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Abstract

The soundness and optimality of a plan depends on the cor-
rectness of the domain model. In real-world applications,
specifying complete domain models is difficult as the inter-
actions between the agent and its environment can be quite
complex. We propose a framework to learn a PPDDL repre-
sentation of the model incrementally over multiple planning
problems using only experiences from the current planning
problem, which suits non-stationary environments. We intro-
duce the novel concept of reliability as an intrinsic motivation
for reinforcement learning, and as a means of learning from
failure to prevent repeated instances of similar failures. Our
motivation is to improve both learning efficiency and goal-
directedness. We evaluate our work with experimental results
for three planning domains.

Introduction
Planning requires as input a model which describes the dy-
namics of a domain. While domain models are normally
hand-coded by human experts, complex dynamics typical
of real-world applications can be difficult to capture in this
way. This is known as the knowledge engineering prob-
lem (Cullen and Bryman 1988). One solution is to learn the
model from data which is then used to synthesize a plan or
policy. In this work, we are interested in applications where
the training data has to be acquired by acting or executing an
action. However, training data acquired in a planning prob-
lem could be insufficient to infer a complete model. While
this is mitigated by including past training data from pre-
vious planning problems, this would be ill-suited for non-
stationary domains where distributions of stochastic dynam-
ics shift over time. Furthermore, the computation time in-
creases with the size of the training data.

Following these observations, we present an incremental
learning model (ILM) which learns action models incre-
mentally over planning problems, under the framework of
reinforcement learning. PPDDL, a planning language mod-
elling probabilistic planning problems (Younes and Littman
2004) (see Figure 1), is used for planning, and a rules-based
representation (see Figure 2) is used for the learning pro-
cess. A parser translates between these two representations.
Action models that were learned previously are provided to
subsequent planning problems and are improved upon ac-
quiring new training data; past training data are not used.

We denote the models provided as prior action models.
These could also be hand-coded, incomplete models serving
as prior knowledge. Using prior knowledge has two advan-
tages: (1) it biases the learning towards the prior action mod-
els, and (2) it reduces the amount of exploration required.

While the learning progress cannot be determined with-
out the true action models, we can estimate it empirically
based on the results of learning and acting. This empirical
estimate, or reliability, is used to guide the search in the
space of possible models during learning and as an intrin-
sic motivation in reinforcement learning. When every action
is sufficiently reliable, we instead exploit with Gourmand,
a planner that solves finite-horizon Markov Decision Pro-
cesses (MDP) problems online (Kolobov and Weld 2016).

Another major contribution of our work is its ability to
learn from failure. Actions fail to be executed if their precon-
ditions are not satisfied in the current state. This is common
when the model is incorrect. Failed executions can have dire
consequences in the real-world or cause irreversible changes
such that goal states cannot be reached. ILM records failed
executions and prevents any further attempts that would lead
to similar failure. This reduces the number of failed execu-
tions and increases the efficiency of exploration.

The rest of the paper is organized as follows. First, we
review related work and then present the necessary back-
ground. Next, we provide details of ILM. Lastly, we evaluate
ILM in three planning domains and discuss the significance
of various algorithmic features introduced in this paper.

Related Work
We extend the rules learner from (Pasula, Zettlemoyer, and
Kaelbling 2007) that learns a set of relational rules to repre-
sent an action which can have probabilistic effects. A rela-
tional representation allows generalization of the state space
unlike propositional rules which are used in (Oates and Co-
hen 1996). Our training data consists of state transitions
(st, at, st+1) where st is the pre-state, at is the grounded
action, and st+1 is the post-state. This requirement is
stricter than (Yang, Wu, and Jiang 2005; Zhuo et al. 2010;
Cresswell, McCluskey, and West 2013) which learns from
sequences of actions with no information on intermedi-
ate states. However, these works learn deterministic actions
whereas we are interested in probabilistic actions. (Mourão
et al. 2012; Martı́nez et al. 2016) learn probabilistic actions



(:action moveCar
:parameters (?from - location ?to - location)
:precondition (and (at ?from) (road ?from ?to) (notFlattire))
:effect (and (at ?to) (not (at ?from))

(probabilistic 0.25 (not (notFlattire))))
)

Figure 1: The PPDDL action model for moveCar in the
Tireworld domain.

