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Abstract

Artificial neural networks (ANNs) lack in biological plausibility, chiefly because
backpropagation requires a variant of plasticity (precise changes of the synaptic
weights informed by neural events that occur downstream in the neural circuit)
that is profoundly incompatible with the current understanding of the animal brain.
Here we propose that backpropagation can happen in evolutionary time, instead
of lifetime, in what we call neural net evolution (NNE). In NNE the weights of
the links of the neural net are sparse linear functions of the animal’s genes, where
each gene has two alleles, 0 and 1. In each generation, a population is generated
at random based on current allele frequencies, and it is tested in the learning task
through minibatches. The relative performance of the two alleles of each gene
is determined, and the allele frequencies are updated via the standard population
genetics equations for the weak selection regime. We prove that, under assumptions,
NNE succeeds in learning simple labeling functions with high probability, and
with polynomially many generations and individuals per generation. NNE is also
tested on MNIST with encouraging results. Finally, we explore a further version of
biologically plausible ANNs (replacing backprop) inspired by the recent discovery
of dopaminergic plasticity.

1 Introduction

In his Turing award lecture [6], neural networks pioneer Geoff Hinton opined that “evolution can’t get
gradients because a lot of what determines the relationship between the genotype and the phenotype
is outside your control”. We beg to differ. The well-established equations of population genetics
governing evolution under recombination and weak selection [3, 4] do bear a similarity to gradient
descent – and, even more, to no-regret learning [4]. In this paper, we show that, in fact, quite effective
training of neural nets can be carried out without backpropagation, and in evolutionary time, through
a variant of gradient descent. In other words, we argue both theoretically and through experiments
that brain circuits specializing in classification tasks could have evolved.

The towering empirical success of ANNs has brought into focus their profound incongruity with
what we know about the brain: backpropagation requires that plasticity be informed by downstream
events. Clever versions of ANNs have been proposed recently that avoid this criticism: ANNs whose
backward weights are random and fixed [9], a backpropagation interpretation of STDP (a widely
accepted theory of plasticity) [1], or ANNs driven by neural competition [8].

Here we take a very different approach. We believe that, while forward neural computation is
coterminous with life, backpropagation (i.e., local feedback on the performance of the circuit) can



be effectively carried out over evolutionary time. Suppose that the brain circuitry for a particular
classification task, such as “food/not food”, is encoded in the animal’s genes, assuming each gene
to have two alleles 0 and 1. A (haploid) genotype is a bit string, and the weight of each link of the
neural network (assumed to be fixed for simplicity) is a sparse linear function of the genes. Evolution
proceeds in generations. At each generation, a gene is an independent binary variable with fixed
probability of 1. A population is sampled from this distribution of genotypes, and it experiences a
sequence of inputs to the brain circuit. Fitness of each genotype depends, to some small degree, on
the animal’s success over its lifetime in the specific classification task. In the next generation, the
allele frequencies will change slightly, depending on how each allele of each gene fared cumulatively
(over both all inputs and all genotypes containing it) in the classification task. These changes follow
the standard population genetics equations for the weak selection regime, see [3, 4]; weak selection
means that the classification task is only one of the many biological functions (digestion, locomotion,
etc.) that affect the animal’s fitness.

The question is, can competent brain circuits evolve this way? We offer both theoretical and
experimental evidence that this is indeed the case.1 Our experiments are on the MNIST data set,
where we apply Neural Network Evolution (NNE) to learn to categorize digits. In fact, we use the
simplest possible version corresponding to a single hidden layer of activations. We find that this
already gives surprisingly good accuracy rates. We then use a simple model of arbitrary linear target
functions and show that NNE will converge to the target. We show in Section 2 that NNE shadows the
gradient of the squared error function over a mini-batch, and converges to a 0/1 allele distribution.

We also propose a totally different alternative to backprop — biologically plausible ANNs based
on dopaminergic plasticity. It was recently established experimentally [14] that weights in certain
synapses (from the cortex to the striatum but not only) are increased if dopamine was released within
0.5-2 seconds after the synapse’s firing. Inspired by this experiment, we define dopaminergic neural
nets (DNN), in which the weight of a link that fired (that is, both nodes fired during the current
minibatch) is modified by a multiple of ( 1

4 − err
2), where err is the error of the current minibatch.

That is, links that fired are rewarded if the result was good, and punished if it was not. We show
experimentally that such ANNs can also learn to classify quite well.

