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ABSTRACT

We present a sequence-to-action parsing approach for the natural language to SQL
task that incrementally fills the slots of a SQL query with feasible actions from a
pre-defined inventory. To account for the fact that typically there are multiple
correct SQL queries with the same or very similar semantics, we draw inspira-
tion from syntactic parsing techniques and propose to train our sequence-to-action
models with non-deterministic oracles. We evaluate our models on the WikiSQL
dataset and achieve an execution accuracy of 83.7% on the test set, a 2.1% abso-
lute improvement over the models trained with traditional static oracles assuming
a single correct target SQL query. When further combined with the execution-
guided decoding strategy, our model sets a new state-of-the-art performance at an
execution accuracy of 87.1%.

1 INTRODUCTION

Many mission-critical applications in health care, financial markets, and business process manage-
ment store their information in relational databases (Hillestad et al., 2005; Ngai et al., 2009; Levine
et al., 2001). Users access that information using a query language such as SQL. Although expres-
sive and powerful, SQL is difficult to master for non-technical users. Even for an expert, writing
SQL queries can be challenging as it requires knowing the exact schema of the database and the
roles of various entities in the query. Hence, a long-standing goal has been to allow users to interact
with the database through natural language (Androutsopoulos et al., 1995; Popescu et al., 2003).

The key to achieving this goal is understanding the semantics of the natural language statements
and mapping them to the intended SQL. This problem, also known as NL2SQL, was previously
understudied largely due to the availability of annotation. Without paired natural language statement
and SQL query, a weak supervision approach may be adopted which reduces supervision from
annotated SQL queries to answers (Liang et al., 2011). This is a more difficult learning problem.
Therefore only with recent release of a number of large-scale annotated NL2SQL datasets (Zhong
et al., 2017; Finegan-Dollak et al., 2018), we start to see a surge of interest in solving this problem.

Existing NL2SQL approaches largely fall into two categories: sequence-to-sequence style neural
“machine translation ” systems (Zhong et al., 2017; Dong & Lapata, 2018) and sets of modularized
models with each predicting a specific part of the SQL queries (Xu et al., 2017; Yu et al., 2018).
The former class suffer from the requirement of labeling a single ground truth query while multiple
semantically equivalent queries exist for each intent. For example, as noticed by Zhong et al. (2017),
the ordering of filtering conditions in a query does not affect execution but affects generation. To
account for this, techniques such as reinforcement learning have been used on top of those sequence-
to-sequence models. The second class of models employ a sequence-to-set approach: they first
predict table columns present in the query and then independently predict the rest for each column.
This avoids the ordering issue, but makes it harder to leverage inter-dependencies among conditions.

In this work, we develop a sequence-to-action parsing approach (Section 3) for the NL2SQL prob-
lem. It incrementally fills the slots of a SQL query with actions from an inventory designed for
this task. Taking inspiration from training oracles in incremental syntactic parsing (Goldberg &
Nivre, 2013), we further propose to use non-deterministic oracles (Section 4) for training the in-
cremental parsers. These oracles permit multiple correct action continuations from a partial parse,
thus are able to account for the logical form variations. Our model combines the advantage of a
sequence-to-sequence model that captures inter-dependencies within sequence of predictions and a
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Rank Name Location Height (ft) Floor Year

1 One World Trade Center New York City 1,776 104 2014

2 Willis Tower Chicago 1,451 108 1974

… … … … … …

Input 𝒙: Output 𝒚:

SELECT `Height (ft)`
WHERE Name=“Willis Tower”
AND Location=“Chicago”

Execution Result: 1,451

What is the height of Willis Tower in Chicago?

