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Abstract

Transfer learning from natural image datasets, particularly IMAGENET, using stan-
dard large models and corresponding pretrained weights has become a de-facto
method for deep learning applications to medical imaging. However, there are fun-
damental differences in data sizes, features and task specifications between natural
image classification and the target medical tasks, and there is little understanding of
the effects of transfer. In this paper, we explore properties of transfer learning for
medical imaging. A performance evaluation on two large scale medical imaging
tasks shows that surprisingly, transfer offers little benefit to performance, and
simple, lightweight models can perform comparably to IMAGENET architectures.
Investigating the learned representations and features, we find that some of the
differences from transfer learning are due to the over-parametrization of standard
models rather than sophisticated feature reuse. We isolate where useful feature
reuse occurs, and outline the implications for more efficient model exploration. We
also explore feature independent benefits of transfer arising from weight scalings.

1 Introduction

With the growth of deep learning, transfer learning has become integral to many applications —
especially in medical imaging, where the present standard is to take an existing architecture designed
for natural image datasets such as IMAGENET, together with corresponding pretrained weights (e.g.
ResNet [10], Inception [27]), and then fine-tune the model on the medical imaging data.

This basic formula has seen almost universal adoption across many different medical specialties.
Two prominent lines of research have used this methodology for applications in radiology, training
architectures like ResNet, DenseNet on chest x-rays [31, 24] and ophthalmology, training Inception-
v3, ResNet on retinal fundus images [2, 9, 23, 4]. The research on ophthalmology has also culminated
in FDA approval [28], and full clinical deployment [29]. Other applications include performing early
detection of Alzheimer’s Disease [5], identifying skin cancer from dermatologist level photographs
[6], and even determining human embryo quality for IVF procedures [15].

Despite the immense popularity of transfer learning in medical imaging, there has been little work
studying its precise effects, even as recent work on transfer learning in the natural image setting
[11, 16, 20, 12, 7] has challenged many commonly held beliefs. For example in [11], it is shown that
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Figure 1: Example images from the IMAGENET, the retinal fundus photographs, and the CHEXPERT datasets,
respectively. The fundus photographs and chest x-rays have much higher resolution than the IMAGENET images,
and are classified by looking for small local variations in tissue.

transfer (even between similar tasks) does not necessarily result in performance improvements, while
[16] illustrates that pretrained features may be less general than previously thought.

In the medical imaging setting, many such open questions remain. As described above, transfer
learning is typically performed by taking a standard IMAGENET architecture along with its pretrained
weights, and then fine-tuning on the target task. However, IMAGENET classification and medical
image diagnosis have considerable differences.

First, many medical imaging tasks start with a large image of a bodily region of interest and use
variations in local textures to identify pathologies. For example, in retinal fundus images, small red
‘dots’ are an indication of microaneurysms and diabetic retinopathy [1], and in chest x-rays local
white opaque patches are signs of consolidation and pneumonia. This is in contrast to natural image
datasets like IMAGENET, where there is often a clear global subject of the image (Fig. 1). There is
thus an open question of how much IMAGENET feature reuse is helpful for medical images.

Additionally, most datasets have larger images (to facilitate the search for local variations), but with
many fewer images than IMAGENET, which has roughly one million images. By contrast medical
datasets range from several thousand images [15] to a couple hundred thousand [9, 24].

Finally, medical tasks often have significantly fewer classes (5 classes for Diabetic Retinopathy
diagnosis [9], 5− 14 chest pathologies from x-rays [24]) than the standard IMAGENET classification
setup of 1000 classes. As standard IMAGENET architectures have a large number of parameters
concentrated at the higher layers for precisely this reason, the design of these models is likely to be
suboptimal for the medical setting.

In this paper, we perform a fine-grained study on transfer learning for medical images. Our main
contributions are:

[1] We evaluate the performance of standard architectures for natural images such as IMAGENET, as
well as a family of non-standard but smaller and simpler models, on two large scale medical imaging
tasks, for which transfer learning is currently the norm. We find that (i) in all of these cases, transfer
does not significantly help performance (ii) smaller, simpler convolutional architectures perform
comparably to standard IMAGENET models (iii) IMAGENET performance is not predictive of medical
performance. These conclusions also hold in the very small data regime.