Our Contributions. In Section 2, we study a 1-layer NNE with squared loss as loss function.
In Section 3, we discuss preliminary experiments showing that NNE performs reasonably well on
MNIST.

2 A rigorous analysis for the case of learning linear functions

A genotype can be viewed as a vector x ∈ {0, 1}n. A probability distribution over the genotypes
is given by a vector p ∈ [0, 1]n; a genotype x is sampled by setting x(i) = 1 with probability p(i),
independently for each i. The neural network corresponding to a genotype x is a feed-forward neural
network (FFNN) whose weights are computed as follows. For a prediction network having m links,
the weights of the links are given by Wx, where W is an m× n sparse weight generation matrix.
We choose the entries of W to be random and i.i.d.: with probability β, W (i, j) is chosen uniformly
at random from [−1, 1], and is 0 with probability 1− β.

The input to the network is a vector y drawn from a distribution D and has a label (possibly real-
valued) `(y). The output of the network on an input y is NNEx (y). In the simplest linear case,
y ∈ Rm and NNEx (y) = xTWT y. In our experiments (Section 3), we study the case when D is the
uniform distribution over MNIST, and NNEx (·) is a 1-layer neural network with a ReLU output gate
(see Section 3 for formal definition).

For each genotype x, we measure its performance by computing the loss L(NNEx (y) , l(y)) (this
could be squared loss, cross-entropy loss, etc.). For a probability distribution over genotypes p, we
define the loss as

L(p) := Ex∼pEy∼DL(NNEx (y) , `(y)).

1We note incidentally that NNE is very distinct from neuroevolution (see the recent survey [12]), which
optimizes ANN architecture and hyperparameters through genetic algorithms
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We calculate the rewards f t(i) and f̄ t(i) as the expected negative loss whenever the allele is present
and absent respectively.

f t(i) = Ex∼pt [Ey∼D [−L(NNEx (y) , `(y))] |x(i) = 1] . (1)
and

f̄ t(i) = Ex∼pt [Ey∼D [−L(NNEx (y) , `(y))] |x(i) = 0] . (2)
For the next generation we calculate,

p = pt(i)(1 + εf t(i)) and q = (1− pt(i))(1 + εf̄ t(i))

We normalize p and q to make it a probability distribution. Thus the allele probabilities for the next
generation will be,

pt+1(i) =
p

p+ q
=

pt(i)(1 + εf t(i))

1 + εf̄ t(i) + εpt(i)(f t(i)− f̄ t(i))
. (3)

This is the standard update rule in population genetics under the weak selection assumption. The
multiplier ε captures the small degree to which the performance of this task by the animal confers an
evolutionary advantage leading to larger progeny.

Our first observation is that perfomance per allele is in fact a function of the gradient of the loss
function.

Lemma 1

L(pt) = −f̄ t(i)− pt(i)(f t(i)− f̄ t(i)) and
∂

∂pt(i)

(
L(pt)

)
= −(f t(i)− f̄ t(i)).

We use this to prove the following theorem.

Theorem 1 Fix δ > 0. Suppose ∇2L(z) � H · I ∀z ∈ [0, 1]n. Let U := supp∈[0,1]n L(p) and
St := {i ∈ [n]|δ ≤ pt(i) ≤ 1− δ}. For ε ≤ min{1/ (max{2U, 1}) , 2/H, 1}, there is an η > 0 s.t.

E(L(pt+1)) ≤ L(pt)− η
∑
i∈St

(
∇iL(pt)

)2
.

2.1 Learning linear functions

In this section, we show that in the case of a linear target functions, with high probability, NNE
converges to an allele distribution p which is arbitrarily close to the correct linear labeling. Our NNE
has m input gates connected to one output gate (i.e., no hidden layers). For a genotype x, the weights
of the connections are given by Wx. On input y, the NNE outputs xTWT y.

Theorem 2 Let D be the uniform distribution over vectors in an n-dimensional unit ball. Let a be
a fixed vector with ‖a‖ ≤ 1, such that the label of y is `(y) := aT y. Let W have i.i.d. entries with
Wij = ±

√
m/d with probability d/m and 0 with probability 1− (d/m). Then, for any δ ∈ (0, 1],

with n = O(m+ log(1/δ)), with probability at least 1− δ, there exists an allele distribution p s.t.
Wp = a. Moreover, with probability at least 3/4, for any ε ∈ (0, 1], with n = Ω(m(log(1/ε)/ε2),
there is an x ∈ {0, 1}n s.t. (Wx)·a

‖Wx‖‖a‖ ≥ 1− ε.