Figure 1: Our running example. The input is a natural language question and a table schema, and
the output is an executable SQL query. Table contents are shown here, but unknown to our models.

modularized model that avoids any standarized linearization of the logical forms. We evaluate our
models on the WikiSQL dataset and observe a performance improvement of 2.1% when compar-
ing non-deterministic oracles with traditional static oracles. We further combine our approach and
the execution-guided decoding strategy (Wang et al., 2018) and achieve a new state-of-the-art per-
formance with 87.1% test execution accuracy. Experiments on a filtered ATIS dataset in addition
confirm that our models can be applied to other NL2SQL datasets.

2 TASK DEFINITION

Given an input natural language question, our goal is to generate its corresponding SQL query. In
the following and throughout the paper, we use the WikiSQL dataset (Zhong et al., 2017) as our
motivating example. However, it should be noted that our approach is generally applicable to other
NL2SQL data, with proper choice of an action inventory and redesign of parser states.

WikiSQL dataset consists of 80,654 pairs of questions and SQL queries distributed across 24,241
tables from Wikipedia. Along with the natural language question, the input also contains a single
table schema (i.e., table column names). Each table is present in only one split (train, dev, or test),
which demands the models to generalize to unseen tables. Figure 1 shows an example.

The SQL structure of the WikiSQL dataset queries is restricted and always follows the template
SELECT agg selcol WHERE col op val (AND col op val)∗. Here, selcol is a
single table column and agg is an aggregator (e.g., COUNT, SUM, empty). The WHERE segment
is a sequence of conjunctive filtering conditions. Each op is a filtering operator (e.g., =) and the
filtering value val is mentioned in the question. Although the dataset comes with a “standard”
linear ordering of the conditions, the order is actually irrelevant given the semantics of AND.

Throughout the paper we denote the input to the parser as x. It consists of a natural language
question w with tokens wi and a single table schema c with column names cj . A column name cj
can have one or more tokens. The parser needs to generate an executable SQL query y as its output.

3 OUR MODEL: AN INCREMENTAL PARSER

Given an input x, the generation of a structured output y is broken down into a sequence of parsing
decisions. The parser starts from an initial state and incrementally takes actions according to a
learned policy. Each action advances the parser from one state to another, until it reaches one of the
terminal states, where we may extract a complete logical form y. We take a probabilistic approach to
model the policy. It predicts a probability distribution over the valid set of subsequent actions given
the input x and the running decoding history. The goal of training such an incremental semantic
parser is then to optimize this parameterized policy.

Formally, we letPθ(y|x) = Pθ(a|x), where θ is model parameters. Execution of the action sequence
a = {a1, a2, . . . , ak} leads the parser from the initial state to a terminal state that contains the
parsing result y. Here we assume that each y has only one corresponding action sequence a, an
assumption that we will revisit in Section 4. The probability of action sequence is further factored as
the product of incremental decision probabilities: Pθ(a|x) =

∏k
i=1 Pθ(ai|x, a<i), where |a| = k.

During inference, instead of attempting to enumerate over the entire output space and find the highest
scoring a∗ = argmaxa Pθ(a|x), our decoder takes a greedy approach: at each intermediate step, it
picks the highest scoring action according to the policy: a∗i = argmaxai Pθ(ai|x, a∗<i).
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Action Resulting state after taking the action at state p Parameter representation

AGG(agg) p[AGG 7→agg] –
SELCOL(ci) p[SELCOL 7→ ci] rC

i

CONDCOL(ci) p[COND 7→ p.COND||

COL ci
OP ε

VAL ε

] rC
i

CONDOP(op) p[COND−1 7→ p.COND−1[OP 7→op]] –
CONDVAL(wi:j) p[COND−1 7→ p.COND−1[VAL 7→ wi:j]] rW

i and rW
j

END p (as a terminal state) –

Table 1: The inventory of actions for our incremental text-to-SQL semantic parser. The use of
parameter representations in the decoder is detailed in Section 3.2. p[AGG 7→agg] denotes a new
parser state identical to p, except that the feature value for AGG is agg in the new state. Finally,
|| denotes list concatenation, and COND−1 refers to the last element in the list.

