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ABSTRACT

In this paper, we present a method for learning discrete linguistic units by incorpo-
rating vector quantization layers into neural models of visually grounded speech.
We show that our method is capable of capturing both word-level and sub-word
units, depending on how it is configured. What differentiates this paper from prior
work on speech unit learning is the choice of training objective. Rather than us-
ing a reconstruction-based loss, we use a discriminative, multimodal grounding
objective which forces the learned units to be useful for semantic image retrieval.
We evaluate the sub-word units on the ZeroSpeech 2019 challenge, achieving a
27.3% reduction in ABX error rate over the top-performing submission, while
keeping the bitrate approximately the same. We also present experiments demon-
strating the noise robustness of these units. Finally, we show that a model with
multiple quantizers can simultaneously learn phone-like detectors at a lower layer
and word-like detectors at a higher layer. We show that these detectors are highly
accurate, discovering 279 words with an F1 score of greater than 0.5.

1 INTRODUCTION

By 8 months of age, human infants learn to recognize not only the names of their caregivers and
common objects, but also the contrast between the different vowels and consonants which comprise
these words (Dupoux, 2018). Nearly all toddlers learn to carry a conversation long before they can
read and write. Humans learn to model the discrete, hierarchical, and compositional nature of their
native language not from written text, but from speech audio - a continuous, time-varying waveform
which is the product not only of the underlying words which were spoken, but also the physical
properties of the speaker’s vocal tract, the speaker’s health and emotional state, and the noise and
reverberation present in the environment. The question of how such a complex symbolic system is
inferred from continuous and noisy sensory input data is of interest not only to the cognitive science
community, but also to machine learning researchers who aim to reproduce this ability with comput-
ers. A more comprehensive understanding of human language acquisition has practical significance
in real-world applications, such as automatic speech recognition (ASR) and natural language under-
standing (NLU) systems. In the past several decades, enormous progress has been made in speech
recognition research, and nowadays ASR systems are able to achieve human-level accuracy in many
domains (Chiu et al., 2018). Unfortunately, the techniques that have been developed to achieve these
levels of performance are extremely data-hungry, requiring many thousands of hours of speech au-
dio recordings for training. Since supervised machine learning algorithms form the basis of ASR
training, the data also needs to be annotated by expert humans. Due to the immense cost of collect-
ing and annotating speech data, ASR technology currently exists for approximately 120 (Google,
2019) out of the nearly 7,000 (Lewis et al., 2016) human languages spoken worldwide. It is highly
unlikely that purely supervised machine learning techniques will be able to scale to include all hu-
man languages, necessitating the development of alternative methods by researchers which are able
to function with far fewer annotations, or even no annotations at all. Because human beings provide
an existence proof of language acquisition from speech completely without language supervision, it
is plausible that this ability could be replicated by a machine learning algorithm.
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In this paper, we present a method for discovering discrete and hierarchical representations of speech
units both at the sub-word level and the word level. Previously proposed linguistic unit discovery
methods have only leveraged the speech audio modality in isolation, relying on objective functions
that attempt to capture statistical regularities within the speech signal. The key innovation in our
work is that we discover units by training models with explicit discretization layers to associate
speech waveforms with visual images using a cross-modal grounding objective. This forces our
models to learn representations which capture semantic information at the highest layers of the
network. Because semantics are predominantly carried by words, and words are composed of sub-
word units (such as phones and syllables), the visual grounding objective indirectly forces the model
to learn speaker- and noise-invariant representations of speech units. By incorporating trainable
quantization layers into our networks, we are able to capture these units in discrete inventories.
Whether these units correspond to word-like or sub-word units depends on where the quantization
layers are inserted, and how they are trained.