We remark that the above guarantee works for every linear target function in Rm. To learn, with high
confidence, the target function from among d unknown (arbitrary) linear functions, m above can be
replaced by log d.

3 Experiments

3.1 NNE on MNIST

We study the effectiveness of NNE by evaluating its classification performance on the MNIST dataset.

To train an NNE via evolution of T generations of genotypes, we fix a sufficiently large population
size N . Each generation t ∈ [T ] consists of a sample of N independently sampled genotypes from
the allele distribution pt, we denote this sample by Pt. This distribution is updated based on the
average performance f t(i) and f̄ t(i) of all the genotypes on a task, in our case, MNIST handwirtten
digit recognition task. We let the allele distribution pt evolve over T generations in this manner.

3



model MNIST 0 to 4 MNIST 0 to 9
NNE 92.1 78.8
NNE + SignSGD 91.6 85.6
SGD 96± 0.4 88.2± 0.75

Table 1: Accuracy rates of NNE on MNIST test digits.

Experimental setup. We use 200 training samples for each of the digits, drawn uniformly at
random from MNIST; we denote this set of training examples by S. p1, the allele distribution for the
first generation, is sampled uniformly at random from [0, 1]n. We evaluate the performance of the
alleles over N = 1000 genotypes.

Our network has 784 input units, one hidden layer of |h1| = 1000 units with ReLU activation and
an output layer of 10 units with softmax activation. We add a sparse random graph between the
input layer and the hidden layer: between a neuron in the input layer and a neuron in the hidden
layer, we independently add an edge with probability 0.1. The hidden layer is fully connected to the
output layer. We choose β = 0.0025 for our experiments, i.e., each edge weight is a sparse random
function of only β fraction of the alleles. For the input sample y, `(y) is now a one-hot encoding
of the label, and NNEx (y) is the soft-max output of the network. We use the cross-entropy loss
function, L(NNEx (y) , `(y)) = −

∑
c∈[C] `(y)c log (NNEx (y)c).

If a classifier were to randomly guess the label of an input intance, its loss function value would
be α := − log (1/10). We use the relative performance of the genotype w.r.t. to a random
guess for our updates. To this end, we define for a genotype x, δx := 1

|S|
∑

s∈[S] max{0, α2 −
L(NNEx (y) , `(y))2}. For each allele, we calculate the rewards f t(i) and f̄ t(i) whenever the allele
is present and absent respectively.

f t(i) =

∑
x∈Pt δxx(i)∑
x∈Pt x(i)

and f̄ t(i) =

∑
x∈Pt δx(1− x(i))∑
x∈Pt(1− x(i))

.

The allele distribution for the next generation is updated using equation 3.

NNE as described above achieves 78.8% test accuracy on the full MNIST test set. While this is
somewhat far from the state of art in classification of MNIST images, our results demonstrate that
very basic NNEs can perform reasonably well in this task. See experimental results in Appendix
showing the effect of number of genes on performance.

NNE with output layer training. The biological implausibility objection of using stochastic
gradient based updates is less acute for the output layer, since in animal brains synaptic changes due
to plasticity happen at the post-synaptic neuron, and for the output layer this is the output neuron.
Even then, computing exact (or approximate) gradients is a nontrivial computational task; instead we
consider using just the sign of the gradient for only the output layer as a lifetime training mechanism.

For the same network described as above, we randomly initialize the network weights using allele
distribution learned using the NNE. We then calculate the sign of the gradient of the output layer
weights and update the weights in the opposite direction (SignSGD), using a sufficiently small
learning rate ε′, similar to stochastic gradient descent. For i in the hidden layer and j in the output
layer, the update is

wij := wij − ε′ · sign ((zj − `(y)j)hi) (4)

where hi is output of the neuron i, and zj softmax output of neuron j. SignSGD has been shown to
be effective for traning large deep neural networks (for e.g., see [2]).

We perform a few hundred iterations of this training using batch size 50. In this experiment (NNE
+ SignSGD), we obtain 86.3% accuracy on full MNIST test set. This further demonstrates that
biologically plausible neural networks can perform reasonably well in this task.