In the following subsections, we define the parser states and the inventory of actions, followed by a
description of our encoder-decoder neural-network model architecture.

3.1 SEQUENCE TO ACTIONS

We first look at a structured representation of a full parse corresponding to the example in Figure 1:

AGG NONE
SELCOL Height (ft)

COND

〈COL Name
OP =
VAL “Willis Tower”

,

COL Location
OP =
VAL “Chicago”

〉
.

An intermediate parser state is thus defined as a partial representation, with some feature values not

filled in yet, denoted as ε. The initial parser state p0 has only empty list and values

AGG ε

SELCOL ε

COND 〈〉

.

Next, we define our inventory of actions. Each action has the effect of advancing the parser state

from p to p′. We let p =

AGG agg
SELCOL selcol
COND cond

, and describe p′ for each action in Table 1. The

action CONDVAL selects a span of text wi:j from the input question w. In practice, this leads to a
large number of actions, quadratic in the length of the input question, so we break down CONDVAL
into two consecutive actions, one selecting the starting position wi and the other selecting the end-
ing position wj for the span. At the end of the action sequence, we append a special action END
that terminates the parsing process and brings the parser into a terminal state. As an example, the
query in Figure 1 translates to an action sequence of { AGG(NONE), SELCOL(c3), CONDCOL(c1),
CONDOP(=), CONDVAL(w5:6), CONDCOL(c2), CONDOP(=), CONDVAL(w8:8)}.
The above definitions assume all the valid sequences to have the form of AGG SELCOL (CONDCOL
CONDOP CONDVAL)∗ END. This guarantees that we can extract a complete logical form from each
terminal state. For other data with different SQL structure, a redesign of action inventory and parser
states is required.

3.2 DECODER

We first assume that we have some context-sensitive representations rWi , rCj for each word wi and
each column header cj , respectively, and detail our design of the decoder here. The encoder for
obtaining the representations rWi , rCj will be discussed in Section 3.3.

3



Under review as a conference paper at ICLR 2019

What           is             the          height    …

Natural Language Question

Table Schema

Rank Name Location Height …

AGG

(NONE)

SELCOL

(Height)

…

AGG(NONE)
AGG(count)

…

END

Bilinear

=

…argmax

<START>

bi-LSTM

word embeddings

bi-LSTM

attention

self-attention

bi-LSTM final states

bi-LSTM

cross-serial attention

cross-serial attention

Encoder Decoder

2-layer LSTM

Figure 2: Our main model architecture depicted using our running example. The decoder (right) and
the encoder (left) are described in Sections 3.2 and 3.3, respectively.

The main component of our decoder is to model a probability distribution Pθ(a|x, a<i) over po-
tential parser actions a conditioned on input x and past actions a<i. It has two main challenges:
(1) there is no fixed set of valid parser actions: it depends on the input and the current parser state;
(2) the parser decision is context-dependent: it relies on the decoding history and the information
embedded in the input question and column headers.

We adopt an LSTM-based decoder framework and address the first challenge through individual
scoring of actions. The model scores each candidate action a as sa and uses a softmax function to
normalize the scores into a probability distribution. At time step i, we denote the current decoder hid-
den state as hDEC

i and model the score of a in the form of a bilinear function: sa = (hDEC
i )TUArAa ,

where rAa is a vector representation of the action a and is modeled as the concatenation of the action
embedding and the parameter representation. The form of the latter is given in Table 1.

The dependencies between the parser decisions and the input question and column headers are cap-
tured through a dot-product attention mechanism (Luong et al., 2015). The input to the first layer
of our decoder LSTM at time step i + 1 is a concatenation of the output action representation rAai
from previous time step i, a question attention vector eWi , and a column header attention vector eCi .
Vector eCi =

∑
j αi,jr

C
j , where αi,j ∝ hDEC

i · rCj . Vector eWi is defined similarly.