2 RELATED WORK

Prior work on unsupervised modeling of the speech signal has generally focused on learning repre-
sentations which either disentangle or isolate the latent factors that are of interest for downstream
tasks. In most cases the primary latent factor of interest is the phonetic or lexical identity of a given
segment of speech, but other factors, such as the identity of the speaker, are sometimes of interest
as well. Because the factors of interest are often inherently discrete (e.g. words and phones), many
of the proposed approaches attempt to perform segmentation and clustering of the surface features
in one way or another. One family of techniques is based upon Segmental Dynamic Time Warping
(S-DTW) (Park & Glass, 2005; 2008; Jansen et al., 2010; Jansen & Van Durme, 2011), which uses
a self-comparison algorithm to identify relatively long duration (on the order of a second) patterns
which frequently reoccur in a speech corpus; these patterns tend to capture words or short phrases.
A different line of work employs probabilistic graphical models to jointly segment and cluster the
speech signal (Varadarajan et al., 2008; Zhang & Glass, 2009; Gish et al., 2009; Lee & Glass, 2012;
Siu et al., 2014; Lee et al., 2015; Ondel et al., 2016; Kamper et al., 2016; 2017a). With an ap-
propriately designed model, it is possible to learn multiple, hierarchical categories of speech units.
However, in order to enable efficient inference, the conditional distributions of these models tend to
be simple and therefore have limited modeling power.

Deep neural network models have been successfully used to learn powerful speech representations
using weakly or unsupervised objectives (Thiolliere et al., 2015; Kamper et al., 2015; Hsu et al.,
2017a;b; Hsu & Glass, 2018; Holzenberger et al., 2018; Milde & Biemann, 2018; van den Oord
et al., 2018; Chung et al., 2019; Pascual et al., 2019). These representations have predominantly
been continuous in nature, as discrete latent variables are not trivially compatible with backpropaga-
tion. To obtain discrete representations, a post-hoc clustering step can be applied to the continuous
representations (Kamper et al., 2017b; Feng et al., 2019). More recently, several papers have pro-
posed ways of directly incorporating discrete variables into neural network models, including using
Gumbel-Softmax (Eloff et al., 2019b) or straight-through estimators (van den Oord et al., 2017;
Chorowski et al., 2019; Razavi et al., 2019).

A different method for learning meaningful representations of speech is via a multimodal ground-
ing objective, which encourages the learning of speech representations that are predictive of the
contextual information contained in a separate but accompanying modality, such as vision. Visual
grounding of speech is a form of self-supervised learning (Virginia de Sa, 1994), which is powerful
in part because it offers a way of training models with a discriminative objective that does not depend
on traditional transcriptions or annotations. The first work in this direction relied on phone strings
to represent the speech (Roy & Pentland, 2002; Roy, 2003), but more recently this learning has been
shown to be possible directly on the speech signal (Synnaeve et al., 2014; Harwath & Glass, 2015;
Harwath et al., 2016). Subsequent work on visually-grounded models of speech has investigated
improvements and alternatives to the modeling or training algorithms (Leidal et al., 2017; Kamper
et al., 2017c; Havard et al., 2019a; Merkx et al., 2019; Chrupała et al., 2017; Scharenborg et al.,
2018; Kamper et al., 2019b;a; Surı́s et al., 2019; Ilharco et al., 2019; Eloff et al., 2019a), application
to multilingual settings (Harwath et al., 2018a; Kamper & Roth, 2017; Azuh et al., 2019; Havard
et al., 2019a), analysis of the linguistic abstractions, such as words and phones, which are learned by
the models (Harwath & Glass, 2017; Harwath et al., 2018b; Drexler & Glass, 2017; Alishahi et al.,
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2017; Harwath et al., 2019; Harwath & Glass, 2019; Havard et al., 2019b), and the impact of jointly
training with textual input (Holzenberger et al., 2019; Chrupała, 2019; Pasad et al., 2019). Repre-
sentations learned by models of visually grounded speech are also well-suited for transfer learning
to supervised tasks, being highly robust to noise and domain shift (Hsu et al., 2019).

3 DATA AND MODELS

3.1 DATASET

For training our models, we utilize the MIT Places 205 dataset (Zhou et al., 2014) and their ac-
companying spoken audio captions (Harwath et al., 2016; 2018b). The caption dataset contains
approximately 400,000 spoken audio captions, each of which describes a different Places image.
These captions are free-form spontaneous speech, collected from over 2,500 different speakers and
covering a 40,000 word vocabulary. The average caption duration is approximately 10 seconds,
and each caption contains on average 20 words. For vetting our models during training, we use a
held-out validation set of 1,000 image-caption pairs.

