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Abstract

It is well known that in stochastic multi-armed bandits (MAB), the sample mean of
an arm is typically not an unbiased estimator of its true mean. In this paper, we
decouple three different sources of this selection bias: adaptive sampling of arms,
adaptive stopping of the experiment, and adaptively choosing which arm to study.
Through a new notion called “optimism” that captures certain natural monotonic
behaviors of algorithms, we provide a clean and unified analysis of how optimistic
rules affect the sign of the bias. The main takeaway message is that optimistic
sampling induces a negative bias, but optimistic stopping and optimistic choosing
both induce a positive bias. These results are derived in a general stochastic MAB
setup that is entirely agnostic to the final aim of the experiment (regret minimization
or best-arm identification or anything else). We provide examples of optimistic
rules of each type, demonstrate that simulations confirm our theoretical predictions,
and pose some natural but hard open problems.

1 Introduction

Mean estimation is one of the most fundamental problems in statistics. In the classic nonadaptive
setting, we observe a fixed number of samples drawn i.i.d. from a fixed distribution with an unknown
mean µ. In this case, we know that the sample mean is an unbiased estimator of µ.

However, in many cases the data are collected and analyzed in an adaptive manner, a prototypical
example being the stochastic multi-armed bandits (MAB) framework [Robbins, 1952]. During the
data collection stage, in each round an analyst can draw a sample from one among a finite set of
available distributions (arms) based on the previously observed data (adaptive sampling). The data
collecting procedure can also be terminated based on a data-driven stopping rule rather than at a fixed
time (adaptive stopping). Further, the analyst can choose a specific target arm based on the collected
data (adaptive choosing), for example choosing to focus on the arm with the largest empirical mean
at the stopping time. In this setting, the sample mean is no longer unbiased, due to the selection bias
introduced by all three kinds of adaptivity. In this paper, we provide a comprehensive understanding
of the sign of the bias, decoupling the effects of these three sources of adaptivity.

In a general and unified MAB framework, we first define natural notions of monotonicity (a special
case of which we call “optimism”) of sampling, stopping and choosing rules. Under no assumptions
on the distributions beyond assuming that their means exist, we show that optimistic sampling
provably results in a negative bias, but optimistic stopping and optimistic choosing both provably
result in a positive bias. Thus, the net bias can be positive or negative in general. This message is in
contrast to a recent thought-provoking work by Nie et al. [2018] titled “Why adaptively collected
data has a negative bias...” that is unfortunately misleading for practitioners, since it only analyzed
the bias of adaptive sampling for a fixed arm at a fixed time.
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As a concrete example, consider an offline analysis of data that was collected by an MAB algorithm
(with any aim). Suppose that a practitioner wants to estimate the mean reward of some of the better
arms that were picked more frequently by the algorithm. Nie et al. [2018] proved that the sample
mean of each arm is negatively biased under fairly common adaptive sampling rules. Although
this result is applicable only to a fixed arm at a fixed time, it could instill a possibly false sense of
comfort with sample mean estimates since the practitioner might possibly think that sample means
are underestimating the effect size. However, we prove that if the algorithm was adaptively stopped
and the arm index was adaptively picked, then the net bias can actually be positive. Indeed, we prove
that this is the case for the lil’UCB algorithm (Corollary 8), but it is likely true more generally as
captured by our main theorem. Thus, the sample mean may actually overestimate the effect size. This
is an important and general phenomenon for both theoreticians (to study further and quantify) and for
practitioners (to pay heed to) because if a particular arm is later deployed in practice, it may yield a
lower reward than was possibly expected from the offline analysis.

Related work and our contributions. Adaptive mean estimation, in each of the three senses
described above, has received much attention in both recent and past literature. Below, we discuss
how our work relates to past work, proceeding one notion at a time in approximate historical order.