Action: moveCar(?from ?to)
Name: moveCar
Precondition: at(?from) ∧ road(?from ?to) ∧ notFlattire()
Effect: 0.75 at(?to) ∧¬at(?from)

0.25 at(?to) ∧¬at(?from) ∧¬notFlattire()
0 〈 noise 〉

Figure 2: The rule for the true action model representing
moveCar, with two probabilistic effects, in the Tireworld
domain with arguments ?from and ?to.

but do not address the incremental nature of reinforcement
learning. (Gil 1994; Wang 1995) learn deterministic action
models incrementally while (Rodrigues, Gérard, and Rou-
veirol 2010) learns probabilistic action models. Our work is
most similar to the latter which revises relational rules rep-
resenting an action whenever contradicting examples are re-
ceived. They do not store all the examples but rather track
how well each rule explains the examples. On the other
hand, we address incremental learning over planning prob-
lems where only current training data is used. Furthermore,
our approach could consider prior knowledge in the form of
incomplete action models which can have extraneous predi-
cates unlike (Zhuo, Nguyen, and Kambhampati 2013).

A second area of research that is related to our work is
model-based reinforcement learning. R-MAX (Brafman and
Tennenholtz 2002) is provably sample-efficient, handling
the balance between exploration and exploitation implicitly
by assigning the maximum reward to unknown states which
are set to absorbing states. If the count, defined as the num-
ber of times an action is executed in the state, of every ap-
plicable action exceeds a threshold, then the state is known.
R-MAX is impractical for planning problems with large state
spaces. Hence, additional assumptions such as factored state
spaces (Kearns and Koller 1999), known structures of dy-
namic Bayesian networks (DBN) (Guestrin, Patrascu, and
Schuurmans 2002), or known maximum in-degree of DBNs
(Diuk, Li, and Leffler 2009) are often made. Conversely,
we only assume that the arguments of actions are known
(e.g., we know moveCar has ?from and ?to as its arguments).
We also use an empirical estimate for the learning progress,
which we call reliability, as intrinsic motivation. Reliability
is also used to quantify prior knowledge which other works
on intrinsic motivation do not address (Chentanez, Barto,
and Singh 2005; Hester and Stone 2017).

Background
PPDDL. Action models described in PPDDL are defined
by their preconditions and effects, typically restricted to con-

junctions of predicates. An example is shown in Figure 1.
An action is applicable if its precondition is true in the cur-
rent state, and executing it changes the state according to its
effects which can be deterministic or probabilistic.

Rules. For learning action models, we use a rules-based
representation as it is well-suited to the incremental nature of
reinforcement learning (Rodrigues, Gérard, and Rouveirol
2010). An action is described by a set of rules R where a
rule r ∈ R has three parts: the name of the action, the pre-
condition, and the effect. An example is shown in Figure
2. The key difference between PPDDL and rules represen-
tations are the addition of noise effect in the latter which
serves to avoid modelling a multitude of rare effects which
could increase the complexity of synthesizing a plan. When
a rare effect occurs, it is often better to replan.

Multiple rules are required to represent disjunctive pre-
conditions or effects. A rule covers a state-action pair (s, a)
if it represents a and is applicable in s. Every state-action
pair in the training data is covered by at most one rule which
is called the unique covering rule, denoted as r(s,a). A
propositional rule is obtained from the grounding of a rela-
tional rule by assigning an object or value to every argument
in the rule (e.g. grounding moveCar(?loc1, ?loc2) to move-
Car(l31, l13)). Actions are grounded in a similar fashion.

Markov Decision Processes (MDPs). MDPs model fully-
observable problems with uncertainty. A finite-horizon
MDP is a tuple of the form (S,A, T,R,G, s0, H) where S is
a set of states,A is the set of actions, T : S×A×S → [0, 1]
is the transition function, R : S × A → R specifies re-
wards for performing actions, G is the set of goal states, s0
is the initial state, and H is the number of decision epochs
or planning horizon. The objective is to find a policy which
maximizes the sum of expected rewards.