3.3 ENCODER

Now we return to the context-sensitive representations rWi and rCj . Ideally, these representations
should be both intra-context-sensitive, i.e. aware of information within the sequences, and inter-
sequence-dependent, i.e. utilizing knowledge about the other sequences. These intuitions are re-
flected in our model design as intra-sequence LSTMs, self-attention and cross-serial attention.

Our model architecture is illustrated in Figure 2. Each word wi is first mapped to its embedding,
and then fed into a bi-directional LSTM (bi-LSTM) that associates each position with a hidden
state hWi . For column headers, since each column name can have multiple words, we apply word
embedding lookup and bi-LSTM for each column name, and use the final hidden state from the
bi-LSTM as the initial representation for the column name. Next, we apply self-attention (Vaswani
et al., 2017) to contextualize this initial representation into hCj . After obtaining these intra-context-
sensitive representations hWi and hCj , we use cross-serial dot-product attention (Luong et al., 2015)
to get a weighted average of hCj as the context vector for each wi, and vice versa for each cj . The
two vectors are concatenated and fed into final bi-LSTMs for the natural language question and table
column names, respectively. The hidden states of these two LSTMs are our desired context-sensitive
representations rWi and rCj .
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4 NON-DETERMINISTIC ORACLES

Previously, we assumed that each natural language question has a single corresponding SQL query,
and each query has a single underlying correct action sequence. However, these assumptions do not
hold in practice. One well-observed example is the ordering of the filtering conditions in the WHERE
clause. Reordering of those conditions leads to different action sequences. Furthermore, we identify
another source of ambiguity in section 4.2, where a question can be expressed by different SQL
queries with the same execution results. These queries are equivalent from an end-user perspective.

For both cases, we obtain multiple correct “reference” transition sequences for each training in-
stance and there is no single target policy for our model to mimic during training. To solve this,
we draw inspiration from syntactic parsing and define non-deterministic oracles (Goldberg & Nivre,
2013) that allow our parser to explore alternative correct action sequences. In contrast, the training
mechanism we discussed in Section 3 is called static oracles.

We denote the oracle as O that returns a set of correct continuation actions O(x, a<t) at time step
t. Taking any action from the set can lead to some desired parse among a potentially large set of
correct results. The training objective for each instance Lx is defined as:

Lx =

k∑
i=1

log
∑

a∈O(x,a<i)

Pθ(a|x, a<i), (1)

where a<i denotes the sequence of actions a1, . . . , ai−1 and ai = argmaxa∈O(x,a<i) sa, the most
confident correct action to take as decided by the parser during training. When O is a static oracle,
it always contains a single correct action. In that scenario, Equation 1 is reduced to a naı̈ve cross-
entropy loss. When O is non-deterministic, the parser can be exposed to different correct action
sequences and it is no longer forced to conform to a single correct action sequence during training.

4.1 ALLEVIATING THE “ORDER-MATTERS” ISSUE

Training a text-to-SQL parser is known to suffer from the so-called “order-matters” issue. The fil-
tering conditions of the SQL queries do not presume any ordering. However, an incremental parser
must linearize queries and thus impose a pre-defined order. A correct prediction that differs from
a golden labeling in its ordering of conditions then may not be properly rewarded. Prior work has
tackled this issue through reinforcement learning (Zhong et al., 2017) and a modularized sequence-
to-set solution (Xu et al., 2017). The former lowers optimization stability and increases training
time, while the latter complicates model design to capture inter-dependencies among clauses: infor-
mation about a predicted filtering condition is useful for predicting the next condition.

We leverage non-deterministic oracles to alleviate the “order-matters” issue. Our model combines
the advantage of an incremental approach to leverage inter-dependencies among clauses and the
modularized approach for higher-quality training signals. Specifically, at intermediate steps for
predicting the next filtering condition, we accept all possible continuations, i.e. conditions that have
not been predicted yet, regardless of their linearized positions. For the example in Figure 1, in
addition to the transition sequence we gave in Section 3.1, our non-deterministic oracles also accept
CONDCOL(c2) as a correct continuation of the second action. If our model predicts this action first,
it will continue predicting the second filtering condition before predicting the first.