We begin by noting that a single-armed bandit is simply a random walk, where adaptive stopping has
been extensively studied. The book by Gut [2009] on stopped random walks is an excellent reference,
summarizing almost 60 years of advances in sequential analysis. Most of these extensive results
on random walks have not been extended to the MAB setting, which naturally involves adaptive
sampling and choosing. Of particular relevance is the paper by Starr and Woodroofe [1968] on the
sign of the bias under adaptive stopping, whose work is subsumed by ours in two ways: we not only
extend their insights to the MAB setting, but even for the one-armed setting, our results generalize
theirs.

Characterizing the sign of the bias of the sample mean under adaptive sampling has been a recent
topic of interest due to a surge in practical applications. While estimating MAB ad revenues, Xu
et al. [2013] gave an informal argument of why the sample mean is negatively biased for “optimistic”
algorithms. Later, Villar et al. [2015] encountered this negative bias in a simulation study motivated
by using MAB for clinical trials. Most recently, Bowden and Trippa [2017] derived an exact formula
for the bias and Nie et al. [2018] formally provided conditions under which the bias is negative. Our
results on “optimistic” sampling inducing a negative bias generalize the corresponding results in
these past works.

Most importantly, however, these past results hold only at a predetermined time and for a fixed arm.
Here, we put forth a complementary viewpoint that “optimistic” stopping and choosing induces a
positive bias. Indeed, one of our central conceptual contributions is an appropriate and crisp definition
of “monotonicity” and “optimism” (Definition 1), that enables a clean and general analysis.

Our main theoretical result, Theorem 7, allows the determination of the sign of the bias in several
interesting settings. Importantly, the bias may be of any sign when optimistic sampling, stopping and
choosing are all employed together. We demonstrate the practical validity of our theory using some
simulations that yield interesting insights in their own right.

The rest of this paper is organized as follows. In Section 2, we briefly formalize the three notions
of adaptivity by introducing a stochastic MAB framework. Section 3 derives results on when the
bias can be positive or negative. In Section 4, we demonstrate the correctness of our theoretical
predictions through simulations in a variety of practical situations. We end with a brief summary in
Section 5, and for reasons of space, we defer all proofs to the Appendix.

2 The stochastic MAB framework

Let P1, . . . , PK be K distributions of interest (also called arms) with finite means µk = EY∼Pk
[Y ].

Every inequality and equality between two random variables is understood in the almost sure sense.

2.1 Formalizing the three notions of adaptivity

For those not familiar with MAB algorithms, Lattimore and Szepesvári [2019] is a good reference.
The following general problem setup is critical in the rest of the paper:
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• Let W−1 denote all external sources of randomness that are independent of everything else.
Draw an initial random seed W0 ∼ U [0, 1], and set t = 1.

• At time t, let Dt−1 be the data we have so far, which is given by

Dt−1 := {A1, Y1, . . . , At−1, Yt−1},

where As is the (random) index of arm sampled at time s and Ys is the observation from
the arm As. Based on the previous data (and possibly an external source of randomness),
let νt(k | Dt−1) ∈ [0, 1] be the conditional probability of sampling the k-th arm for all
k ∈ [K] := {1, . . . ,K} with

∑K
k=1 νt(k | Dt−1) = 1. Different choices for νt capture

commonly used methods such as random allocation, ε-greedy [Sutton and Barto, 1998],
upper confidence bound algorithms [Auer et al., 2002, Audibert and Bubeck, 2009, Garivier
and Cappé, 2011, Kalyanakrishnan et al., 2012, Jamieson et al., 2014] and Thompson
sampling [Thompson, 1933, Agrawal and Goyal, 2012, Kaufmann et al., 2012].

• If Wt−1 ∈
(∑k−1

j=1 νt(j | Dt−1),
∑k
j=1 νt(j | Dt−1)

)
for some k ∈ [K], then set At = k

which is equivalent to sample At from a multinomial distribution with probabilities {νt(k |
Dt−1)}Kk=1. Let Yt be a fresh independent draw from distribution Pk. This yields a natural
filtration {Ft} which is defined, starting with F0 = σ (W−1,W0), as

Ft := σ (W−1,W0, Y1,W1, . . . , Yt,Wt) , ∀t ≥ 1.

