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ABSTRACT

Currently, progressively larger deep neural networks are trained on ever growing
data corpora. In result, distributed training schemes are becoming increasingly rele-
vant. A major issue in distributed training is the limited communication bandwidth
between contributing nodes or prohibitive communication cost in general. To miti-
gate this problem we propose Sparse Binary Compression (SBC), a compression
framework that allows for a drastic reduction of communication cost for distributed
training. SBC combines existing techniques of communication delay and gradient
sparsification with a novel binarization method and optimal weight update encoding
to push compression gains to new limits. By doing so, our method also allows
us to smoothly trade-off gradient sparsity and temporal sparsity to adapt to the
requirements of the learning task. Our experiments show, that SBC can reduce
the upstream communication on a variety of convolutional and recurrent neural
network architectures by more than four orders of magnitude without significantly
harming the convergence speed in terms of forward-backward passes. For instance,
we can train ResNet50 on ImageNet in the same number of iterations to the baseline
accuracy, using ×3531 less bits or train it to a 1% lower accuracy using ×37208
less bits. In the latter case, the total upstream communication required is cut from
125 terabytes to 3.35 gigabytes for every participating client. Our method also
achieves state-of-the-art compression rates in a Federated Learning setting with
400 clients.

1 INTRODUCTION

Distributed Stochastic Gradient Descent (DSGD) is a training setting, in which a number of clients
jointly trains a deep learning model using stochastic gradient descent (Dean et al., 2012; Recht et al.,
2011; Moritz et al., 2015). Every client holds an individual subset of the training data, used to improve
the current master model. The improvement is obtained by investing computational resources to
perform iterations of stochastic gradient descent (SGD). This local training produces a weight update
∆W in every participating client, which in regular or irregular intervals ("communication rounds")
is exchanged to produce a new master model. This exchange of weight updates can be performed
indirectly via a centralized server or directly in an all-reduce operation. In both cases, all clients share
the same master model after every communication round (see figure 1). In vanilla DSGD the clients
have to communicate a full gradient update during every iteration. Every such update is of the same
size as the full model, which can be in the range of gigabytes for modern architectures with millions
of parameters (He et al., 2016; Huang et al., 2017). Over the course of multiple hundred thousands
of training iterations on big datasets the total communication for every client can easily grow to
more than a petabyte. Consequently, if communication bandwidth is limited, or communication
is costly, distributed deep learning can become unproductive or even unfeasible. DSGD is a very
popular training setting with many applications. On one end of the spectrum, DSGD can be used
to greatly reduce the training time of large-scale deep learning models by introducing device-level
data parallelism (Chilimbi et al., 2014; Zinkevich et al., 2010; Xing et al., 2015; Li et al., 2014),
making use of the fact that the computation of a mini-batch gradient is perfectly parallelizable. In
this setting, the clients are usually embodied by hardwired high-performance computation units (i.e.
GPUs in a cluster) and every client performs one iteration of SGD per communication round. Since
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Figure 1: One communication round of DSGD: a) Clients synchronize with the server. b) Clients
compute a weight update independently based on their local data. c) Clients upload their local weight
updates to the server, where they are averaged to produce the new master model.

communication is high-frequent in this setting, bandwidth can be a significant bottleneck. On the
other end of the spectrum DSGD can also be used to enable privacy-preserving deep learning (Shokri
& Shmatikov, 2015; McMahan et al., 2016). Since the clients only ever share weight updates, DSGD
makes it possible to train a model from the combined data of all clients without any individual client
having to reveal their local training data to a centralized server. In this setting the clients typically are
embedded or mobile devices with low network bandwidth, intermittent network connections, and an
expensive mobile data plan. In both scenarios, the communication cost between the individual training
nodes is a limiting factor for the performance of the whole learning system. For the synchronous
distributed training scheme described above, the total amount of bits communicated by every client
during training is given by

btotal ∈ O( Niter × f︸ ︷︷ ︸
# communication rounds

× |∆W6=0| × (b̄pos + b̄val)︸ ︷︷ ︸
# bits per communication

× K︸︷︷︸
# receiving nodes

) (1)

whereNiter is the total number of training iterations (forward-backward passes) every client performs,
f is the communication frequency, |W6=0| is the sparsity of the weight update, b̄pos, b̄val are the
average number of bits required to communicate the position and the value of the non-zero elements
respectively and K is the number of receiving nodes (ifW is dense, the positions of all weights are
predetermined and no position bits are required).