Reinforcement Learning. When transition functions in
MDPs are not known, model-based reinforcement learning
can be used to learn them and perform sequential decision-
making. This is the same as learning action models as they
can be translated to transition functions (Younes and Littman
2004). Reinforcement learning deals with the balance be-
tween exploration and exploitation. Exploration seeks mean-
ingful experiences from which action models are learned
while exploitation synthesizes a policy using the models.

Incremental Learning Model
We propose a new approach to incremental learning across
planning problems called ILM. ILM has two main compo-
nents: a rules learner and a reinforcement learning frame-
work. We first introduce the concept of reliability which is
used in both components followed by the extension made to
the rules learner from (Pasula, Zettlemoyer, and Kaelbling
2007). Lastly, we provide details of the framework.

Reliability of Actions
The reliability of learned action models are empirical esti-
mates of its learning progress. Reliability serves two pur-



poses. We extend the rules learner from (Pasula, Zettle-
moyer, and Kaelbling 2007) to consider the prior action
model and its reliability to learn new rules. In reinforce-
ment learning, less reliable actions are preferred during ex-
ploration. Reliability is defined as:
RE(o) = EX(o) (αs SU(o)− αv V O(o)) + γnRE(o0)

where o is an action, EX is the exposure, SU is the suc-
cess rate, V O is the volatility, αs, αv , and γ are scaling
parameters, n is the number of updates, and o0 is the prior
action model which can be an incomplete action model or
an empty action model (no predicates in precondition and
effect). Reliability is updated whenever o is executed. The
initial values of SU and V O are set to zero. The reliability
of the prior model is inherited with γ ∈ (0, 1) as the discount
factor which reduces its significance given new data.

Success Rate. An action with a high success rate indicates
that recent executions are successful which is more likely if
it has a small error. We define the success rate as:

SU(o) = γ SU(o) + 1(st = success)

+ 0.5 × 1(st = partial success)

where SU(o) ∈
[
0, 1

1−γ

)
, st is the execution status, and the

indicator function 1 equals to 1 if the enclosing condition is
true; otherwise, it is 0. The execution status is ‘failure’ when
the precondition of the action executed is not satisfied. The
state is then assumed to be unchanged. The status is ‘partial
success’ if the post-state is not expected given the learned
effects. SU is computed recursively with γ as the discount
factor which gives less importance to past executions.

Volatility. Volatility measures how much a set of rules rep-
resenting an action changes after learning. A low volatil-
ity suggests that learning has converged to the true action
model. Volatility is computed recursively, and is defined as:

V O(o) = γ V O(o) + d̃(Rprev, R)

where V O(o) ∈
[
0, 1

1−γ

)
, Rprev (R) is the set of rules

before (after) learning, and d̃(Rprev, R) is the normalized
difference between the two sets of rules. The difference be-
tween two rules is defined as:

d(r1, r2) = d−(rp1 , r
p
2) + d−(rp2 , r

p
1)

+ d−(re1, r
e
2) + d−(re2, r

e
1)

where superscripts p and e refer to the precondition and ef-
fect of a rule, respectively, and d−(p1, p2) returns the num-
ber of predicates that are in the set of predicates p1 but not
in p2. The normalized difference is defined as:

d̃(r1, r2) =
d(r1, r2)

|r1|+ |r2|
where the operator |r| refers to the number of predicates in
r. The difference between two set of rules, d(R1, R2), is the
sum of differences of pairs of rules r1 ∈ R1 and r2 ∈ R2

where the rules are paired such that the sum is minimal. Each
rule is paired at most once and the number of predicates in
unpaired rules are added to the sum.

Exposure. Exposure measures the variability (inverse of
similarity (Lang, Toussaint, and Kersting 2012)) of the pre-
states in the training data, and is defined as:

EX(o) =
Ns
|S|C2

∑
si,sj∈S

d−(si, sj)

|si|
+
d−(sj , si)

|sj |

where S is the set of unique pre-states in the state transi-
tions involving o, and Ns is the number of state transitions
resulting from successful executions. The first term is the
ratio of state transitions from successful executions, penal-
izing those from failed executions which are less informa-
tive. Essentially, exposure is the average pairwise difference
between pre-states weighted by Ns. Since probabilities of
effects are inferred using maximum likelihood on the Ns
successful state transitions, reliability considers these prob-
abilities implicitly.