Then, {Yt} is adapted to {Ft}, and {At}, {νt} are predictable with respect to {Ft}.
• For each k ∈ [K] and t ≥ 1, define the running sum and number of draws for arm k

as Sk(t) :=
∑t
s=1 1(As = k)Ys, Nk(t) :=

∑t
s=1 1(As = k). Assuming that arm k is

sampled at least once, we define the sample mean for arm k as

µ̂k(t) :=
Sk(t)

Nk(t)
.

Then, {St}, {µ̂k(t)} are adapted to {F t} and {Nk(t)} is predictable with respect to {F t}.
• Let T be a stopping time with respect to {F t}. If T is nonadaptively chosen, it is denoted
T . If t < T , draw a random seed Wt ∼ U [0, 1] for the next round, and increment t. Else
return the collected data DT = {A1, Y1, . . . , AT , YT } ∈ FT .

• After stopping, choose a data-dependent arm based on a possibly randomized rule κ :
DT ∪ {W−1} 7→ [K], but we denote the index κ(DT ∪ {W−1}) as just κ for short, so that
the target of estimation is µκ. Note that κ ∈ FT , but when κ is nonadaptively chosen (is
independent of FT ), we called it a fixed arm and denote it as k.

The phrase “fully adaptive setting” refers to the scenario of running an adaptive sampling algorithm
until an adaptive stopping time T , and asking about the sample mean of an adaptively chosen arm κ.
When we are not in the fully adaptive setting, we explicitly mention what aspects are adaptive.

2.2 The tabular perspective on stochastic MABs

It will be useful to imagine the above fully adaptive MAB experiment using a N×K table,X∗∞, whose
rows index time and columns index arms. Here, we put an asterisk to clarify that it is counterfactual
and not necessarily observable. We imagine this entire table to be populated even before the MAB
experiments starts, where for every i ∈ N, k ∈ [K], the (i, k)-th entry of the table contains an
independent draw from Pk called X∗i,k. At each step, our observation Yt corresponds to the element
X∗Nk(t),At

. Finally, we denote D∗∞ = X∗∞ ∪ {W−1,W0, . . . ,Wt, . . . }.

Given the above tabular MAB setup (which is statistically indistinguishable from the setup described
in the previous subsection), one may then find deterministic functions ft,k and f∗k such that

Nk(T ) =
∑
t≥1

1 (At = k)1(T ≥ t)︸ ︷︷ ︸
F t−1-measurable

=
∑
t≥1

ft,k(Dt−1) ≡ f∗k (D
∗
∞). (1)

Specifically, the function ft,k(·) evaluates to one if and only if we do not stop at time t− 1, and pull
arm k at time t. Indeed, given D∗∞, the stopping time T is deterministic and so is the number of times
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Nk(T ) that a fixed arm k is pulled, and this is what f∗k captures. Along the same lines, the number of
draws from a chosen arm κ at stopping time T can be written in terms of the tabular data as

Nκ(T ) =

K∑
k=1

1 (κ = k)Nk(T ) ≡
k∑
k=1

g∗k(D
∗
∞)f∗k (D

∗
∞) (2)

for some deterministic set of functions {g∗k}. Indeed, g∗k evaluates to one if after stopping, we choose
arm k, which is a fully deterministic choice given D∗∞.