Substantial research has gone into the effort of reducing the amount of communication necessary
between the clients via lossy compression schemes. Using the systematic of equation 1, we can
organize prior approaches into three different groups:

Sparsification methods restrict weight updates to modifying only a small subset of the parameters,
thus reducing |∆W6=0|. Strom (2015) presents an approach (later modified by Tsuzuku et al. (2018))
in which only gradients with a magnitude greater than a certain predefined threshold are sent to the
server. All other gradients are aggregated into a residual. This method achieves compression rates of
up to 3 orders of magnitude on an acoustic modeling task. In practice however, it is hard to choose
appropriate values for the threshold, as it may vary a lot for different architectures and even different
layers. Instead of using a fixed threshold to decide what gradient entries to send, Aji & Heafield
(2017) use a fixed sparsity rate. They only communicate the fraction p entries of the gradient with
the biggest magnitude, while also collecting all other gradients in a residual. At a sparsity rate of
p = 0.001 their method slightly degrades the convergence speed and final accuracy of the trained
model. Lin et al. (2017) present modifications to the work of Aji et al. which close this performance
gap. These modifications include using a curriculum to slowly increase the amount of sparsity in
the first couple communication rounds and applying momentum factor masking to overcome the
problem of gradient staleness. Their method achieves compression rates ranging from ×270 to ×600
on different architectures, without slowdown in convergence speed.

Communication delay methods try to reduce the communication frequency f . McMahan et al.
(2016) propose Federated Averaging to reduce the cumulative communication. In Federated Aver-
aging, instead of communicating after every iteration, every client performs multiple iterations of
SGD to compute a weight update. The authors observe that this delay of communication does not
significantly harm the convergence speed in terms of local iterations and report a reduction in the
number of necessary communication rounds by a factor of ×10 - ×100 on different convolutional
and recurrent neural network architectures. In a follow-up work Konečnỳ et al. (2016) combine this
communication delay with random sparsification and probabilistic quantization. They restrict the
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clients to learn random sparse weight updates or force random sparsity on them afterwards ("struc-
tured" vs "sketched" updates) and combine this sparsification with probabilistic quantization. While
their method also combines communication delay with (random) sparsification and quantization, and
achieves good compression gains for one particular CNN and LSTM model, it also causes a major
drop in convergence speed and final accuracy.

Dense quantization methods try to reduce the amount of value bits b̄val. Different quantization
methods have been proposed that reduce the bit-width of the gradients to ternary (Wen et al., 2017),
binary (Seide et al., 2014; Bernstein et al., 2018) or arbitrary (Alistarh et al., 2017) bitwidths. While
these are theoretically well-founded and come with strong convergence guarantees, they are also
limited to a maximum compression rate of ×32, compared to the regular 32-bit encoding.

2 ON THE ACCUMULATION OF GRADIENT INFORMATION

5.0 2.5 0.0 2.5 5.0
dim 1

4
3
2
1
0
1
2
3

di
m

 2

Optimization Noise
Full Gradient
Optimal Path

5.0 2.5 0.0 2.5 5.0
dim 1

4
3
2
1
0
1
2
3

di
m

 2
Batch Noise

Batch Gradient
Full Gradient

5.0 2.5 0.0 2.5 5.0
dim 1

4
3
2
1
0
1
2
3

di
m

 2

Compressed Path
Optimal Path
Compressed Path

Figure 2: Sources of noise in SGD (illustration): Left: Optimization noise, caused by Gradient
Descent overshooting. Bouncing between the walls of the ravine results in negatively correlated noise.
Middle: Batch noise, caused by the batch loss being only a noisy approximation of the full empirical
loss. Right: The compressed path converges equally fast, but requires only half of the information to
be communicated.

Communication delay and sparsification methods as described above already achieve impressive
compression rates, however the phenomenon underlying their successes is still only poorly understood.
We present a new information-theoretic perspective that is based on the observation that both of these
approaches achieve compression by accumulating gradient information locally before sending it to the
server. In the case of communication delay all gradients are accumulated uniformly for a fixed amount
of iterations, while in the case of sparsification methods they are accumulated non-uniformly until
they exceed some fixed or adaptive threshold. In both cases the rate of compression is proportional to
the number of steps that the updates are being delayed on average.

Consider now the optimization path ∆W1, ..,∆WT taken by SGD on the loss-surface between some
initialization pointW0 and the modelWT =W0 +

∑T
t=1 ∆Wt trained for T iterations. Following

this path, we can model the changes occurring to any individual weight in the network w as a noisy
stochastic process via

∆wt = st + nt, t = 1, .., T (2)

where st denotes the deterministic signal (i.e. the true direction of the minimum), while nt denotes
the noise, induced by mini-batch sampling in SGD ("batch noise") and the stochasticity of the learning
process itself ("optimization noise", see figure 2 for an illustration). For the sake of simplicity, and
motivated by the central limit theorem we can assume (a) that this noise nt is normally distributed
at every time-step nt ∼ N (0, σ2) with the variance being constant in time V(nt) = σ2 for all
t = 1, .., T . Since the optimization process has the tendency to damp noise as investigated for
instance in LeCun et al. (2012) it is also reasonable to assume (b) that the noise is (negatively)
self-correlated. The noise process is then given by n1 = N1, nt = αnt−1 +N t, with N t normally
distributed and all N t uncorrelated, α ∈ (−1, 0). Given these assumptions we can bound the variance
of the accumulated parameter updates.
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Theorem 2.1. Under assumptions (a) and (b), the variance of the accumulated noise can be bounded
by