Only unique pre-states are used to prevent
double-counting. For example, in the Exploding
Blocksworld domain, the sequence of actions pick-
UpFromTable(b1) and putDown(b1) can be executed
repeatedly. This also causes V O to decrease and SU to
increase which yields a high reliability which does not
reflect the learning progress of the actions. Using exposure
as a scaling factor prevents such scenarios.

Learning Rules
The rules learner from (Pasula, Zettlemoyer, and Kaelbling
2007) applies a search operator, selected at random, to a rule.
Each search operator modifies the rule differently to yield a
set of new rules. An example of a rule is shown in Figure
2. A greedy search uses a score function as heuristics. We
introduce a deviation penalty, PEN(R,R0), to the score
function such that the search begins from and is bounded
around the prior action models, R0, which can be a set of
empty rules, or rules of incomplete action models. Hence,
the learner refines R0. The score function is defined as:

Score(R) =
∑

(s,a,s')∈T

log(P̂ (s' | s, a, r(s,a)))

− αp
∑
r∈R

PEN(r)− PEN(R,R0)

where P̂ is the probability of the effect in r(s,a) which cov-
ers the transition (s, a, s'), T is the training data, αp is a
parameter, and PEN(r) penalizes complex rules to avoid
over-specialization. The deviation penalty increases whenR
deviates further from R0, and is defined as:

PEN(R,R0) =
RE(o0)

EX(o)

[
αdrop ∆drop(R,R0)+

+ αadd ∆add(R,R0)
]

where αdrop and αadd are scaling parameters, and
∆drop(R,R0) and ∆add(R,R0) are defined as:

∆drop(R,R0) =
d−(Rp0, R

p)

|Rp|+ |Rp0|
+
d−(Re0, R

e)

|Re|+ |Re0|

∆add(R,R0) =
d−(Rp, Rp0)

|Rp|+ |Rp0|



where the pairings of rules r ∈ R and r0 ∈ R0 are the same
as the pairings in d(R,R0).

Since past training data is not used, the rules learner may
consider a probabilistic effect of R0 as noise if this ef-
fect is rarely seen in the current training data. ∆drop in-
creases when this happens. If the probabilistic effect is not
seen at all, it will be dropped in R regardless of how large
PEN(R,R0) is. Such rules will be rejected. The deviation
penalty is scaled by the reliability of the prior action model
and the inverse of exposure. The intuition is that deviation
should be limited if the prior action model is highly reliable,
and encouraged if the training data has high variability.

Planning, Learning, and Acting
We begin this section by explaining the main algorithm for
ILM (Algorithm 1), followed by the subroutines for rein-
forcement learning and learning from failure.

The inputs to Algorithm 1 are the prior action models (R0)
and their reliability (RE0), initial state (s0), goal state (g),
and the maximum number of iterations (N ). EXmax = 0
and tabu = ∅ for the first function call and shall be dis-
cussed later. The main loop interleaves learning, planning,
and acting (lines 5 to 19). Exploration and exploitation is
performed at the start of each iteration (line 6). If no action is
found, then a dead-end is reached (line 7) and the algorithm
terminates. When an action fails to execute, ILM learns from
this failure by recording the failed instance in tabu (line
11: relevant predicates returns the set of grounded predi-
cates in s that does not contain objects that were not in
a), otherwise, synthetic state transitions (st, a, st) are gen-
erated (line 13) where aT is a randomly grounded action
such that check tabu(st, a, tabu)⇒ ⊥. Failed executions are
exceedingly less as failed instances are added to tabu. Re-
constructing synthetic failed transitions augment the training
data and aids the learning of preconditions.

Learning from training data of low variability (or low ex-
posure) could result in lower correctness of learned rules. To
prevent this, we delay learning until certain criteria are met
(can learn in line 15):
1. If R0 is the set of empty rules, always learn since no

information can be lost. However, this risks learning in-
correct preconditions or effects that can prevent the agent
from reaching the goal state.