3 The sign of the bias under adaptive sampling, stopping and choosing

3.1 Examples of positive bias due to “optimistic” stopping or choosing

In MAB problems, collecting higher rewards is a common objective of adaptive sampling strategies,
and hence they are often designed to sample more frequently from a distribution which has larger
sample mean than the others. Nie et al. [2018] proved that the bias of the sample mean for any
fixed arm and at any fixed time is negative when the sampling strategy satisfies two conditions
called “Exploit” and “Independence of Irrelevant Options” (IIO). However, the emphasis on fixed is
important: their conditions are not enough to determine the sign of the bias under adaptive stopping
or choosing, even in the simple nonadaptive sampling setting. Before formally defining our crucial
notions of “optimism” in the next subsection, it is instructive to look at some examples.
Example 1. Suppose we continuously alternate between drawing a sample from each of two Bernoulli
distributions with mean parameters µ1, µ2 ∈ (0, 1). This sampling strategy is fully deterministic, and
thus it satisfies the Exploit and IIO conditions in Nie et al. [2018]. For any fixed time t, the bias
equals zero for both sample means. Define a stopping time T as the first time we observe +1 from
the first arm. Then the sample size of the first arm, N1(T ), follows a geometric distribution with
parameter µ1, which implies that the bias of µ̂1(T ) is

E [µ̂1(T )− µ1] = E
[

1

N1(T )

]
− µ1 =

µ1 log(1/µ1)

1− µ1
− µ1,

which is positive for all µ1 ∈ (0, 1).

This example shows that for nonadaptive sampling, adaptive stopping can induce a positive bias.
In fact, this example is not atypical, but is an instance of a more general phenomenon explored in
the one-armed setting in sequential analysis. For example, Siegmund [1978, Ch. 3] contains the
following classical result for a Brownian motion W (t) with positive drift µ > 0.
Example 2. If we define a stopping time as the first time W (t) exceeds a line with slope η and
intercept b > 0, that is TB := inf{t ≥ 0 : W (t) ≥ ηt + b}, then for any slope η ≤ µ, we have

E
[
W (TB)
TB − µ

]
= 1/b. Note that a sum of Gaussians with mean µ behaves like a time-discretization

of a Brownian motion with drift µ; since EW (t) = tµ, we may interpret W (TB)/TB as a stopped
sample mean, and the last equation implies that its bias is 1/b, which is positive.

Generalizing further, Starr and Woodroofe [1968] proved the following remarkable result.
Example 3. If we stop when the sample mean crosses any predetermined upper boundary, the stopped
sample mean is always positive biased (whenever the stopping time is a.s. finite). Explicitly, choosing
any arbitrary sequence of real-valued constants {ck}, define Tc := inf{t : µ̂1(t) > ct}, then as long
as the observations Xi have a finite mean and Tc is a.s. finite, we have E [µ̂1(Tc)− µ1]− µ1 > 0.

Surprisingly, we will generalize the above strong result even further. Additionally, stopping times
in the MAB literature can be thought of as extensions of Tc and TB to a setting with multiple arms,
and we will prove that indeed the bias induced will still be positive. We end with an example of the
positive bias induced by “optimistic” choosing:
Example 4. Given K standard normals {Zi} (to be thought of as one sample from each of K arms),
let κ = argmaxk Zk, that is, we choose the arm with the largest observation. It is well known that
E [Zκ] = E

[
maxk∈[K] Zk

]
�
√
2 logK. Since EZk = 0 for all k, but EZκ > 0, the “optimistic”

choice κ induces a positive bias.

In many typical MAB settings, we should expect sample means to have two contradictory sources of
bias: negative bias from “optimistic sampling” and positive bias from “optimistic stopping/choosing”.
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3.2 Positive or negative bias under monotonic sampling, stopping and choosing

Based on the expression (2), we formally state a characteristic of data collecting strategies which
fully determines the sign of the bias as follows.
Definition 1. A data collecting strategy is “monotonically increasing (or decreasing)” if for any
i ∈ N and k ∈ [K], the function D∗∞ 7→ g∗k(D

∗
∞)/f∗k (D

∗
∞) ≡ 1 (κ = k) /Nk(T ), is an increasing

(or decreasing) function of X∗i,k while keeping all other entries in D∗∞ fixed. Further, we say that

• a data collecting strategy has an optimistic sampling rule if the function D∗∞ 7→ Nk(t) is an
increasing function of X∗i,k while keeping all other entries in D∗∞ fixed for any fixed i ∈ N,
t ≥ 1 and k ∈ [K];

• a data collecting strategy has an optimistic stopping rule if D∗∞ 7→ T is a decreasing
function of X∗i,k while keeping all other entries in D∗∞ fixed for any fixed i ∈ N and
k ∈ [K];

• a data collecting strategy has an optimistic choosing rule if D∗∞ 7→ 1(κ = k) is an
increasing function of X∗i,k while keeping all other entries in D∗∞ fixed for any fixed i ∈ N
and k ∈ [K].