V(

T∑
t=1

nt) ≤ σ2(T (1 + α) + 1). (3)

The proof can be found in the supplement. Theorem 2.1 directly leads us to a lower bound on the
signal-to-noise ratio of the accumulated weight-updates:
Corollary 2.1.1. Under assumptions (a) and (b), accumulation increases the signal-to-noise ratio
from s̄/σ to

SNR(

T∑
t=1

∆wt) =
E[
∑T
t=1 s

t + nt]√
V[
∑T
t=1 s

t + nt]
≥

∑T
t=1 s

t√
σ2(T (1 + α) + 1)

≈
√
T√

1 + α

s̄

σ
(4)

with s̄ = 1
T

∑T
t=1 s

t being the signal-average over time.

This means that a weight-update will be more informative the longer the accumulation period and
the stronger the noise correlates temporally. Convergence speed will not be compromised for as
long as the information content of the accumulated update is equal to the cumulative information
content of the individual updates (c.f. fig. 2 (c)). This line of reasoning helps to shed light on both
the successes of communication delay and gradient sparsification. In fact, it implies that both of these
approaches are actually very similar in the way they affect the information flow from client to server
on the individual weight level.
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Figure 3: Validation Error for ResNet32 trained on
CIFAR at different levels of temporal and gradient
sparsity (the error is color-coded, brighter means
lower error). The prior approaches of Gradient
Dropping and Federated Averaging can be embed-
ded in a two-dimensional compression framework.

We find that this intuition is also verified em-
pirically. Figure 3 shows validation errors for
ResNet32 model trained on CIFAR for 60000
iterations at different levels of communication
delay and gradient sparsity. We observe multiple
things: 1.) The validation error remains more
or less constant along the off-diagonals of the
matrix where the total sparsity (i.e. the product
of communication delay and gradient sparsity)
is constant. 2.) The existing methods of Feder-
ated Averaging (McMahan et al., 2016) (purple)
and Gradient Dropping/ DGC (Aji & Heafield,
2017; Lin et al., 2017)(yellow) are just lines
in the two-dimensional space of possible com-
pression methods. 3.) There exists a roughly
triangular area of approximately constant error,
optimal compression methods lie along the hy-
potenuse of this triangle. We find this behavior
consistently across different model architectures,
more examples can be found in the supplement.
These results indicate, that communication de-
lay and sparsification affect the convergence in a
roughly multiplicative way and that there seems
to exist a fixed information budged in DSGD,
necessary to maintain unhindered convergence.

In the following we present a framework that
allows us to smoothly trade of these two types of gradient accumulation against one another. By doing
so our proposed framework can adapt to the requirements of the distributed learning environment and
achieve state-of-the-art compression results by reaping the benefits from both approaches.

3 SPARSE BINARY COMPRESSION

Inspired by our findings in the previous section, we propose Sparse Binary Compression (cf. Figure
4), to drastically reduce the number of communicated bits in distributed training. SBC makes use
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of multiple compression techniques simultaneously1 to reduce all multiplicative components of
equation 1.

delay
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Figure 4: Step-by-step explanation of techniques used in Sparse Binary Compression: (a) Illustrated
is the traversal of the parameter space with regular DSGD (left) and Federated Averaging (right).
With this form of communication delay, a bigger region of the loss surface can be traversed, in the
same number of communication rounds. That way compression gains of up to ×1000 are possible.
After a number of iterations, the clients communicate their locally computed weight updates. (b)
Before communication, the weight update is first sparsified, by dropping all but the fraction p weight
updates with the highest magnitude. This achieves up to ×1000 compression gain. (c) Then the
sparse weight update is binarized for an additional compression gain of approximately×3. (d) Finally,
we optimally encode the positions of the non-zero elements, using Golomb encoding. This reduces
the bit size of the compressed weight update by up to another ×2 compared to naive encoding.

In the followingW will refer to the entirety of neural network parameters, while W ∈ W will refer
to one specific tensor of weights. Arithmetic operations onW are to be understood componentwise.

Communication Delay, Fig. 4 (a): We use communication delay, proposed by McMahan et al.
(2016), to introduce temporal sparsity into DSGD. Instead of communicating gradients after every
local iteration, we allow the clients to compute more informative updates by performing multiple
iterations of SGD. These generalized weight updates are given by

∆Wi = SGDn(Wi, Di)−Wi

where SGDn(Wi, Di) refers to the set of weights obtained by performing n iterations of stochastic
gradient descent onWi, while sampling mini-batches from the i-th client’s training dataDi. Empirical
analysis by McMahan et al. (2016) suggests that communication can be delayed drastically, with only
marginal degradation of accuracy. For n = 1 we obtain regular DSGD.