[2] Given the comparable performance, we investigate whether using pretrained weights leads to dif-
ferent learned representations, by using (SV)CCA [22] to directly analyze the hidden representations.
We find that pretraining does affect the hidden representations, but there is a confounding issue of
model size, where the large, standard IMAGENET models do not change significantly through the
fine-tuning process, as evidenced through surprising correlations between representational similarity
at initialization and after convergence.

[3] Using further analysis and weight transfusion experiments, where we partially reuse pretrained
weights, we isolate locations where meaningful feature reuse does occur, and explore hybrid ap-
proaches to transfer learning where a subset of pretrained weights are used, and other parts of the
network are redesigned and made more lightweight.

[4] We show there are also feature-independent benefits to pretraining — reusing only the scaling of
the pretrained weights but not the features can itself lead to large gains in convergence speed.

2 Datasets

Our primary dataset, the RETINA data, consists of retinal fundus photographs [9], large 587× 587
images of the back of the eye. These images are used to diagnose a variety of eye diseases including
Diabetic Retinopathy (DR) [3]. DR is graded on a five-class scale of increasing severity [1]. Grades
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3 and up are referable DR (requiring immediate specialist attention), while grades 1 and 2 correspond
to non-referable DR. As in prior work [9, 2] we evaluate via AUC-ROC on identifying referable DR.

We also study a second medical imaging dataset, CHEXPERT [14], which consists of chest x-ray
images (resized to 224 × 224), which can be used to diagnose 5 different thoracic pathologies:
atelectasis, cardiomegaly, consolidation, edema and pleural effusion. We evaluate our models on
the AUC of diagnosing each of these pathologies. Figure 1 shows some example images from both
datasets and IMAGENET, demonstrating drastic differences in visual features among those datasets.

3 Models and Performance Evaluation of Transfer Learning

To lay the groundwork for our study, we select multiple neural network architectures and evaluate
their performance when (1) training from random initialization and (2) doing transfer learning from
IMAGENET. We train both standard, high performing IMAGENET architectures that have been popular
for transfer learning, as well as a family of significantly smaller convolutional neural networks, which
achieve comparable performance on the medical tasks.

As far as we are aware, there has been little work studying the effects of transfer learning from
IMAGENET on smaller, non-standard IMAGENET architectures. (For example, [21] studies a different
model, but does not evaluate the effect of transfer learning.) This line of investigation is especially
important in the medical setting, where large, computationally expensive models might significantly
impede mobile and on-device applications. Furthermore, in standard IMAGENET models, most of the
parameters are concentrated at the top, to perform the 1000-class classification. However, medical
diagnosis often has considerably fewer classes – both the retinal fundus images and chest x-rays have
just 5 classes – likely meaning that IMAGENET models are highly overparametrized.

We find that across both datasets and all models, transfer learning does not significantly affect perfor-
mance. Additionally, the family of smaller lightweight convolutional networks performs comparably
to standard IMAGENET models, despite having significantly worse accuracy on IMAGENET– the
IMAGENET task is not necessarily a good indication of success on medical datasets. Finally, we
observe that these conclusions also hold in the setting of very limited data.

3.1 Description of Models

For the standard IMAGENET architectures, we evaluate ResNet50 [11] and Inception-v3 [27], which
have both been used extensively in medical transfer learning applications [2, 9, 31]. We also design a
family of simple, smaller convolutional architectures. The basic building block for this family is the
popular sequence of a (2d) convolution, followed by batch normalization [13] and a relu activation.
Each architecture has four to five repetitions of this basic layer. We call this model family CBR.
Depending on the choice of the convolutional filter size (fixed for the entire architecture), the number
of channels and layers, we get a family of architectures with size ranging from a third of the standard
IMAGENET model size (CBR-LargeT, CBR-LargeW) to one twentieth the size (CBR-Tiny). Full
architecture details are in the Appendix.

3.2 Results

We evaluate three repetitions of the different models and initializations (random initialization vs
pretrained weights) on the two medical tasks, with the result shown in Tables 1, 2. There are two
possibilities for repetitions of transfer learning: we can have a fixed set of pretrained weights and
multiple training runs from that initialization, or for each repetition, first train from scratch on
IMAGENET and then fine-tune on the medical task. We opt for evaluating the former, as that is the
standard method used in practice. For all models except for Inceptionv3, we first train on IMAGENET
to get the pretrained weights. For Inceptionv3, we used the pretrained weights provided by [26].