Note that if a data collecting strategy has an optimistic sampling (or stopping or choosing) rule, with
the other components being nonadaptive, then the strategy is monotonically decreasing (increasing).
We remark that nonadaptive just means independent of the entries X∗i,k, but it is not necessarily
deterministic1. The above definition warrants some discussion to provide intuition.

Roughly speaking, under optimistic stopping, if a sample from the k-th distribution was increased
while keeping all other values fixed, the algorithm would reach its termination criterion sooner. For
instance, TB from Example 2 and the criterion in Example 1 are both optimistic stopping rules. Most
importantly, boundary-crossing is optimistic:
Fact 1. The general boundary-crossing stopping rule of Starr and Woodroofe [1968], denoted Tc in
Example 3, is an optimistic stopping rule (and hence optimistic stopping is a weaker condition).

Optimistic stopping rules do not need to be based on the sample mean; for example, if {ct} is an
arbitrary sequence, then T := inf{t ≥ 3 : Xt + Xt−2 ≥ ct} is an optimistic stopping rule. In
fact, T` := inf{t ≥ 3 : `t(X1, . . . , Xt) ≥ ct} is optimistic, as long as each `t is coordinatewise
nondecreasing.

For optimistic choosing, the previously discussed argmax rule (Example 4) is optimistic. More
generally, it is easy to verify the following:
Fact 2. For any probabilities p1 ≥ p2 · · · ≥ pK that sum to one, a rule that chooses the arm with the
k-th largest empirical mean with probability pk, is an optimistic choosing rule.

Turning to the intuition for optimistic sampling, if a sample from the k-th distribution was increased
while keeping all other values fixed, the algorithm would sample the k-th arm more often. We claim
that optimistic sampling is a weaker condition than the Exploit and IIO conditions employed by Nie
et al. [2018].
Fact 3. The “Exploit” and “IIO” conditions in Nie et al. [2018] together imply that the sampling
strategy is optimistic (and hence optimistic sampling is a weaker condition). Further, as summarized
in Appendix A, ε-greedy, UCB and Thompson sampling (Gaussian-Gaussian and Beta-Bernoulli, for
instance) are all optimistic sampling methods.

For completeness, we prove the first part formally in Appendix A.2, which builds heavily on
observations already made in the proof of Theorem 1 in Nie et al. [2018]. Beyond the instances
mentioned above, Corollary 10 in the supplement captures a sufficient condition for Thompson
sampling with one-dimensional exponential families and conjugate priors to be optimistic. We now
provide an expression for the bias that holds at any stopping time and for any sampling algorithm.

1An example of a random but nonadaptive stopping rule: flip a (potentially biased) coin at each step to decide
whether to stop. An example of a random but nonadaptive sampling rule: with probability half pick a uniformly
random arm, and with probability half pick the arm that has been sampled most often thus far.
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Proposition 5. Let T be a stopping time with respect to the natural filtration {Ft}. For each fixed
k ∈ [K] such that 0 < ENk(T ) <∞, the bias of µ̂k(T ) is given as

E [µ̂k(T )− µk] = −
Cov (µ̂k(T ), Nk(T ))

E [Nk(T )]
. (3)

The proof may be found in Appendix B.3. A similar expression was derived in Bowden and Trippa
[2017], but only for a fixed time T . In order to extend it to stopping times (that are allowed to be
infinite, as long as ENk(T ) <∞), we derive a simple generalization of Wald’s first identity to the
MAB setting. Specifically, recalling that Sk(t) = µ̂k(t)Nk(t), we show the following:
Lemma 6. Let T be a stopping time with respect to the natural filtration {Ft}. For each fixed
k ∈ [K] such that ENk(T ) <∞, we have E[Sk(T )] = µkE[Nk(T )].