Sparse Binarization, Fig. 4 (b), (c): Following the works of Lin et al. (2017)Strom (2015)Shokri &
Shmatikov (2015) and Aji & Heafield (2017) we use the magnitude of an individual weight within
a weight update as a heuristic for it’s importance. First, we set all but the fraction p biggest and
fraction p smallest weight updates to zero. Next, we compute the mean of all remaining positive
and all remaining negative weight updates independently. If the positive mean µ+ is bigger than
the absolute negative mean µ−, we set all negative values to zero and all positive values to the
positive mean and vice versa. The method is illustrated in figure 4 and formalized in algorithm
2. Finding the fraction p smallest and biggest values in a vector W requires O(|W |) operations,
where |W | refers to the number of elements in W (Cormen et al., 2009). Lin et al. (2017) suggest to
reduce the computational cost of this operation, by randomly subsampling from W . However this
comes at the cost of introducing (unbiased) noise in the amount of sparsity. Luckily, in our approach
communication rounds (and thus compressions) are relatively infrequent, which helps to marginalize
the overhead of the sparsification. Quantizing the non-zero elements of the sparsified weight update
to the mean reduces the required value bits b̄val from 32 to 0. This translates to a reduction in
communication cost by a factor of around ×3. We can get away with averaging out the non-zero
weight updates because they are relatively homogeneous in value and because we accumulate our
compression errors as described in the next paragraph.

1To clarify, we have put our contributions in emphasis.
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Residual Accumulation, Fig. 4 (d): It is well established (Lin et al., 2017; Strom, 2015; Aji &
Heafield, 2017; Seide et al., 2014) that the convergence in sparsified DSGD can be greatly accelerated
by accumulating the error that arises from only sending sparse approximations of the weight updates.
After every communication round, the residual is updated via

Rτ =

τ∑
t=1

(∆Wt −∆W∗t ) = Rτ−1 + ∆Wτ −∆W∗τ . (5)

Error accumulation has the great benefit that no gradient information is lost (it may only become
outdated or "stale"). In the context of pure sparsification residual accumulation can be interpreted to
be equivalent to increasing the batch size for individual parameters (Lin et al., 2017). Moreover, we
can show:
Theorem 3.1. Let ∆W1, ..,∆WT ∈ Rn be (flattened) weight updates, computed by one client in the
first T communication rounds. Let ∆W ∗1 , ..,∆W

∗
T−1 ∈ S be the actual weight updates, transferred

in the previous rounds (restricted to some subspace S) andRτ be the content of the residual at time
τ as in equation 5. Then the orthogonal projection

v = ProjS(RT−1 + ∆WT ) (6)

uniquely minimizes the accumulated error

err(∆W ∗T ) = ‖
T∑
t=1

(∆Wt −∆W ∗t )‖ (7)

in S. (Proof in Supplement.)

That means that the residual accumulation keeps the compressed optimization path as close as possible
to optimization path taken with non-compressed weight updates.

Algorithm 1: Synchronous Distributed
Stochastic Gradient Descent (DSGD)

1 input: initial parametersW
2 outout: improved parametersW
3 init: all clients Ci are initialized with the

same parametersWi ←W , the initial
global weight update and the residuals are
set to zero ∆W,Ri ← 0

4 for t = 1, .., T do
5 for i ∈ It ⊆ {1, ..,M} in parallel do
6 Client Ci does:
7 • msg← downloadS→Ci

(msg)
8 • ∆W ← decode(msg)

9 • Wi ←Wi + ∆W
10 • ∆Wi ← Ri+SGDn(Wi, Di)−Wi

11 • ∆W∗i ← compress(∆Wi)
12 • Ri ← ∆Wi −∆W∗i
13 • msgi ← encode(∆W∗i )
14 • uploadCi→S(msgi)
15 end
16 Server S does:
17 • gatherCi→S(∆W∗i ), i ∈ It
18 • ∆W ← 1

|It|
∑
i∈It ∆W∗i

19 • W ←W + ∆W
20 • broadcastS→Ci(∆W), i = 1, ..,M
21 end
22 returnW

Algorithm 2: Sparse Binary Compression
1 input: tensor ∆W , sparsity p
2 output: sparse tensor ∆W ∗

3 • val+ ← topp%(∆W );
val− ← topp%(−∆W )

4 • µ+ ← mean(val+); µ− ← mean(val−)
5 if µ+ ≥ µ− then
6 return ∆W ∗ ← µ+(W ≥ min(val+))
7 else
8 return

∆W ∗ ← −µ−(W ≤ −min(val−))
9 end

Algorithm 3: Golomb Position Encoding
1 input: sparse tensor ∆W ∗, sparsity p
2 output: binary message msg
3 • I ← ∆W ∗[:] 6=0