Table 1 shows the model performances on the RETINA data (AUC of identifying moderate Diabetic
Retinopathy (DR), described in Section 2), along with IMAGENET top 5 accuracy. Firstly, we see
that transfer learning has minimal effect on performance, not helping the smaller CBR architectures
at all, and only providing a fraction of a percent gain for Resnet and Inception. Next, we see that
despite the significantly lower performance of the CBR architectures on IMAGENET, they perform
very comparably to Resnet and Inception on the RETINA task. These same conclusions are seen on
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Dataset Model Architecture Random Init Transfer Parameters IMAGENET Top5

RETINA Resnet-50 96.4%± 0.05 96.7%± 0.04 23570408 92.%± 0.06
RETINA Inception-v3 96.6%± 0.13 96.7%± 0.05 22881424 93.9%
RETINA CBR-LargeT 96.2%± 0.04 96.2%± 0.04 8532480 77.5%± 0.03
RETINA CBR-LargeW 95.8%± 0.04 95.8%± 0.05 8432128 75.1%± 0.3
RETINA CBR-Small 95.7%± 0.04 95.8%± 0.01 2108672 67.6%± 0.3
RETINA CBR-Tiny 95.8%± 0.03 95.8%± 0.01 1076480 73.5%± 0.05

Table 1: Transfer learning and random initialization perform comparably across both standard IMA-
GENET architectures and simple, lightweight CNNs for AUCs from diagnosing moderate DR. Both sets
of models also have similar AUCs, despite significant differences in size and complexity. Model perfor-
mance on DR diagnosis is also not closely correlated with IMAGENET performance, with the small models
performing poorly on IMAGENET but very comparably on the medical task.

Model Architecture Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion

Resnet-50 79.52±0.31 75.23±0.35 85.49±1.32 88.34±1.17 88.70±0.13
Resnet-50 (trans) 79.76±0.47 74.93±1.41 84.42±0.65 88.89±1.66 88.07±1.23
CBR-LargeT 81.52±0.25 74.83±1.66 88.12±0.25 87.97±1.40 88.37±0.01
CBR-LargeT (trans) 80.89±1.68 76.84±0.87 86.15±0.71 89.03±0.74 88.44±0.84
CBR-LargeW 79.79±0.79 74.63±0.69 86.71±1.45 84.80±0.77 86.53±0.54
CBR-LargeW (trans) 80.70±0.31 77.23±0.84 86.87±0.33 89.57±0.34 87.29±0.69
CBR-Small 80.43±0.72 74.36±1.06 88.07±0.60 86.20±1.35 86.14±1.78
CBR-Small (trans) 80.18±0.85 75.24±1.43 86.48±1.13 89.09±1.04 87.88±1.01
CBR-Tiny 80.81±0.55 75.17±0.73 85.31±0.82 84.87±1.13 85.56±0.89
CBR-Tiny (trans) 80.02±1.06 75.74±0.71 84.28±0.82 89.81±1.08 87.69±0.75

Table 2: Transfer learning provides mixed performance gains on chest x-rays. Performances (AUC%) of
diagnosing different pathologies on the CHEXPERT dataset. Again we see that transfer learning does not help
significantly, and much smaller models performing comparably.

the chest x-ray results, Table 2. Here we show the performance AUC for the five different pathologies
(Section 2). We again observe mixed gains from transfer learning. For Atelectasis, Cardiomegaly and
Consolidation, transfer learning performs slightly worse, but helps with Edema and Pleural Effusion.