This lemma is also proved in Appendix B.3. Proposition 5 provides a simple, and somewhat intuitive,
expression of the bias for each arm. It implies that if the covariance of the sample mean of an arm
and the number of times it was sampled is positive (negative), then the bias is negative (positive). We
now formalize this intuition below, including for adaptively chosen arms. The following theorem
shows that if the adaptive sampling, stopping and choosing rules are monotonically increasing (or
decreasing), then the sample mean is positively (or negatively) biased.
Theorem 7. Let T be a stopping time with respect to the natural filtration {Ft} and let κ : DT 7→ [K]
be a choosing rule. Suppose each arm has finite expectation and, for all k with P (κ = k) > 0, we
have E [Nk(T )] <∞ and Nk(T ) ≥ 1. If the data collecting strategy is monotonically decreasing,
for example under optimistic sampling with nonadaptive stopping and choosing, then we have

E [µ̂κ(T ) | κ = k] ≤ µk, ∀k : P(κ = k) > 0, (4)
which also implies that

E [µ̂κ(T )− µκ] ≤ 0. (5)
Similarly if the data collecting strategy is monotonically increasing, for example under optimistic
stopping with nonadaptive sampling and choosing, or under optimistic choosing with nonadaptive
sampling and stopping, then we have

E [µ̂κ(T ) | κ = k] ≥ µk, ∀k : P(κ = k) > 0, (6)
which also implies that

E [µ̂κ(T )− µκ] ≥ 0. (7)
If each arm has a bounded distribution then the condition E [Nk(T )] <∞ can be dropped.
Remark 1. In fact, if each arm has a finite p-th moment for a fixed p > 2 then the condition
E [Nk(T )] <∞ can be dropped.

The proofs of Theorem 7 and Remark 1 can be found in Appendix B.1 and are based on martingale
arguments that are quite different from the ones used in Nie et al. [2018]. See also Appendix A.4
for an intuitive explanation of the sign of the bias under optimistic sampling, stopping or choosing
rules. The expression (3) intuitively suggests situations when the sample mean estimator µ̂k(T ) is
biased, while the inequalities in (4) and (6) determine the direction of bias under the monotonic or
optimistic conditions. Due to Facts 1, 2 and 3, several existing results are immediately subsumed and
generalized by Theorem 7. Further, the following corollary is a particularly interesting special case
dealing with the lil’UCB algorithm by Jamieson et al. [2014] which uses adaptive sampling, stopping
and choosing, as summarized in Section 4.3.
Corollary 8. The lil’UCB algorithm is a monotonically increasing strategy, and thus the sample
mean of the reported arm when lil’UCB stops is always positively biased.

The proof is described in Appendix B.2. The above result is interesting because of the following
reasons: (a) when viewed separately, the sampling, stopping and choosing rules of the lil’UCB
algorithm all seem to be optimistic (however, they are not optimistic, because our definition requires
two out of three to be nonadaptive); hence it is apriori unclear which rule dominates and whether the
net bias should be positive or negative; (b) we did not have to alter anything about the algorithm in
order to prove that it is a monotonically increasing strategy (for any distribution over arms, for any
number of arms). The generality of the above result showcases the practical utility of our theorem,
whose message is in sharp contrast to the title of the paper by Nie et al. [2018].