2. Otherwise, learn if there is at least one successful transi-
tion, at least one failed or synthetic transition, and EX >
αEX EXmax where αEX ∈ [0, 1].
If learning is allowed, then new rules are learned

(learn rules in line 16) and the values of RE, EX , V O,
and SU are updated (line 17). Otherwise, only RE, EX ,
and SU are updated. The algorithm terminates after reach-
ing the maximum number of iterations or when the goal is
reached. It returns the learned rules, reliability, maximum
exposure (EXmax), and tabu. These are used as inputs to
the next function call to Algorithm 1.

Relational Exploration and Exploitation The balance
between exploration and exploitation is implemented in
EE(s, g, R,RE, tabu, ζ). First, we compute the counts

Algorithm 1: Incremental Learning Model
11 Function ILM(R0, RE0, s0, g,N, ζ, EXmax, tabu):
2 R← R0

3 RE ← RE0

4 T ← ∅
5 for t = 0 : N do
6 at ← EE(st, g, R,RE, tabu, ζ)
7 if at = ∅ then break
8 st+1, st← execute(at)
9 T .append(st, at, st+1)

10 if st = fail then
11 tabu.append(relevant predicates(st, at), at)
12 else
13 T .append(synthetic transition(tabu, st+1))
14 Rprev ← R
15 if can learn(R,EX,EXmax) then
16 R← learn rules(R0, T , RE)
17 RE,EX ← update(R,RE0, T , st, Rprev)
18 if s' � g then break
19 return R,RE, max(EX,EXmax), tabu

for all applicable actions in s using the context-based
density formula from (Lang, Toussaint, and Kersting
2012) which performs relational generalizations — the
amount of exploration is reduced as states which are
unknown under propositional representations could be
known under relational representations. The count-action
pairs < c, o > are sorted in increasing order of c =
RE(o)

∑
r∈R

∑
(s,a,s')∈T 1(r is applicable in s) in a list,

L, where R are rules of o. Reliability serves as intrinsic mo-
tivation where less reliable actions are explored more.

A state is known if ∀ci ∈ L (ci ≥ ζ), or if the relia-
bility of every action exceeds a constant threshold. The sec-
ond condition allows exploitation using prior action models
when counts are still zero. If the state is known, exploitation
is attempted using Gourmand, a planner that solves prob-
lems modelled in finite-horizon MDP online (Kolobov and
Weld 2016). ILM can use any planner that accepts planning
problems written in PPDDL. Exploitation fails if no plan is
found or if the first action of the plan is in tabu.

Exploration is attempted if the state is not known or ex-
ploitation fails. An action is popped off the top ofL and a list
of grounded actions that are applicable in s are enumerated.
A grounded action that is not in tabu is selected at random
and returned. If no such actions exist, then the next action
is popped off until L is empty, following which random ex-
ploration is resorted to where actions are grounded without
considering if preconditions are satisfied in s. If all grounded
actions are in tabu, then a dead-end is reached.

Learning from Failure Failed executions due to unsatis-
fied preconditions are recorded in tabu. Before an action a is
executed in state s, Algorithm 2 checks if (s, a) is in tabu,
returning False if so. We describe the algorithm with an
example as shown in Figure 3. A state is described by a set
of predicates. We extract the set of predicates fs ⊆ s that
does not have an object in its binding that is not in the argu-



Algorithm 2: Check if (s, a) is not in tabu
11 Function check tabu(s, a, tabu):
2 fs ← relevant predicates(s, a)
3 for ft, at ∈ tabu do
4 if name(a) = name(at) then
5 ft ← substitute(ft, at, a)
6 if ∀ p (p ∈ fs ⇒ p ∈ ft) then
7 return false
8 return true

o: moveCar(?loc1, ?loc2)
a: moveCar(l31, l13)
s: ¬hasspare() notFlattire() at(l31)

road(l11 l21) road(l21 l31) road(l12 l11) road(l13 l12)
road(l13 l22) road(l22 l31) road(l22 l21) road(l12 l22)
spareIn(l11) spareIn(l12) spareIn(l21)

fs: ¬hasspare() notFlattire() at(l31)
ft: ¬hasspare() notFlattire() at(?loc1) spareIn(?loc2)
Perform substitution σ = {?loc1 → l31, ?loc2 → l13} on ft
ft: ¬hasspare() notFlattire() at(l31) spareIn(l13)