3.2 NEURAL MODELS OF VISUALLY-GROUNDED SPEECH

We base our model upon the Residual Deep Audio-Visual Embedding network (ResDAVEnet) ar-
chitecture (Harwath et al., 2019), which contains two branches of fully convolutional networks, one
for images and the other for audio. Each branch encodes samples of the corresponding modality into
a d-dimensional space, regardless of the original dimensionality of the samples. This is achieved by
applying global spatial mean pooling and global temporal mean pooling to the image branch output
and the audio branch output, respectively. The image branch is adapted from ResNet50 (He et al.,
2016), where the final softmax layer and the preceding fully-connected layers are removed, replaced
with a 1x1 linear convolutional layer in order to project the feature map to the desired dimension.
To model the audio inputs, a 17-layer fully convolutional network with residual connections is used.
The input is a log Mel-frequency spectrogram with 40 frequency bins and 25 ms-wide, Hamming-
windowed frames with a shift of 10 ms. The first layer of this network is a 1-D convolution that
spans the entire frequency axis of the spectrogram, while the remaining 16 convolutional layers are
1-D across the time axis. These 16 layers are divided into four residual blocks of 4 layers each, and
downsampling between these blocks is accomplished by applying the first convolution of each block
with a stride of 2. For full details of the model, refer to Harwath et al. (2019).

3.3 LEARNING HIERARCHICAL DISCRETE UNITS WITH VECTOR QUANTIZING LAYERS

Previous analyses reveal that ResDAVEnet-like models learn linguistic abstractions at different lev-
els, including words (Harwath & Glass, 2017) and robust phonetic features (Harwath & Glass, 2019;
Hsu et al., 2019). To explicitly learn hierarchical discrete linguistic units within this framework, we
propose to incorporate multiple vector quantization (VQ) layers (van den Oord et al., 2017) into the
ResDAVEnet audio branch; we refer to this new architecture as ResDAVEnet-VQ.

VQ layers can be understood as a type of bottleneck, which constrain the amount of information
that can flow through. While these layers have been used to learn discrete sub-word units (van den
Oord et al., 2017; Chorowski et al., 2019; Razavi et al., 2019), previous work injects VQ layers
into autoencoders that are trained with a reconstruction loss. As a result, the embedding dimen-
sion of each code and the number of codes need to be carefully tuned (Liu et al., 2019). When the
embedding dimension is too low or the codebook size too small, the model does not have enough
expressive power to capture linguistic variability. When it is too large, the model starts to encode
non-linguistic information in order to improve reconstruction. In contrast, the learning signal of
ResDAVEnet-VQ is provided by the visual-semantic grounding objective. Rather than encoding as
much information about input as possible, the learned codes in ResDAVEnet-VQ only need to cap-
ture semantic information. Since semantics in speech are predominantly transmitted by words, and
words are composed of sub-word units like phones, the grounding objective places pressure on the
model to robustly infer both from speech. Since words and phones are inherently discrete symbols,
representing them with learned discrete units may not even hurt the grounding performance.

3



Published as a conference paper at ICLR 2020

Figure 1 illustrates the proposed ResDAVEnet-VQ model. We add a quantization layer after each of
the first two residual blocks of the ResDAVEnet-VQ model, denoted as VQ2 and VQ3, respectively,
with the intention that they should capture discrete sub-word-like and word-like units. A VQ layer
is defined as E ∈ RK×D, where K represents the codebook size, and D represents the output
dimensionality of the input features to the codebook. Denoting the tth temporal frame of the input
to the quantization layer as xt, quantization is performed according to qt = Ek,:, where k =
arg minj ||xt−Ej,:||2 The quantized output is then fed as input to the subsequent residual block. As
in van den Oord et al. (2017), we use the straight-through estimator (Bengio et al., 2013) to compute
the gradient passed from qt to xt. We use the exponential moving average (EMA) codebook updates
proposed by van den Oord et al. (2017).
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Figure 1: Diagram of the ResDAVEnet-VQ model. On the left, we show the placement of the vector
quantization blocks in the audio branch. Note that each “Res” block is comprised of a stack of
multiple sub-layers (see Harwath et al. (2019) for details). The right half of the figure depicts the
quantization mechanism of each VQ block, as well as the bypass path when the block is disabled.