3.3 The Very Small Data Regime

We conducted additional experiments to study the effect of transfer learning in the very small data
regime. Most medical datasets are significantly smaller than IMAGENET, which is also the case for
our two datasets. However, our datasets still have around two hundred thousand examples, and other
settings many only have a few thousand. To study the effects in this very small data regime, we
trained models on only 5000 datapoints on the RETINA dataset, and examined the effect of transfer
learning. The results, in Table 3, suggest that while transfer learning has a bigger effect with very

Model Rand Init Pretrained
Resnet50 92.2% 94.6%
CBR-LargeT 93.6% 93.9%
CBR-LargeW 93.6% 93.7%

Table 3: Benefits of transfer learning in the small data regime are largely due to architecture size. AUCs
when training on the RETINA task with only 5000 datapoints. We see a bigger gap between random initialization
and transfer learning for Resnet (a large model), but not for the smaller CBR models.

small amounts of data, there is a confounding effect of model size – transfer primarily helps the large
models (which are designed to be trained with a million examples) and smaller models again show
little difference between transfer and random initialization.
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Figure 2: Pretrained weights give rise to different hidden representations than training from random
initialization for large models. We compute CCA similarity scores between representations learned using
pretrained weights and those from random initialization. We do this for the top two layers (or stages for Resnet,
Inception) and average the scores, plotting the results in orange. In blue is a baseline similarity score, for
representations trained from different random initializations. We see that representations learned from random
initialization are more similar to each other than those learned from pretrained weights for larger models, with
less of a distinction for smaller models.

4 Representational Analysis of the Effects of Transfer

In Section 3 we saw that transfer learning and training from random initialization result in very
similar performance across different neural architectures and tasks. This gives rise to some natural
questions about the effect of transfer learning on the kinds of representations learned by the neural
networks. Most fundamentally, does transfer learning in fact result in any representational differences
compared to training from random initialization? Or are the effects of the initialization lost? Does
feature reuse take place, and if so, where exactly? In this section, we provide some answers to these
basic questions. Our approach directly analyzes and compares the hidden representations learned by
different populations of neural networks, using (SV)CCA [22, 19], revealing an important dependence
on model size, and differences in behavior between lower and higher layers. These insights, combined
with results Section 5 suggest new, hybrid approaches to transfer learning.

Quantitatively Studying Hidden Representations with (SV)CCA To understand how pretraining
affects the features and representations learned by the models, we would like to (quantitatively) study
the learned intermediate functions (latent layers). Analyzing latent representations is challenging due
to their complexity and the lack of any simple mapping to inputs, outputs or other layers. A recent
tool that effectively overcomes these challenges is (Singular Vector) Canonical Correlation Analysis,
(SV)CCA [22, 19], which has been used to study latent representations through training, across
different models, alternate training objectives, and other properties [22, 19, 25, 18, 8, 17, 30]. Rather
than working directly with the model parameters or neurons, CCA works with neuron activation
vectors — the ordered collection of outputs of the neuron on a sequence of inputs. Given the activation
vectors for two sets of neurons (say, corresponding to distinct layers), CCA seeks linear combinations
of each that are as correlated as possible. We adapt existing CCA methods to prevent the size of the
activation sets from overwhelming the computation in large models (details in Appendix C), and
apply them to compare the latent representations of corresponding hidden layers of different pairs of
neural networks, giving a CCA similarity score of the learned intermediate functions.

Transfer Learning and Random Initialization Learn Different Representations Our first exper-
iment uses CCA to compare the similarity of the hidden representations learned when training from
pretrained weights to those learned when training from random initialization. We use the represen-
tations learned at the top two layers (for CBRs) or stages (for Resnet, Inception) before the output
layer, averaging their similarity scores. As a baseline to compare to, we also look at CCA similarity
scores for the same representations when training from random initialization with two different seeds
(different initializations and gradient updates). The results are shown in Figure 2. For larger models
(Resnet, Inception), there is a clear difference between representations, with the similarity of represen-
tations between training from random initialization and pretrained weights (orange) noticeably lower
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Figure 3: Per-layer CCA similarities before and after training on medical task. For all models, we see that
the lowest layers are most similar to their initializations, and this is especially evident for Resnet50 (a large
model). We also see that feature reuse is mostly restricted to the bottom two layers (stages for Resnet) — the
only place where similarity with initialization is significantly higher for pretrained weights (grey dotted lines
shows the difference in similarity scores between pretrained and random initialization).
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Figure 4: Large models move less through training at lower layers: similarity at initialization is highly
correlated with similarity at convergence for large models. We plot CCA similarity of Resnet (conv1)
initialized randomly and with pretrained weights at (i) initialization, against (ii) CCA similarity of the converged
representations (top row second from left.) We also do this for two different random initializations (top row,
left). In both cases (even for random initialization), we see a surprising, strong correlation between similarity at
initialization and similarity after convergence (R2 = 0.75, 0.84). This is not the case for the smaller CBR-Small
model, illustrating the overparametrization of Resnet for the task. Higher must likely change much more for
good task performance.

than representations learned independently from different random initializations (blue). However for
smaller models (CBRs), the functions learned are more similar.

