoFlow cannot capture complex dynamics. (3). So far, VideoFlow has only
been applied to stochastic video generation instead of deterministic video prediction.

The Reversible and Invertible Architectures: The idea of the coupling layer was initially intro-
duced in NICE (Dinh et al. (2014)) so as to make the computation of the determinant of the Jacobian
and inverse Jacobian trival. Inspired by additive coupling layer, RevNet (Gomez et al. (2017))
introduced a reversible block that allowed the reconstruction of activations of each layer from that of
the next layer, thus eliminating the need to store activations between downsampling and signi�cantly
reducing its memory consumption. The follow-up work by (Jacobsen et al. (2018)) further proposed
an invertible extension, i-RevNet, which enabled the model to preserve all information of input
through layers while still being capable of extracting a useful representation for classi�cation.

5 CONCLUSION

We described a novel conditionally reversible network, CrevNet, for pixel-level prediction of future
frames in videos. The originality of our model lies in our use of the reversible two-way autoencoder
and the accompanying reversible predictive module. Such architectural design enables the model to
preserve �ne-grained information without signi�cant memory and computation overhead. CrevNet
achieves state-of-the-art results on both synthetic and real-world datasets. The subsequent detection
experiments demonstrate the potential of CrevNet to be a continuous self-supervised learning system
to enhance downstream CV tasks, as shown in the case of BERT (Devlin et al. (2018)) for NLP tasks.
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A CONVLSTM AND ST-LSTM

The key equations of ConvLSTM are shown as belows.

i t = � (Wxi � X t + Whi � H l
t � 1 + bi )

f t = � (Wxf � X t + Whf � H l
t � 1 + bf )

Cl
t = f t � C l

t � 1 + i t � tanh(Wxc � X t + Whc � H l
t � 1 + bc)

ot = � (Wxo � X t + Who � H l
t � 1 + Wco � C l

t + bo)

H l
t = ot � tanh(Cl

t )

where� denotes the convolution operator and� denotes the Hadamard product. Based on ConvLSTM,
spatiotemporal LSTM (ST-LSTM) in PredRNN adds another vertical memory �ow to enhance the
long-term temporal dependency as follow.

i t = � (Wxi � X t + Whi � H l
t � 1 + bi )

f t = � (Wxf � X t + Whf � H l
t � 1 + bf )

Cl
t = f t � C l

t � 1 + i t � tanh(Wxc � X t + Whc � H l
t � 1 + bc)

i 0
t = � (W 0

xi � X t + Wmi � M l � 1
t + b0

i )

f 0
t = � (W 0

xf � X t + Wmf � M l � 1
t + b0

f )

M l
t = f 0

t � M l � 1
t + i 0

t � tanh(Wxm � X t + Wmm � M l � 1
t + bm )

ot = � (Wxo � X t + Who � H l
t � 1 + Wco � C l

t + Wmo � M l
t + bo)

H t = ot � tanh(W1� 1[Cl
t ; M l

t ])

where blue part overlaps ConvLSTM. Note thatM l
t usually receives information from the previous

layer instead of the previous state and the special case is thatM 1
t receivesM L

t � 1 to constitute a
zigzag information �ow. As we can see, ST-LSTM basically doubles the size of feature map and the
number of parameters compared with ConvLSTM.

B CONDITIONAL REVERSIBILITY

As we mentioned in Section 2.2, conditional reversibility is an interesting property of our CrevNet.
In this section, we will provide more details about it. Givenx̂2

t ; x1
t andh1

t � 1, the reversible predictive
module can recoverx2

t as follow

h1
t = ConvRNN(x1

t ; h1
t � 1)

gt = � (W � h1
t + b)

x2
t = ( x̂2

t � gt � h1
t ) � 1=1 � gt

Ideally, if there is no numerical error during the calculation, we can get the perfect reconstruction of
input by applying this inverse operation repeatedly. In practice, while the most of reverse generations
are successful, the inevitable numerical error will still result in some failing cases, especially in the
case of a very deep architecture because errors will be ampli�ed layer by layer.

C OBJECTDETECTION
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