3.4 CODEBOOK LEARNING SCHEDULES

We include multiple VQ layers in the ResDAVEnet-VQ model, each of which can be independently
enabled or bypassed without changing the rest of the architecture configuration. When all model
weights, including the VQ codebooks, are trained jointly in a single training run we call this a “cold-
start” model. Alternatively, a model can be “warm-started” by copying the weights from another
trained model that has fewer (or no) VQ layers enabled, and randomly initializing the codebook of
the newly activated VQ layer(s). This gives rise to the questions of how many quantizers should
be used and in what order they should be enabled. It is unclear whether models with the same
VQ layers activated would learn the same representation at each layer regardless of the training
curriculum. Let Am denote a subset of all VQ layers, and Am−1 ⊂ Am. We use “A1 → ...→ AM”
to denote a model that is obtained by sequentially training models “A1 → ... → Am” initialized
from “A1 → ... → Am−1”, where the model A1 is initialized from scratch, and the final model
would have VQ layers in AM activated. For instance, a model initialized from scratch with no VQ
layers enabled is denoted as “∅”, and a model initialized with that and with both layers enabled is
denoted as “∅→ {2, 3}”.

3.5 TRAINING WITH THE TRIPLET LOSS

We train our models using the same loss function as Harwath et al. (2019). This loss function blends
two triplet loss terms (Weinberger & Saul, 2009), one based on random sampling of negative exam-
ples, and the other based on semi-hard negative mining (Jansen et al., 2018), in order to find more
challenging negative samples. Specifically, let the sets of output embedding vectors for a minibatch
of B audio/image training pairs respectively be A = {a1, . . . ,aB} and I = {i1, . . . , iB}. To com-
pute the randomly-sampled triplet loss term, we select impostor examples for the jth input according
to āj ∼ UniformCategorical({a1, . . . ,aB}\aj) and īj ∼ UniformCategorical({i1, . . . , iB}\ij).
The randomly-sampled triplet loss is then computed as:

Ls =

B∑
j=1

(
max(0, iTj āj − iTj aj + 1) + max(0, īTj aj − iTj aj + 1)

)
(1)

For the semi-hard negative triplet loss, we first define the sets of impostor candidates for the jth

example as Âj = {a ∈ A|iTj a < iTj aj} and Îj = {i ∈ I|iTaj < iTj aj}. The semi-hard negative
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loss is then computed as:

Lh =

B∑
j=1

(
max(0,max

â∈Âj

(iTj â)− iTj aj + 1) + max(0,max
î∈Îj

(îTaj)− iTj aj + 1)
)

(2)

Finally, the overall loss function is computed by combining the two above losses, L = Ls + Lh,
which was found by (Harwath et al., 2019) to outperform either loss on its own.

3.6 IMPLEMENTATION DETAILS

All of our models were trained for 180 epochs using the Adam optimizer (Kingma & Ba, 2014)
with a batch size of 80. We used an exponentially decaying learning rate schedule, with an initial
value of 2e-4 that decayed by a factor of 0.95 every 3 epochs. Following van den Oord et al. (2017),
we use an EMA decay factor of γ = .99 for training each VQ codebook. Our core experimental
results all use a codebook size of 1024 vectors for all quantizers, but in the supplementary material
we include experiments with smaller and larger codebooks. Following Chorowski et al. (2019),
the jitter probability hyperparameter for each quantization layer was fixed at 0.12. While we do
not apply data augmentation to the input spectrograms, during training we perform standard data
augmentation techniques to the images. We resize each raw image so that its smallest dimension
is 256 pixels, and then we apply an Inception-style random crop which is resized to 224 pixels
square. During training, we also flip each image horizontally with a probability of 0.5. During
evaluation, the center 224 pixel square crop is always taken from the image. Finally, the RGB pixel
values are mean and variance normalized. We trained each model on the Places audio caption train
split, and computed the image and caption recall at 10 (R@10) scores on the validation split of
the Places audio captions after each training epoch. The model snapshot that achieved the highest
average R@10 score on the validation set from each training is used for all evaluation. To extract
embeddings and units from our models, we simply perform a forward pass through the speech branch
of the ResDAVEnet-VQ network and retain the outputs from the target layer at a uniform frame-rate.
The frame-rate is determined by the downsampling factor at the target layer relative to the input. For
non-quantized layers, these outputs will be continuous embeddings. For quantized layers, these will
be quantized embedding retrieved from the assigned entry in the codebook.