Larger Models Change Less Through Training The reasons underlying this difference between
larger and smaller models becomes apparent as we further study the hidden representations of all the
layers. We find that larger models change much less during training, especially in the lowest layers.
This is true even when they are randomly initialized, ruling out feature reuse as the sole cause, and
implying their overparametrization for the task. This is in line with other recent findings [33].

In Figure 3, we look at per-layer representational similarity before/after finetuning, which shows that
the lowest layer in Resnet (a large model), is significantly more similar to its initialization than in the
smaller models. This plot also suggests that any serious feature reuse is restricted to the lowest couple
of layers, which is where similarity before/after training is clearly higher for pretrained weights vs
random initialization. In Figure 4, we plot the CCA similarity scores between representations using
pretrained weights and random initialization at initialization vs after training, for the lowest layer
(conv1) as well as higher layers, for Resnet and CBR-Small. Large models changing less through
training is evidenced by a surprising correlation between the CCA similarities for Resnet conv1,
which is not true for higher layers or the smaller CBR-Small model.
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(a) Resnet Init (b) Resnet Final (c) Res-trans Init (d) Res-trans final

(e) CBR-Small Init (f) CBR-Small Final (g) CBR Trans (h) CBR Trans Final

Figure 5: Visualization of conv1 filters shows the remains of initialization after training in Resnet, and
the lack of and erasing of Gabor filters in CBR-Small. We visualize the filters before and after training from
random initialization and pretrained weights for Resnet (top row) and CBR-Small (bottom row). Comparing the
similarity of (e) to (f) and (g) to (h) shows the limited movement of Resnet through training, while CBR-Small
changes much more. We see that CBR does not learn Gabor filters when trained from scratch (f), and also erases
some of the pretrained Gabors (compare (g) to (h).)

Filter Visualizations and the Absence of Gabors As a final study of how pretraining affects the
model representations, we visualize some of the filters of conv1 for Resnet and CBR-Small (both
7x7 kernels), before and after training on the RETINA task. The filters are shown in Figure 5, with
visualizations for chest x-rays in the Appendix. These add evidence to the aformentioned observation:
the Resnet filters change much less than those of CBR-Small. In contrast, CBR-Small moves more
from its initialization, and has more similar learned filters in random and pretrained initialization.
Interestingly, CBR-Small does not appear to learn Gabor filters when trained from scratch (bottom row
second column). Comparing the third and fourth columns of the bottom row, we see that CBR-Small
even erases some of the Gabor filters that it is initialized with in the pretrained weights.

5 Convergence: Feature Independent Benefits and Weight Transfusion

In this section, we investigate the effects of transfer learning on convergence speed, finding that:
(i) surprisingly, transfer offers feature independent benefits to convergence simply through better
weight scaling (ii) using pretrained weights from the lowest two layers/stages has the biggest effect
on convergence — further supporting the findings in the previous section that any meaningful feature
reuse is concentrated in these lowest two layers (Figure 3.) These results suggest some hybrid
approaches to transfer learning, where only a subset of the pretrained weights (lowest layers) are
used, with a lightweight redesign to the top of the network, and even using entirely synthetic features,
such as synthetic Gabor filters (Appendix F.3). We show these hybrid approaches capture most of the
benefits of transfer and enable greater flexibility in its application.