Next, we provide simulation results that verify that our monotonic and optimistic conditions accurately
capture the sign of the bias of the sample mean.
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4 Numerical experiments

4.1 Negative bias from optimistic sampling rules in multi-armed bandits

Recall Fact 3, which stated that common MAB adaptive sampling strategies like greedy (or ε-greedy),
upper confidence bound (UCB) and Thompson sampling are optimistic. Thus, for a deterministic
stopping time, Theorem 7 implies that the sample mean of each arm is always negatively biased. To
demonstrate this, we conduct a simulation study in which we have three unit-variance Gaussian arms
with µ1 = 1, µ2 = 2 and µ3 = 3. After sampling once from each arm, greedy, UCB and Thompson
sampling are used to continue sampling until T = 200. We repeat the whole process from scratch
104 times for each algorithm to get an accurate estimate for the bias.2 Due to limited space, we
present results from UCB and Thompson sampling only but detailed configurations of algorithms
and a similar result for the greedy algorithm can be found in Appendix C.1. Figure 1 shows the
distribution of observed differences between sample means and the true mean for each arm. Vertical
lines correspond to biases. The example demonstrates that the sample mean is negatively biased
under optimistic sampling rules.
Remark 2. The main goal in our simulations is to visualize and corroborate our theoretical results
about the sign of the bias. As a result, we do not make any attempt to optimize the parameters for
UCB or Thompon sampling for the purpose of minimizing the regret, since the latter is not the paper’s
aim. However, investigating the relationship between the performance of MAB algorithms and the
bias at the time horizon would be an interesting future direction of research.
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Figure 1: Data is collected by UCB (left) and Thompson sampling (right) algorithms from three
unit-variance Gaussian arms with µ1 = 1, µ2 = 2 and µ3 = 3. For all three arms, sample means
are negatively biased (at fixed times). A similar result for the greedy algorithm can be found in
Appendix C.1.

4.2 Bias from stopping a one-sided sequential likelihood ratio test

Suppose we have two independent sub-Gaussian arms with common and known parameter σ2 but
unknown means µ1 and µ2. Consider the following testing problem:

H0 : µ1 ≤ µ2 vs H1 : µ1 > µ2.

To test this hypothesis, suppose we draw a sample from arm 1 for every odd time and from arm 2
for every even time. Instead of conducting a test at a fixed time, we can use the following one-sided
sequential likelihood ratio test [Robbins, 1970, Howard et al., 2018]: for any fixed w > 0 and
α ∈ (0, 1), define a stopping time T as

T w := inf

t ∈ Neven : µ̂1(t)− µ̂2(t) ≥
2σ

t

√√√√(t+ 2w) log

(
1

2α

√
t+ 2w

2w
+ 1

) , (8)

2In all experiments, sizes of reported biases are larger than at least 3 times the Monte Carlo standard error.
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where Neven := {2n : n ∈ N}. For a given fixed maximum even time M ≥ 2, we stop sampling at
time T wM := min {T w,M}. Then, we reject the null H0 if T wM < M . It can be checked [Howard
et al., 2018, Section 8] that, for any fixed w > 0, this test controls the type-1 error at level α and the
power goes to 1 as M goes to infinity.

For the arms 1 and 2, these are special cases of optimistic and pessimistic stopping rules respectively.
From Theorem 7, we have that µ1 ≤ Eµ̂1(T wM ) and µ2 ≥ Eµ̂2(T wM ). To demonstrate this, we
conduct two simulation studies with unit variance Gaussian errors: one under the null hypothesis
(µ1, µ2) = (0, 0), and one under the alternative hypothesis (µ1, µ2) = (1, 0). We choose M = 200,
w = 10 and α = 0.1. As before, we repeat each experiment 104 times for each setting. Figure 2
shows the distribution of observed differences between sample means and the true mean for each arm
under null and alternative hypothesis cases. Vertical lines correspond to biases. The simulation study
demonstrates that the sample mean for arm 1 is positively biased and the sample mean for arm 2 is
negatively biased as predicted.

Figure 2: Data is collected from the one-sided sequential likelihood ratio test procedure described
in Section 4.2. The sample mean for arm 1 is positively biased and the sample mean for arm 2 is
negatively biased under both null and alternative hypothesis cases. Note that the size of the bias
under the null hypothesis is smaller than the one under the alternative hypothesis since the number
of collected samples is larger under the null hypothesis.