4.2 EXECUTION-ORIENTED MODELING OF IMPLICIT COLUMN NAME MENTIONS

In preliminary experiments, we observed that a major source of parser errors on the development set
is incorrect prediction of implicit column names. Many natural language queries do not explicitly
mention the column name of the filtering conditions. For example, the question in Figure 1 does not
mention the column name “Name”. Similarly, a typical question like “What is the area of Canada?”
does not mention the word “country”. For human, such implicit references make natural language
queries succinct, and the missing information can be easily inferred from context. But for a machine
learning model, they pose a huge challenge.

We leverage the non-deterministic oracles to learn the aforementioned implicit column name
mentions by accepting the prediction of a special column name, ANYCOL. During execution,
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we expand such predictions into disjunction of filtering conditions applied to all columns, sim-
ulating the intuition why a human can easily locate a column name without hearing it from
the query. For the example in Figure 1, in addition to the action CONDCOL(c1), we also al-
low an alternative prediction CONDCOL(ANYCOL). When the latter appears in the query (e.g.
ANYCOL=“Willis Tower”), we expand it into a disjunctive clause (Rank=“Willis Tower”
OR Name=“Willis Tower” OR ...). With our non-deterministic oracles, when column
names can be unambiguously resolved using the filtering values, we accept both ANYCOL and the
column name as correct actions during training, allowing our models to predict whichever is easier
to learn.

5 EXPERIMENTS

5.1 DATASET AND EVALUATION

In our experiments, we use the default train/dev/test split of the WikiSQL dataset. We evaluate our
models trained with both the static oracles and the non-deterministic oracles on the dev and test split.
We report both logical form accuracy (i.e., exact match of SQL queries) and execution accuracy (i.e.,
the ratio of predicted SQL queries that result in the same answer after execution). The execution
accuracy is the metric that we aim to optimize.

5.2 IMPLEMENTATION DETAILS

We largely follow the preprocessing steps in prior work of Dong & Lapata (2018). Before the
embedding layer, only the tokens which appear at least twice in the training data are retained in the
vocabulary, the rest are assigned a special “UNK” token. We use the pre-trained GloVe embeddings
(Pennington et al., 2014), and allow them to be fine-tuned during training. Embeddings of size 16
are used for the actions. We further use the type embeddings for the natural language queries and
column names following Yu et al. (2018): for each word wi, we have a discrete feature indicating
whether it appears in the column names, and vice versa for cj . These features are embedded into
4-dimensional vectors and are concatenated with word embeddings before being fed into the bi-
LSTMs. The encoding bi-LSTMs have a single hidden layer with size 256 (128 for each direction).
The decoder LSTM has two hidden layers each of size 256. All the attention connections adopt the
dot-product form as described in Section 3.2.

For the training, we use a batch size of 64 with a dropout rate of 0.3 to help with the regularization.
We use Adam optimizer (Kingma & Ba, 2014) with the default initial learning rate of 0.001 for the
parameter update. Gradients are clipped at 5.0 to increase stability in training.

5.3 RESULTS

The main results are presented in Table 2. Our model trained with static oracles achieves comparable
results with the current state-of-the-art Coarse2Fine (Dong & Lapata, 2018) and MQAN (McCann
et al., 2018) models. On top of this strong model, using non-deterministic oracles during training
leads to a large improvement of 2.1% in terms of execution accuracy. The significant drop in the
logical form accuracy is expected, as it is mainly due to the use of ANYCOL option for the column
choice: the resulting SQL query may not match the original annotation.