4 EXPERIMENTS

4.1 SUB-WORD UNIT LEARNING ON THE ZEROSPEECH 2019 ABX TASK

Evaluation metrics Learning unsupervised speech representations that are indicative of phonetic
content is of high interest to the speech community, and recently has been the focus of the Ze-
roSpeech Challenge (Versteegh et al., 2015; Dunbar et al., 2017; 2019). One of the core evaluations
is the minimal-pair ABX task (Schatz et al., 2013), which aims to benchmark representations in
terms of their discriminability between different sub-word speech units. In this task, a model is
tasked with extracting representations for a triplet of speech waveform segments denoted by A, B,
and X . A and B are constrained to be a triphone minimal pair; that is, both segments capture
three phones, but differ only in the identity of their center phone. The third segment, X is cho-
sen to contain the same underlying triphone sequence as A. Supposing f(·) denotes the model’s
mapping function from a waveform segment to a sequence of embedding vectors, the ABX er-
ror rate under a given similarity metric S(·, ·) is defined as the fraction of ABX triples in which
S(f(A), f(X)) > S(f(B), f(X)). An ABX error rate of 50% indicates random assignment, while
an ABX of 0% reflects perfect phone discriminability. In the ZeroSpeech challenge, S(·, ·) is imple-
mented using Dynamic Time Warping (DTW) with various distance measures (cosine, KL, etc.). In
our evaluation, we use the cosine distance.

The ZeroSpeech 2019 challenge in particular emphasizes on discovering an inventory of discrete
sub-word units, rather than continuous representations. Therefore, in addition to an ABX error rate,
a bitrate is also computed for each model which reflects the amount of information carried by the
learned units. A lower bitrate can be achieved by having a more compact inventory of learned units
or having a smaller number of codes per second. The full details of the evaluation can be found
in Dunbar et al. (2019). To be clear, all of our ResDAVEnet-VQ models were not trained on the
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Table 1: Comparison of R@10, ABX scores, and bit-rates between different configurations and
baseline models trained on ZeroSpeech 2019 data or Places Audio Caption. All quantizers reflected
in this table used a codebook size of 1,024 vectors. We do not compute RLE or segment scores for
the FHVAE-DPGMM model, since we did not re-implement that model.

Model ID Layer R@10 Frame-Based Segment-Based
ABX Bitrate RLE Bitrate ABX Bitrate

FHVAE-DPGMM (ZS) N/A N/A 21.67 413.23 - - -
WaveNet-VQ (ZS) N/A N/A 19.98 151.55 136.74 20.48 126.17
WaveNet-VQ (PA) N/A N/A 24.87 149.00 136.27 25.23 126.22

“∅” Res2 .735 11.35 N/A N/A N/A N/A
Res3 10.86 N/A N/A N/A N/A

“{2}” VQ2 .753 12.33 433.30 361.09 12.78 332.86
“∅→ {2}” VQ2 .760 11.79 390.61 317.66 12.66 289.11

“{3}” VQ3 .734 38.21 213.92 129.65 38.68 108.84
“∅→ {3}” VQ3 .794 15.04 182.93 140.04 16.53 121.26

“{2, 3}” VQ2 .667 25.62 408.75 258.37 26.32 217.58
VQ3 32.23 218.76 156.69 32.49 136.90

“∅→ {2, 3}” VQ2 .787 13.15 405.43 334.39 13.30 303.03
VQ3 14.95 199.91 172.05 15.60 159.07

“{2} → {2, 3}” VQ2 .764 12.51 415.13 341.85 13.06 311.82
VQ3 14.52 167.84 136.11 15.68 121.17

“{3} → {2, 3}” VQ2 .760 13.55 421.23 271.91 14.38 232.87
VQ3 33.70 208.63 117.37 33.58 98.29

ZeroSpeech training data, but instead on the Places audio captions, thus there is a domain mismatch
between training and testing these models.