Feature Independent Benefits of Transfer: Weight Scalings We consistently observe that using
pretrained weights results in faster convergence. One explanation for this speedup is that there is
significant feature reuse. However, the results of Section 4 illustrate that there are many confounding
factors, such as model size, and feature reuse is likely limited to the lowest layers. We thus tested
to see whether there were feature independent benefits of the pretrained weights, such as better
scaling. In particular, we initialized a iid weights from N (µ̃, σ̃2), where µ̃ and σ̃2 are the mean and
variance of W̃ , the pretrained weights. Doing this for each layer separately inherits the scaling of the
pretrained weights, but destroys all of the features. We called this the Mean Var init, and found that it
significantly helps speed up convergence (Figure 6.) Several additional experiments studying batch
normalization, weight sampling, etc are in the Appendix.
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Figure 6: Using only the scaling of the pretrained weights (Mean Var Init) helps with convergence speed.
The figures compare the standard transfer learning and the Mean Var initialization scheme to training from
scratch. On both the RETINA data (a-b) and the CHEXPERT data (c) (with Resnet50 on the Consolidation
disease), we see convergence speedups.
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Figure 7: Reusing a subset of the pretrained weights (weight transfusion), further supports only the
lowest couple of layers performing meaningful feature reuse. We initialize a Resnet with a contiguous
subset of the layers using pretrained weights (weight transfusion), and the rest randomly, and train on the
RETINA task. On the left, we show the convergene plots when transfusing up to conv1 (just one layer), up to
block 1 (conv1 and all the layers in block1), etc up to full transfer. On the right, we plot the number of train
steps taken to reach 91% AUC for different numbers of transfused weights. Consistent with findings in Section
4, we observe that reusing the lowest layers leads to the greatest gain in convergence speed. Perhaps surprisingly,
just reusing conv1 gives the greatest marginal convergence speedup, even though transfusing weights for a block
means several new layers are using pretrained weights.

Weight Transfusions and Feature Reuse We next study whether the results suggested by Section 4,
that meaningful feature reuse is restricted to the lowest two layers/stages of the network is supported
by the effect on convergence speed. We do this via a weight transfusion experiment, transfering a
contiguous set of some of the pretrained weights, randomly initializing the rest of the network, and
training on the medical task. Plotting the training curves and steps taken to reach a threshold AUC in
Figure 7 indeed shows that using pretrained weights for lowest few layers has the biggest training
speedup. Interestingly, just using pretrained weights for conv1 for Resnet results in the largest gain,
despite transfusion for a Resnet block meaning multiple layers are now reusing pretrained weights.

Takeaways: Hybrid Approaches to Transfer Learning The transfusion results suggest some
hybrid, more flexible approaches to transfer learning. Firstly, for larger models such as Resnet, we
could consider reusing pretrained weights up to e.g. Block2, redesiging the top of the network (which
has the bulk of the parameters) to be more lightweight, initializing these layers randomly, and training
this new Slim model end to end. Seeing the disproportionate importance of conv1, we might also
look at the effect of initializing conv1 with synthetic Gabor filters (see Appendix F.3 for details) and
the rest of the network randomly. In Figure 8 we illustrate these hybrid approaches. Slimming the top
of the network in this way offers the same convergence and performance as transfer learning, and
using synthetic Gabors for conv1 has the same effect as pretrained weights for conv1. These variants
highlight many new, rich and flexible ways to use transfer learning.
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Figure 8: Hybrid approaches to transfer learning: reusing a subset of the weights and slimming the
remainder of the network, and using synthetic Gabors for conv1. For Resnet, we look at the effect of
reusing pretrained weights up to Block2, and slimming the remainder of the network (halving the number of
channels), randomly initializing those layers, and training end to end. This matches performance and convergence
of full transfer learning. We also look at initializing conv1 with synthetic Gabor filters (so no use of pretrained
weights), and the rest of the network randomly, which performs equivalently to reusing conv1 pretrained weights.
This result generalizes to different architectures, e.g. CBR-LargeW on the right.

6 Conclusion

In this paper, we have investigated many central questions on transfer learning for medical imag-
ing applications. Having benchmarked both standard IMAGENET architectures and non-standard
lightweight models (itself an underexplored question) on two large scale medical tasks, we find
that transfer learning offers limited performance gains and much smaller architectures can perform
comparably to the standard IMAGENET models. Our exploration of representational similarity and
feature reuse reveals surprising correlations between similarities at initialization and after training
for standard IMAGENET models, providing evidence of their overparametrization for the task. We
also find that meaningful feature reuse is concentrated at the lowest layers and explore more flexible,
hybrid approaches to transfer suggested by these results, finding that such approaches maintain all
the benefits of transfer and open up rich new possibilities. We also demonstrate feature-independent
benefits of transfer learning for better weight scaling and convergence speedups.
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