4 • b∗ ← 1 + blog2( log(φ−1)
log(1−p) )c

5 for i = 1, .., |I| do
6 • d← Ii − Ii−1
7 • q ← (d− 1) div 2b

∗

8 • r ← (d− 1) mod 2b
∗

9 • msg.add(1, .., 1︸ ︷︷ ︸
q times

, 0, binaryb∗(r))

10 end
11 return msg
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Optimal Position Encoding, Fig. 4 (e): To communicate a set of sparse binary tensors produced by
SGC, we only need to transfer the positions of the non-zero elements in the flattened tensors, along
with one mean value (µ+ or µ−) per tensor. Instead of communicating the absolute non-zero positions
it is favorable to only communicate the distances between all non-zero elements. It is possible to show
that for big values of |W | and k = p|W |, the distances are approximately geometrically distributed
with success probability equal to the sparsity rate p. Therefore, we can optimally encode the distances
using the Golomb code Golomb (1966). Golomb encoding reduces the average number of position
bits to

b̄pos = b∗ +
1

1− (1− p)2b∗ , (8)

with b∗ = 1 + blog2( log(φ−1)
log(1−p) )c and φ =

√
5+1
2 being the golden ratio. For a sparsity rate of i.e.

p = 0.01, we get b̄pos = 8.38, which translates to ×1.9 compression, compared to a naive distance
encoding with 16 fixed bits. While the overhead for encoding and decoding makes it unproductive
to use Golomb encoding in the situation of Strom (2015), this overhead becomes negligible in our
situation due to the infrequency of weight update exchange resulting from communication delay. The
encoding scheme is given in algorithm 3, while the decoding scheme can be found in the supplement.

Momentum Correction, Warm-up Training and Momentum Masking: Lin et al. (2017) in-
troduce multiple minor modifications to the vanilla Gradient Dropping method, to improve the
convergence speed. We adopt momentum masking, while momentum correction is implicit to our
approach. For more details on this we refer to the supplement.

Our proposed method is described in Algorithms 1, 2 and 3. Algorithm 1 describes how compression
and residual accumulation can be introduced into DSGD. Algorithm 2 describes our compression
method. Algorithm 3 describes the Golomb encoding. Table 1 compares theoretical asymptotic
compression rates of different popular compression methods.

Total Bits = Baseline
SignSGD,
TernGrad ,

QSGD

Gradient
Dropping,

DGC

Federated
Averaging

Sparse
Binary

Compression
Temporal Sparsity 100% 100% 100% 0.1% - 10% 0.1% - 10%

× Gradient Sparsity 100% 100% 0.1% 100% 0.1% - 10%

×∑ Value Bits 32 1 - 8 32 32 0
Position Bits 0 0 16 0 8 - 14

Compression Rate ×1 ×4 - ×32 ×666 ×10 - ×1000 - ×40000

Table 1: Theoretical asymptotic compression rates for different compression methods broken down
into components. Only SBC reduces all multiplicative components of the total bitsize (cf. eq. 1).

4 EXPERIMENTS

4.1 NETWORKS AND DATASETS

We evaluate our method on commonly used convolutional and recurrent neural networks with millions
of parameters, which we train on well-studied data sets that contain up to multiple millions of samples.
We perform experiments with client numbers ranging from 4 to 400 to cover both the distributed
training and federated learning use-case.

Image Classification: We run experiments for LeNet5-Caffe2 on MNIST LeCun (1998), ResNet18
and ResNet34 He et al. (2016) on CIFAR-10 and CIFAR-100 Krizhevsky et al. (2014) and ResNet50
on ILSVRC12 (ImageNet) Deng et al. (2009). For the i.i.d. setting we split the training data randomly
into equally sized shards and assign one shard to every one of the clients. For the non-i.i.d. setting
every client is assigned samples from only two classes of the dataset, but the amount of data still
remains the same for every client. All models are trained using momentum SGD, except for LeNet5-
Caffe, which is trained using the Adam optimizer Kingma & Ba (2014). Learning rate, weight
intitiallization and data augmentation are as in the respective papers.

2A modified version of LeNet5 from LeCun et al. (1998) (see supplement).
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Compression Method −→ Baseline DGC 3 Federated
Averaging4 SBC (1) SBC (2) SBC (3)
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LeNet5-Caffe
@MNIST

Accuracy 0.9946 0.994 0.994 0.994 0.994 0.991
Compression ×1 ×718 ×500 ×2071 ×3166 ×24935

ResNet18
@CIFAR10

Accuracy 0.946 0.9383 0.9279 0.9422 0.9435 0.9219
Compression ×1 ×768 ×1000 ×2369 ×3491 × 31664

ResNet34
@CIFAR100

Accuracy 0.773 0.767 0.7316 0.767 0.7655 0.701
Compression ×1 ×718 ×1000 ×2370 ×3166 ×31664