We further separate the contribution of “order-matters” and ANYCOL for the non-deterministic or-
acles. When our non-deterministic oracles only address the “order-matters” issue as described in
Section 4.1, the model performance stays roughly the same compared with the static-oracle model.
We hypothesize that it is because the ordering variation presented in different training instances
is already rich enough for a vanilla sequence-to-action model to learn well. Adding ANYCOL to
the oracle better captures the implicit column name mentions and has a significant impact on the
performance, increasing the execution accuracy from 81.8% to 83.7%.

Our incremental parser uses a greedy strategy for decoding, i.e. picking the highest scoring action
predicted by the policy. A natural extension is to expand the search space using beam search de-
coding. We further incorporate the execution-guided strategy (Wang et al., 2018) along with beam
search. The execution-guided decoder avoids generating queries with semantic errors, i.e. runtime
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Model Dev Test

Acclf Accex Acclf Accex

Coarse2Fine (Dong & Lapata, 2018) 72.5 79.0 71.7 78.5
MQAN (McCann et al., 2018) 76.1 82.0 75.4 81.4

Our Models
INCSQL (static oracle) 76.1 82.5 75.5 81.6
INCSQL (non-det. oracle, “order-matters” only) 75.4 82.2 75.1 81.8
INCSQL (non-det. oracle) 49.9 84.0 49.9 83.7
INCSQL (non-det. oracle) + EG (5) 51.3 87.2 51.1 87.1

Table 2: Dev and Test accuracy (%) on WikiSQL. Acclf refers to logical form accuracy and Accex
refers to execution accuracy. “+ EG (5) ” indicates execution-guided decoding with beam size of 5.

Training Oracles w/o EG + EG (1) + EG (3) + EG (5)

static 81.6 83.5 86.4 86.7
non-determinstic 83.7 86.0 87.1 87.1

Speed (instances per second) 48.3 30.1 8.2 4.4

Table 3: Execution accuracy (%) and decoding speed of our models on the test set of WikiSQL, with
varying decoding beam size. The notation “+ EG (k)” is as in Table 2.

errors and empty results. The key insight is that a partially generated output can already be executed
using the SQL engine against the database, and the execution results can be used to guide the decod-
ing. The decoder maintains a state for the partial output, which consists of the aggregation operator,
selection column and the completed filtering conditions until that stage in decoding. After every
action, the execution-guided decoder retains the top-k scoring partial SQL queries free of runtime
exceptions and empty output. At final stage, the query with the highest likelihood is chosen. With
k = 5, the execution-guided decoder on top of our previous best-performing model achieves an
execution accuracy of 87.1% on the test set, setting a new state of the art.

We also report the performance of the static oracle model with execution-guided decoding in Table 3.
It comes closely to the performance of the non-deterministic oracle model, but requires a larger beam
size, which translates to an increase in the decoding time.

5.4 RESULTS ON OTHER NL2SQL DATASETS

To test whether our model can generalize to other datasets, we perform experiments with the ATIS
dataset (Price, 1990; Dahl et al., 1994). ATIS has more diverse SQL structures, including queries on
multiple tables and nested queries. To be compatible with our task setting, we only retain examples
in the ATIS dataset that are free of nested queries, containing only AND operations and no INNER
JOIN operators. We perform table joins and create a single table to be included in the input to our
models along with the natural language question. The reduced dataset consists of 933 examples,
with 714/93/126 examples in the train/dev/test split, respectively.

Our models trained with the static and non-deterministic oracles (without ANYCOL) achieve accu-
racy of 67.5% and 69.1% on the test set, respectively. The improvement gained from using non-
deterministic oracles during training validates our previous hypothesis: ATIS is a much smaller
dataset compared with WikiSQL, therefore explicitly addressing “order-matters” helps here. We
didn’t apply ANYCOL due to the nature of ATIS data.