4.3 Positive bias of the lil’UCB algorithm in best-arm identification

Suppose we have K sub-Gaussian arms with mean µ1, . . . , µK and known parameter σ. In the
best-arm identification problem, our target of inference is the arm with the largest mean. There
exist many algorithms for this task including lil’UCB [Jamieson et al., 2014], Top-Two Thompson
Sampling [Russo, 2016] and Track-and-Stop [Garivier and Kaufmann, 2016].

In Corollary 8, we showed that the lil’UCB algorithm is monotonically increasing, and thus the
sample mean of the chosen arm is positively biased. In this subsection, we verify it with a simulation.
It is an interesting open question whether different types of best-arm identification algorithms also
yield positively biased sample means.

The lil’UCB algorithm consists of the following optimistic sampling, stopping and choosing:

• Sampling: For any k ∈ [K] and t = 1, . . .K, define νt(k) = 1(t = k). For t > K,

νt(k) =

{
1 if k = argmaxj∈[K] µ̂j(t− 1) + ulil

t (Nj(t− 1)) ,

0 otherwise,

where δ, ε, λ and β are algorithm parameters and

ulil
t (n) := (1 + β)(1 +

√
ε)
√

2σ2(1 + ε) log (log((1 + ε)n)/δ) /n.

• Stopping: T = inf
{
t > K : Nk(t) ≥ 1 + λ

∑
j 6=kNj(t) for some k ∈ [K]

}
.
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• Choosing: κ = argmaxk∈[K]Nk(T ).

Once we stop sampling at time T , the lil’UCB algorithm guarantees that κ is the index of the arm
with largest mean with some probability depending on input parameters. Based on this, we can
also estimate the largest mean by the chosen stopped sample mean µ̂κ (T ). The performance of
this sequential procedure can vary based on underlying distribution of the arm and the choice of
parameters. However, we can check this optimistic sampling and optimistic stopping/choosing rules
which would yield negative and positive biases respectively are monotonic increasing and thus the
chosen stopped sample mean µ̂κ (T ) is always positively biased for any choice of parameters.

To verify it with a simulation, we set 3 unit-variance Gaussian arms with means (µ1, µ2, µ3) =
(g, 0,−g) for each gap parameter g = 1, 3, 5. We conduct 104 trials of the lil’UCB algorithm
with a valid choice of parameters described in Jamieson et al. [2014, Section 5]. Figure 3 shows
the distribution of observed differences between the chosen sample means and the corresponding
true mean for each δ. Vertical lines correspond to biases. The simulation study demonstrates that,
in all configurations, the chosen stopped sample mean µ̂κ (T ) is always positively biased. (see
Appendix B.2 for a formal proof.)

Figure 3: Data is collected by the lil’UCB algorithm run on three unit-variance Gaussian arms with
µ1 = g, µ2 = 0 and µ3 = −g for each gap parameter g = 1, 3, 5. For all cases, chosen sample
means are positively biased. The bias is larger for a larger gap since the number of collected samples
is smaller on an easier task.

5 Summary

This paper provides a general and comprehensive characterization of the sign of the bias of the sample
mean in multi-armed bandits. Our main conceptual innovation was to define new weaker conditions
(monotonicity and optimism) that capture a wide variety of practical settings in both the random
walk (one-armed bandit) setting and the MAB setting. Using this, our main theoretical contribution,
Theorem 7, significantly generalizes the kinds of algorithms or rules for which we can mathematically
determine the sign of the bias for any problem instance. Our simulations confirm the accuracy of
our theoretical predictions for a variety of practical situations for which such sign characterizations
were previously unknown. There are several natural followup directions: (a) extending results like
Corollary 8 to other bandit algorithms, (b) extending all our results to hold for other functionals of the
data like the sample variance, (c) characterizing the magnitude of the bias. We have recently made
significant progress on the last question [Shin et al., 2019], but the other two remain open.
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