ResNet50
@ImageNet

Accuracy 0.737 0.739 0.724 0.735 0.737 0.728
Compression ×1 ×601 ×1000 ×2569 ×3531 ×37208

WordLSTM
@PTB

Perplexity 76.02 75.98 76.37 77.73 78.19 77.57
Compression ×1 ×719 ×1000 ×2371 ×3165 ×31658

WordLSTM*
@WIKI

Perplexity 101.5 102.318 131.51 103.95 103.95 104.62
Compression ×1 ×719 ×1000 ×2371 ×3165 ×31657

Table 2: Final accuracy/perplexity achieved on the test split and average compression rate for different
compression schemes in a distributed training setting with different numbers of clients.

Language Modeling: We experiment with multilayer sequence-to-sequence LSTM models as
described in Zaremba et al. (2014) on the Penn Treebank (PTB) Marcus et al. (1993) and Wikitext-2
corpora for next-word prediction. The PTB dataset consists of a sequence 923000 training, and 82000
validation words, while the Wikitext-2 dataset contains 2088628 train and 245569 test words. On both
datasets we train a two-layer LSTM model with 650 and 200 hidden units respectively ("WordLSTM"
/ "WordLSTM*") with tied weights between encoder and decoder as described in Inan et al. (2016).
The training data is split into consecutive subsequences of equal length, out of which we assign one
to every client.

While the models we use in our experiments do not fully achieve state-of-the-art results on the
respective tasks and datasets, they are still sufficient for the purpose of evaluating our compression
method and demonstrate, that our method works well with common regularization techniques such
as batch normalization Ioffe & Szegedy (2015) and dropout Srivastava et al. (2014). A complete
description of models and hyperparameters can be found in the supplement.

4.2 RESULTS

We experiment with three configurations of our method: SBC (1) uses no communication delay and a
gradient sparsity of 0.1%, SBC (2) uses 10 iterations of communication delay and 1% gradient sparsity
and SBC (3) uses 100 iterations of communication delay and 1% gradient sparsity. Our decision
for these points on the 2D grid of possible configurations is somewhat arbitrary. The experiments
with SBC (1) serve the purpose of enabling us to directly compare our 0-value-bit quantization to the
32-value-bit Deep Gradient Compression (Lin et al., 2017)).

Table 2 lists compression rates and final validation accuracies achieved by different compression
methods, when applied to the training of neural networks on 5 different datasets. The number
of iterations (forward-backward-passes) is held constant for all methods. On all benchmarks, our
methods perform comparable to the baseline, while communicating significantly less bits.

Figure 5 shows convergence speed in terms of iterations (left) and communicated bits (right) re-
spectively for ResNet50 trained on ImageNet. The convergence speed is only marginally affected,
by our different compression methods. In the first 30 epochs SBC (3) even achieves the highest
accuracy, using about ×37000 less bits than the baseline. In total, SBC (3) reduces the upstream
communication on this benchmark from 125 terabytes to 3.35 gigabytes for every participating client.
After the learning rate is lowered in epochs 30 and 60 progress slows down for SBC (3) relative to the

3Lin et al. (2017) at a sparsity rate p = 0.1% without warm-up training. The gradients are encoded with
Golomb encoding prior to communication.

4McMahan et al. (2016) at different rates of communication delay (the compression rate is equal to the
communication delay).

8



Under review as a conference paper at ICLR 2019

Compression Method −→ Baseline Gradient
Droping

Federated
Averaging SBC (1) SBC (2) SBC (3)

i.i.d. data
50

ResNet18*5

@CIFAR10
Accuracy 0.9254 0.9167 0.911 0.921 0.902 0.906

Compression ×1 ×713 ×100 ×2362 ×3166 ×31664
10

0 LeNet5-Caffe
@MNIST

Accuracy 0.979 0.9811 0.967 0.979 0.9818 0.9536
Compression ×1 ×714 ×100 ×2363 ×3165 ×31655

40
0 LeNet5-Caffe

@MNIST
Accuracy 0.9758 0.9744 0.899 0.9731 0.9733 0.8919

Compression ×1 ×714 ×100 ×2363 ×3165 ×31655

non-i.i.d. data

10
0 LeNet5-Caffe

@MNIST
Accuracy 0.9506 0.9498 0.8592 0.9522 0.9583 0.8344

Compression ×1 ×714 ×100 ×2363 ×3165 ×31655

Table 3: Final accuracy achieved on the test split and average compression rate for different compres-
sion schemes in a Federated learning setting with different numbers of clients.

methods which do not use communication delay. In direct comparison SBC (1) performs very similar
to Gradient Dropping, while using about ×4 less bits (that is ×2569 less bits than the baseline).
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Figure 5: Left: Top-1 validation accuracy vs number of epochs. Right: Top-1 validation error vs
number of transferred bits (log-log). Epochs 30 and 60 at which the learning rate is reduced are
marked in the plot. ResNet50 trained on ImageNet.