Figure 3: An example of checking if (s, a) is in tabu.

ments of a (line 2). We assume that the arguments of actions
are known for this to be possible. fs is compared to each
entry (ft, at) in tabu (lines 3 to 7). The predicates in ft are
grounded with the same substitution as the variables binding
of a (line 5). Hence, the check is lifted to relational repre-
sentations and is applicable even if the objects in the domain
change. If fs does not have at least one predicate that is not
in ft, then a is in tabu (line 6). In the example, moveCar(l31,
l13) is in tabu, as are all grounded actions of moveCar that
do not have road(?loc1, ?loc2) in fs. check tabu exploits
experiences from failed executions which are otherwise un-
informative to the rules learner as it cannot determine the
reason for the failure (Walsh et al. 2010). Since every action
is checked before execution, tabu will not contain identical
entries. This keeps the size of tabu to a minimum which is
important as the memory and time complexity is O(|tabu|).

Soundness and Completeness The completeness of Al-
gorithm 2 depends on the failed instances in tabu. In the
example, if tabu is ∅, then a is not in tabu, and in this case,
the algorithm is incomplete. a then fails to execute following
which fs is lifted with σ = {l31→ ?loc1, l13→ ?loc2} and
inserted with o in tabu. Since no erroneous instance is ever
added to tabu, the algorithm is sound. That is, no action that
is found in tabu will succeed in execution.

Experimental Results
Experimental Setup
In one trial of experiments, ten planning problems are at-
tempted sequentially in an order of increasing scale (see Ta-
ble 1). We denote an attempt as one round. Each trial starts
with no prior knowledge; the prior action models for round
1 are empty action models. Since the planning problems are
probabilistic, 50 independent trials are conducted. The ma-

Scale Round Tireworld Exploding
Blocksworld Logistics

Small 1 to 3 6 locations 5 blocks 2 cities,
4 locations

Medium 4 to 6 15 locations 7 blocks 2 cities,
6 locations

Large 7 to 10 28 locations 9 blocks 3 cities,
8 locations

Table 1: Number of objects in small, medium, and large-
scale planning problems for each of the three domains.

Setting ILM ILM-R ILM-T R-MAX

Use Reliability Yes No Yes No
Use tabu Yes Yes No No
Delay Learning Yes No Yes No
Forget Experience Yes Yes Yes No

Table 2: Algorithmic configurations for ILM, ILM-R,
ILM-T, and R-MAX.

chine used to run the experiments was a four core Intel(R)
i5-6500 with 4 GB of RAM.

We used three planning domains: Tireworld and
Exploding Blocksworld domains from the Interna-
tional Probabilistic Planning Competition (Younes et al.
2005), and the Logistics domain. In the Tireworld
domain, the car may get a flat tire when moving to another
location. If the tire is flat, the car cannot move and a dead-
end is reached if no spare tires are available. Tireworld
problems of the same scale are identical and are con-
structed systematically such that there are no unavoidable
dead-ends (Little and Thiebaux 2007). In the Exploding
Blocksworld domain, a block may detonate when it is
put down, destroying the block or table beneath. A destroyed
block or table is no longer accessible. Each block can only
detonate once. We set the goal states as random configura-
tions of three blocks. All Logistics problems have one
truck per city, one airplane, and one parcel. Loading and un-
loading parcels may fail and the state remains unchanged.
The models for all domains are stationary where probabili-
ties of the effects of actions are kept constant in all rounds.

The performance of ILM is evaluated with the correctness
of the learned model and the goal-directedness. R-MAX and
two variants of ILM are included for comparison. ILM-R
does not use reliability; the relational count is not weighted
and the deviation penalty in the score function used by the
rules learner is zero. In addition, ILM-R does not delay
learning (line 15 of Algorithm 1) as this requires EXmax,
a component of reliability. ILM-T does not learn from fail-
ure. ILM, ILM-R, and ILM-T do not use past training data
while R-MAX does. The algorithmic configurations are sum-
marized in Table 2.



Figure 4: Variational distance at the end of each round
for, from top to bottom, Tireworld, Exploding
Blocksworld, and Logistics domains. The results are
the means and standard deviations of 50 trials.