6 RELATED WORK

WikiSQL, introduced by Zhong et al. (2017), is the first large-scale dataset with annotated pairs of
natural language queries and their corresponding SQL forms on a large selection of table schemas.
While its coverage of SQL syntax is weaker than previous datasets such as ATIS (Price, 1990; Dahl
et al., 1994) and GeoQuery (Zelle & Mooney, 1996), WikiSQL is highly diverse in its questions,
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Model Dev Test

Acclf Accex Acclf Accex

INCSQL (static oracle) 87.1 88.2 65.9 67.5
INCSQL (non-det. oracle, “order-matters” only) 88.1 89.2 68.3 69.1

Table 4: Dev and Test accuracy (%) of the models on the reduced ATIS dataset, where Acclf refers
to logical form accuracy and Accex refers to execution accuracy.

table schemas and contents. This makes it an attractive dataset for neural network modeling. Indeed,
a large number of recent works have already been evaluated on WikiSQL (Wang et al., 2017; Xu
et al., 2017; Huang et al., 2018; Yu et al., 2018; Wang et al., 2018; Dong & Lapata, 2018; McCann
et al., 2018).

NL2SQL is a special case of semantic parsing. The task of semantic parsing maps natural language
to a logical form representing its meaning, and has been studied extensively by the natural language
processing community (see Liang 2016 for a survey). The choice of meaning representation is usu-
ally task-dependent, including lambda calculus (Wong & Mooney, 2007), lambda dependency-based
compositional semantics (Liang, 2013, λ-DCS), and SQL (Zhong et al., 2017). Neural semantic
parsing, on the other hand, views semantic parsing as a sequence generation problem. It adapts
deep learning models such as those introduced by Sutskever et al. (2014); Bahdanau et al. (2015);
Vinyals et al. (2015). Combined with data augmentation (Jia & Liang, 2016; Iyer et al., 2017) or
reinforcement learning (Zhong et al., 2017), sequence-to-sequence with attention and copying has
already achieved state-of-the-art results on many datasets including WikiSQL.

The meaning representation in semantic parsing usually has strict grammar syntax, as opposed to
target sentences in machine translation. Thus, models are often constrained to output syntactically
valid results. Dong & Lapata (2016; 2018) propose models that generate tree outputs through hierar-
chical decoding and models that use sketches to guide decoding, but they do not explicitly deal with
grammar constraints. In contrast, Yin & Neubig (2017) and Krishnamurthy et al. (2017) directly
utilize grammar productions during decoding.

Training oracles have been extensively studied for the task of syntactic parsing, where incremen-
tal approaches are common (Goldberg & Nivre, 2013). For syntactic parsing, due to the more
structurally-constrained nature of the task and clearly-defined partial credits for evaluation, dynamic
oracles allow the parsers to find optimal subsequent actions even if they are in some sub-optimal
parsing states (Goldberg & Nivre, 2012; Goldberg et al., 2014; Cross & Huang, 2016). In compari-
son, non-deterministic oracles are defined for the optimal parsing states that have potential to reach a
perfect terminal state. To the best of our knowledge, our work is the first to explore non-deterministic
training oracles for incremental semantic parsing.

7 CONCLUSIONS

In this paper, we introduce a sequence-to-action incremental parsing approach for the NL2SQL
task. With the observation that multiple SQL queries can have the same or very similar semantics
corresponding to a given natural language question, we propose to use non-deterministic oracles
during training. On the WikiSQL dataset, our model trained with the non-deterministic oracles
achieves an execution accuracy of 83.7%, which is 2.3% higher than the current state of the art. We
also discuss using execution-guided decoding in combination with our model. This leads to a further
improvement of 3.4%, achieving a new state-of-the-art 87.1% execution accuracy on the test set.

To the best of our knowledge, our work is the first to use non-deterministic oracles for training
incremental semantic parsers. Designing such non-deterministic oracles requires identification of
multiple correct transition sequences for a given training instance, and an algorithm that decides the
possible continuations for any intermediate state that will lead to one of the desired terminal states.
We have shown promising results for WikiSQL and filtered ATIS dataset and it would be interesting
to extend our work to other more complex NL2SQL tasks and to other semantic parsing domains.
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