Table 3 shows results for the federated learning setting with much higher numbers of clients trained
on both i.i.d. and non-i.i.d. splits of data. We can see that in particular with growing numbers of
clients and in the non-i.i.d. case, Federated Averaging significantly slows down the convergence and
degrades the final accuracy. SBC (3) also suffers in this scenario as is also relies on 100 steps of
communication delay. Conversely, our methods SBC (1) and (2) that rely more heavily on gradient
sparsification perform much better in this setting and in some cases even beat the baseline. This
behavior is expected, as the frequent exchange of gradient information in SBC (1) and (2) keeps all
clients aligned, while they diverge further from one another for every iteration that communication is
delayed in Federated Averaging.

Our experiments suggest that the distinction between the two formerly treated as separate distributed
training settings of federated learning and data-parallel training is somewhat arbitrary and misleading
and that better results can be achieved by combining the best approaches from both of these worlds.
Contrary to the paradigm suggested in previous literature (McMahan et al., 2016), communication
delay does not seem to be a well-suited approach for communication reduction in the federated
learning setting. Instead our experiments demonstrate, that drastically better performance can be
achieved under an even lower communication budged, if individual weight-updates are sparsified
instead of delayed. On the other hand, it’s easy to see that communication delay has the potential

5ResNet18* onyl has half as many convolutional filters in every layer as ResNet18.
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to speed-up parallel training as it allows the individual computation devices to perform multiple
steps of SGD without interruption. Our experiments with 4 clients demonstrate that introducing
communication delay into data parallel training is not harmful to the convergence of the model in
terms of training iterations.

5 CONCLUSION

The gradient information for training deep neural networks with SGD is highly redundant (see e.g. Lin
et al. (2017)). We exploit this fact to the extreme by combining 3 powerful compression strategies and
are able to achieve compression gains of up to four orders of magnitude with only a slight decrease
in accuracy. More fundamentally, we present theoretical and empirical evidence suggesting that the
formerly treated as separate compression methods of communication delay and gradient sparsification
in fact can be viewed as two very similar forms of gradient delay that affect the convergence speed in
a roughly multiplicative way. Based on this insight we propose a framework that is able to reap the
benefits from both compression approaches and can smoothly adapt to communication-constraints in
the learning environment, such as network bandwidth and latency and (SGD-)computation time as
well as temporal inhomogeneities therein. This leads to advantages in both federated learning and
data-parallel training of deep neural networks. We would like to highlight, that in no case we did
modify the hyperparameters of the respective baseline models to accommodate our method. This
demonstrates that our method is easily applicable. Note however that an extensive hyperparameter
search could further improve the results. Furthermore, our findings in sections 2 and 4 indicate that
even higher compression rates are possible if we adapt communication delay and gradient sparsity
to the particular training objective. It remains an interesting direction of further research to identify
heuristics and theoretical insights that can help to find the optimal balance and thus guide sparsity
towards optimality.
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6 SUPPLEMENT

6.1 MOMENTUM CORRECTION, WARM-UP TRAINING AND MOMENTUM MASKING:

Lin et al. introduce multiple minor modifications to the vanilla Gradient Dropping method. With
these modifications they achieve up to around 1% higher accuracy compared to Gradient Dropping
on a variety of benchmarks. Those modifications include:

Momentum correction: Instead of adding the raw gradient to the residuum, the momentum-corrected
gradient is added. This is used implicitly in our approach, as our weight updates are already
momentum-corrected.
Warm-up Training: The sparsity rate is increased exponentially from 25% to 0.1% in the first epochs.
We find that warm-up training can indeed speed-up convergence in the beginning of training, but
ultimately has no effect on the final accuracy of the model. We therefore omit warm up training in
our experiments, as it adds an additional hyperparameter to the method, without any real benefit.
Momentum Masking: To avoid stale momentum from carrying the optimization into a wrong direction
after a weight update is performed, Lin et al. suggest to set the momentum to zero for updated weights.
We adopt momentum correction in our method.

6.2 GOLOMB POSITION DECODING

Algorithm 4 describes the decoding of a binary sequence produced by Golomb Position Encoding
(see main paper). Since the shapes of all weight-tensors are known to both the server and all clients,
we can omit the shape information in both encoding and decoding.

Algorithm 4: Golomb Position Decoding
1 input: binary message msg, bitsize b∗, mean value µ
2 output: sparse tensor ∆W ∗

3 init: ∆W ∗ ← 0 ∈ Rn
4 • i← 0; q ← 0; j ← 0
5 while i < size(msg) do
6 if msg[i] = 0 then
7 • j ← j + q2b

∗
+ intb∗(msg[i+ 1], ..,msg[i+ b∗]) + 1

8 • ∆W ∗j ← µ

9 • q ← 0; i← i+ b∗ + 1
10 else
11 • q ← q + 1; i← i+ 1
12 end
13 end
14 return ∆W ∗

12
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6.3 MODEL SPECIFICATION

Below, we describe the neural network models used in our experiments. Table 4 list the training
hyperparameters that were used.