Correctness of Learned Models
The correctness of a learned model P̂ can be defined as the
average variational distance between P̂ and the true model
P (Pasula, Zettlemoyer, and Kaelbling 2007):

V D(P, P̂ ) =
1

|T |
∑
Ti∈T

|P (Ti)− P̂ (Ti)|

where T is the set of test examples — 500 state transi-
tions per action are generated with the true distribution.
Figure 4 show the variational distances for Tireworld,
Exploding Blocksword, and Logistics domains.
The variational distances at round 0 are of the prior action
models, which are empty models for round 1.

Tireworld. ILM learns action models incrementally as ev-
ident by the decrease in variational distance from rounds 1
to 10. ILM-R performed marginally worse as it learns from
training data of low variability which caused the variational
distances to increase in rounds 4 and 6. The utility of learn-
ing from failure is illustrated by the significantly larger vari-
ational distances for ILM-T and R-MAX. In both cases, most
of the executions led to failure which are less meaningful

ILM ILM-R ILM-T R-MAX

Round T E L T E L T E L T E L

1 18 4 2 22 1 3 3 0 0 6 0 0
2 to 3 38 22 10 42 10 5 6 4 0 16 10 3
4 to 6 17 27 20 16 12 9 2 9 3 13 8 6

7 to 10 6 17 18 4 7 16 1 9 9 2 9 17

Table 3: Average number of successful trials out of 50 trials
for Tireworld (T), Exploding Blocksworld (E),
and Logistics (L) domains.

experiences for the rules learner. Since the maximum num-
ber of iterations is only 15 (moveCar alone has 36 possible
groundings for the small-scale planning problems), such in-
efficient exploration performs poorly.

Exploding Blocksworld. The lowest variational distances
are achieved with ILM from rounds 1 to 4 and with R-MAX
thereafter. The latter learns from a larger training set which
is important for this domain which has complex actions pu-
tOnBlock and putDown. These actions have conditional ef-
fects which are modelled as separate rules with different
preconditions. Preconditions are inferred by comparing pre-
states in the training data. Most of the predicates in the pre-
states remain unchanged as an action typically changes a
small subset of the state. Hence, more training data is re-
quired to learn more complex preconditions. Since the train-
ing data used by R-MAX are largely from failed experiences,
it took four rounds before it outperforms ILM.

Logistics. ILM had the best performance in all rounds.
The large variational distances for ILM-T is due to the dif-
ficulty in learning driveTruck. This action has four argu-
ments and there are 432 possible groundings in the small-
scale planning problems. This has complications in the goal-
directedness which shall be discussed in the next subsection.

Goal-directedness
The goal-directedness is evaluated by the number of suc-
cessful trials which are trials where the goal state is reached.
The goal-directedness for the three domains is shown in Ta-
ble 3 which underlines the performance of the different al-
gorithmic configurations. It is averaged over rounds with
planning problems of the same scale. Round 1 is separated
from rounds 2 and 3 to illustrate the advantage of having
prior knowledge. The average number of successful trials
for rounds 2 and 3 were generally larger than round 1 even
though the scales of the planning problems are the same.
This is because ILM exploits learned models from the pre-
vious round whereas round 1 had no such prior knowledge.

Tireworld. ILM-R outperforms ILM in rounds 1 to 3.
This is because the goal state can be reached by execut-
ing moveCar repeatedly as long as the tire is not flat along
the way. ILM attempts exploitation more often than ILM-R



Figure 5: Number of actions from exploration, exploita-
tion, forced exploration, and random exploration that were
successfully executed in the Exploding Blocksworld
domain. The results are the means and standard deviations
of 50 trials using ILM (top) and ILM-T (bottom).

as it weights relational counts with reliability. For small-
scale planning problems, exploration or exploitation may not
make a significant difference. When the scale increases, the
number of steps between the initial state and the goal state
increases and the probability of getting a flat tire along the
way is higher. A dead-end is reached if the tire is flat and no
spare tire is available. In such circumstances, exploitation
is required and ILM outperforms ILM-R in rounds 4 to 10.
ILM-T and R-MAX did not perform well as actions failed to
execute most of the time.