Table 1 compares the results of all the models along with the baseline, stochastic gradient descent
trained on the same subset of MNIST.

4



h SGD SignSGD DNN
1000 90.34 86.84 84.84

100, 000 92.56 90.21 90.76

Table 2: Test accuracies of different models for different h.

3.2 Dopaminergic Neural Nets (DNNs)

DNNs are biologically plausible ANNs based on dopaminergic plasticity. They learn by a weak form
of immediate reinforcement - “rewarding" synapses whose firing led to a favourable outcome. If a
connection between two neurons has fired during a training step, then its weight is increased if the
square error was low (less than 1

4 ). In this section, we demonstrate that simple DNNs can perform
reasonably well for tasks like classifying the images in the MNIST dataset.

Experimental setup. For our experiments we use a network consisting of an input layer, a single
hidden layer, and an output layer consisting of 784, h, and 10 neurons respectively. Each neuron
in the input layer has a link to each neuron in the hidden layer, and its weight is initialised by the
popularly used Kaiming Uniform (more commonly called He initialisation [5]). These weights are
unchanged through out the learning process. Recent theoretical results suggest that a large enough
random layer is sufficiently rich and efficiently trainable [13] (see also [11]).

Each neuron in the hidden layer has a link to each neuron in the output layer. The output layer outputs
the softmax score. The weights of this layer are learned using plasticity based updates. On seeing an
input y, the DNN tries to predict the label of y; let us denote this by DNNW (y). If the DNN got the
prediction correct, i.e. the loss L(DNNW (y) , `(y)) is at most ε0, then weight wij get increased by a
small amount, provided the output neuron j has low error (i.e. |zj − l(y)j |2 ≤ 1/4) where zj is the
jth coordinate of DNNW (s).

Formally, the update rule is as follows for i in the hidden layer and j in the output layer.

wij = wij + ε1
max

{
0, 14 − |zj − `(y)j |2

}
·max {0, L(DNNW (y) , `(y))− ε0}(

1
4 − |zj − `(y)j |2

)
· (L(DNNW (y) , `(y))− ε0)

.

Experimental results. To study the effectiveness of our DNN in the 10-class MNIST digit classifi-
cation, we compare its peformance with some other standard baselines.

1. SGD: In this we use the standard stochastic gradient descent (with the Adam optimiser [7])
based updates to train our network.

2. SignSGD: As before, we use the sign of the gradient for updates (equation 4).

Table 2 shows the results for different h values. All results are after 500 epochs of training. As
with NNE we use the cross-entopy loss for all the models. We found that ε0 = 0.75 and ε1 = 1 for
the DNN gives reasonable performance. Our DNN gives encouraging results and is comparable to
SignSGD in performance.
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Appendix

Number of genes. A crucial choice for an NNE is the number of genes. In our experiments, we
use a few thousand genes; this is not unreasonable as it is estimated that about 5, 000 genes are
expressed in the cells of the mammalian brain. To investigate further, we compare the performance of
our algorithm with increasing values of n (the number of genes). Figure 1 presents the validation
accuracy trends on the same network described above for five class [0 − 4] classification and for
full MNIST dataset. We observe that the accuracy rate of the network improves significantly with
increase in the number of genes. However, it requires much longer training time to achieve a desired
accuracy rate.
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Figure 1: Number of genes (n) vs performance of NNE: (a) Accuracy rates of NNE on MNIST 0− 4 showing
the effect of number of genes on performance. (b) Similarly, we also plot the accuracy rates of NNE on MNIST
0 − 9 dataset while varying the number of genes. The accuracy trends show that more the number of genes,
better the performance of NNE, but at the cost of more training time.

Convergence of allele distributions. We repeat training NNE for many (hundreds of thousands)
generations. As our theoretical results predict (see also [10]), the vast majority of genes have allele
probabilities that are very close to 0 and 1. Figure 2 shows the fraction of allele probabilities that are
at a distance [x, 1− x] from 0 or 1, i.e., y is calculated as y = 1− |{i:min{pt(i),1−pt(i)}≤x}|

n .

t = 10K t = 100K t = 200K

Figure 2: Convergence of allele distribution after t generations: x-axis shows the distance of the allele
probabilities from 0 or 1 and the y-axis shows the fraction of n allele probabilities that are at a distance [x, 1−x]
from 0 or 1.
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