Experiment Iterations Batchsize LR LR Decay Optimizer
4

C
lie

nt
s

LeNet5-Caffe
@MNIST 2000 128×4 0.001 - Adam

ResNet18
@CIFAR10 36000 32× 4 0.1 0.1 @ ep 40 and 80 Momentum SGD

ResNet34
@CIFAR100 36000 32× 4 0.1 0.1 @ ep 40 and 80 Momentum SGD

ResNet50
@ImageNet 900000 32× 4 0.1 0.1 @ ep 30 and 60 Momentum SGD

WordLSTM
@PTB 53000 5× 4 20 decay 0.25 if loss

has not decreased SGD

WordLSTM*
@WIKI 120000 5× 4 20 decay 0.25 if loss

has not decreased SGD

50

Resnet18*
@CIFAR10 23000 4×50 0.1 0.1 @ ep 40 and 80 Momentum SGD

10
0 LeNet5-Caffe

@MNIST 2500 8×100 0.001 - Adam

40
0 LeNet5-Caffe

@MNIST 2500 2×400 0.001 - Adam

Table 4: Hyperparameters used for our experiments in sections 2 and 4.

LeNet5-Caffe: The model specification can be downloaded from the Caffe MNIST tutorial page:
https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_
train_test.prototxt. (Features convolutional layers, fully connected layers, pooling.)

ResNet18, ResNet32, ResNet50: We use the implementation from the official PyTorch repository:
https://github.com/pytorch/examples/tree/master/imagenet. (Features
skip-connections, batch-normalization.)

WordLSTM: We use the implementation from the official PyTorch repository (configura-
tion "medium"): https://github.com/pytorch/examples/tree/master/word_
language_model. (Features trainable word-embeddings, multilayer LSTM-cells, dropout.)

6.4 PROOF OF THEOREM 2.1.

Proof. Since

nt = αnt−1 +N t = α(αnt−2 +N t−1) +N t = α2nt−2 + αN t−1 +N t

= ατnt−τ +

τ−1∑
i=0

αiN t−i (9)

it holds that

cov(nt−τ , nt) = cov(nt−τ , ατnt−τ +

τ−1∑
i=0

αiN t−i) = ατσ2 +

τ−1∑
i=0

αi cov(nt−τ , N t−i)︸ ︷︷ ︸
=0

= ατσ2

(10)
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With equation equation 10 it follows that

V(

T∑
t=1

nt) =

T∑
t1=1

T∑
t2=1

cov(nt1 , nt2) (11)

=

T∑
t=1

cov(nt, nt)︸ ︷︷ ︸
Tσ2

+2

T−1∑
t=1

cov(nt, nt+1)︸ ︷︷ ︸
α(T−1)σ2

+2

T−2∑
t=1

cov(nt, nt+2)︸ ︷︷ ︸
α2(T−2)σ2

+..+ 2 cov(n1, nT )︸ ︷︷ ︸
αT−1(1)σ2

(12)

For negatively correlated noise α ∈ (−1, 0) we can bound this term by

V(

T∑
t=1

nt) = σ2(T + 2

T−1∑
τ=1

ατ (T − τ)) (13)

= σ2(T + 2
αT+1 − α2T + αT − α

(α− 1)2
) (14)

= σ2(T + 2
(α− α2)

(α− 1)2︸ ︷︷ ︸
≤ 1

2α

T + 2
αT+1 − α
(α− 1)2︸ ︷︷ ︸
≤ 1

2

) (15)

≤ σ2(T (1 + α) + 1) (16)

6.5 PROOF OF THEOREM 3.1.

Proof. It holds that

err(RT−1 + ∆WT ) = ‖
T∑
t=1

∆Wt −
T−1∑
t=1

∆W ∗t −RT−1 −∆WT ‖ = 0. (17)

Since S is a metric subspace, the projection

∆W ∗T = ProjS(RT−1 + ∆WT ) (18)

uniquely solves the minimization problem in S.

6.6 ADDITIONAL RESULTS

Figure 6 shows validation error for WordLSTM trained on PTB at different levels of gradient sparsity
and temporal sparsity. The total sparsity, defined as the product of temporal and gradient sparsity
remains constant along the diagonals of the matrix. We observe that different forms of sparsity
perform best during different stages of training. Phrased differently, this means that there is not one
optimal sparsity setup, but rather sparsity needs to be adapted to the current training phase to achieve
optimal compression.
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Figure 6: Perplexity for different levels of gradient sparsity and temporal sparsity at different stages
of training. WordLSTM trained on PTB.
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