Exploding Blocksworld. Dead-ends are often the cause of
failing to reach the goal state. A block could detonate with a
probability of 0.2 when executing putDown or putOnBlock
which destroys the table or underlying block. These irre-
versible changes to the state could then lead to dead-ends.
Nevertheless, ILM has the most number of successful trials
in all rounds. ILM-R performed much poorer than ILM as
reaching the goal state with exploration alone is difficult.
Even though R-MAX has lower variational distances than
ILM for rounds 5 to 10, it did not outperform ILM as it does
not learn from failure. Figure 5 compares the number of ac-
tions that were executed successfully in each round using
ILM and ILM-T. The latter had significantly fewer num-
ber of successful executions. Figure 5 shows the frequency
of exploration decreasing over the rounds while that of ex-
ploitation increased. This is expected as the action models
are learned incrementally and exploitation should be used in
later rounds where the variational distance is lower.

Figure 6 shows the use of tabu in ILM. The number of
entries added to tabu declined sharply after round 1 because

Figure 6: Number of actions added to, found to be in,
or found to not be in tabu. The results are the means
and standard deviations of 50 trials in the Exploding
Blocksworld domain using ILM.

Figure 7: Execution status of actions at each round for a par-
ticular trial of Logistics domain using ILM.

repeating entries are not added. The number of actions found
in tabu correspond to the number of failed executions if this
check was not done. This number rose for rounds 7 to 10 be-
cause the number of grounded actions increases in the large-
scale planning problems.

Logistics. The number of successful trials increases even
when the scale of the planning problem increases. In small-
scale planning problems, there were few successful trials
because driveTruck was not learned yet as mentioned pre-
viously. driveTruck failed to execute repeatedly till round 3
as only two out of 432 grounded actions would succeed. As
a result, a subset of the state space, which could include the
goal state, is not reached. If states where the truck is at a lo-
cation with a parcel are never reached, then loadTruck and
unloadTruck could not be executed. This applies to loadAir-
plane and unloadAirplane if a parcel is not at an airport.

For the trial shown in Figure 7, the action model for driv-
eTruck was learned from a single partially successful execu-
tion in round 3. The learned rule is shown in Figure 8. Its



Action: driveTruck(?truck ?from ?to ?city)
Precondition: airport(?from) ∧ truck at(?truck ?from) . . .

∧ in city(?to ?city)
Effect: 1.0 ¬truck at(?truck ?from) ∧ truck at(?truck ?to)

0 〈 noise 〉

Figure 8: Learned rule for driveTruck in the Logistics
domain. The predicate airport(?from) in the precondition is
extraneous and causes the action to be erroneously inappli-
cable in some parts of the state space.

precondition had the extraneous predicate airport(?from).
As a result, driveTruck is not selected in rounds 4, 5, and
7 because this incorrect precondition is not satisfied though
the action is in fact applicable. loadTruck and unloadTruck
are not attempted in rounds 4 to 8 because they are in tabu.
This example illustrates the adverse impact of learning ex-
traneous predicates for preconditions. Although we delay
learning when the training data has low variability, this is
not done if the action models are empty.

Conclusions and Future Work
We presented a domain-independent framework, ILM, for
incremental learning over multiple planning problems of a
domain without the use of past training data. We introduced
a new measure, reliability, which serves as an empirical es-
timate of the learning progress and influences the processes
of learning and planning. The relational counts are weighted
with reliability to reduce the amount of exploration required
for reliable action models. We also extended an existing
rules learner to consider prior knowledge in the form of in-
complete action models. ILM learns from failure by check-
ing if an action is in a list of state-action pairs which repre-
sents actions that have failed to execute. We evaluated ILM
on three benchmark domains. Experimental results showed
that variational distances of learned action models decreased
over each subsequent round. Learning from failure greatly
reduces the number of failed executions leading to improved
correctness and goal-directedness.

For complex domains, more training data is required to
learn action models. Using past training data would not work
well for non-stationary domains and also increases the com-
putation time for learning. The first issue could be resolved
by learning distributions from the current training data only.
The second issue could be resolved by maintaining a fixed
size of training data by replacing older experiences while
maximizing the exposure, or variability, of the training data.
These will be explored in the future.
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