In addition to the frame-based bitrate and ABX scores computed by the ZeroSpeech 2019 evaluation
toolkit, we implement our own extensions to these metrics. Because it is common for successive
frames to be assigned to the same codebook entry and phonetic information is not encoded at a fixed
frame rate, lossless run length encoding (RLE) can be a more reasonable measure of the bitrate of
a frame-based model. RLE does not change the ABX score since it can be trivially inverted, but it
does change the bitrate. For computing the RLE bitrate, we modify the bitrate calculation specified
in Dunbar et al. (2019) so that a unique symbol is defined as the tuple (unit, length) where length is
the number of frames assigned to a given unit with in a segment. We also consider segment-based
ABX and bitrate, which is similar to the RLE metrics except in this case we outright discard the
frame length information. This typically results in an even greater reduction in bitrate, but also an
accompanying deterioration in ABX score.

Baseline models In Table 1, we compare our results to those derived from two of the top-
performing submissions to the ZeroSpeech 2019 challenge: a re-implementation of WaveNet-
VQ (Chorowski et al., 2019) provided by Cho et al. (2019) and FHVAE-DPGMM (Feng et al., 2019).
Using the code accompanied with the WaveNet-VQ submission, we were able to train their model
on the set of 400,000 Places audio captions to make a fairer comparison with our ResDAVEnet-VQ
models in terms of the amount of speech data used. In addition, when trying to reproduce the re-
ported WaveNet-VQ results, we obtain better performance than previously reported by training for
more steps. Table 1 shows that WaveNet-VQ achieves similar bitrates regardless of the training data.
However, ABX deteriorates from 19.98 to 24.87, implying the model cannot utilize data of a larger
scale but out-of-domain relative to the test set. A similar degradation when testing on out-of-domain
data with FHVAE models was observed in Hsu et al. (2019). We did not re-train the model submitted
by Feng et al. (2019), and instead compare against the scores reported in Dunbar et al. (2019).

ABX discrimination without using quantization Our first experiment investigates exactly which
layer in the ResDAVEnet-VQ model is most suited for ABX phone discrimination, and would thus
make a good candidate for learning of quantized sub-word units. The leftmost plot in Figure 2
shows that layers 2 and 3 of a ResDAVEnet-VQ model without any quantization enabled perform

6



Published as a conference paper at ICLR 2020

10

20

30

40
A

B
X

E
rr

or
R

at
e

Model “∅”

layer1
layer2
layer3
layer4

10

20

30

40

Model “{2}”

10

20

30

40

Model “{3}”

0 25 50
0

30
60

Epoch

R
@

10

0 25 50
0

30
60

Epoch

0 25 50
0

30
60

Epoch

Figure 2: R@10 and ABX tracked at various training epochs. The “∅” model achieves a final R@10
of .735, with ABX scores of 19.77, 11.35, 10.86, and 14.05 for the conv1, res2, res3, and res4 layers.

the best in terms of ABX error rate on the ZeroSpeech 2019 English test set; the exact numbers for
this model are displayed in the caption of Figure 2. Because layers 2 and 3 achieve the lowest ABX
error rates without quantization, we focus our attention on the impact of quantization there.

Quantizing one layer When quantizing only one layer, we examine quantization of layer 2 vs.
layer 3, and using cold-start training vs. warm-start initialization from model “∅”. The ABX and
bitrate results for these models, as well as the R@10 scores on the Places validation set, are shown in
Table 1. In all cases, quantization applied at the output of layer 2 achieves a better ABX score than
quantization at layer 3, but VQ3 achieves a better bitrate. Quantization barely impacts the perfor-
mance of layer 2, whose ABX score very slightly rises from 11.35 to 11.79. Warm-start initialization
is beneficial to R@10 and ABX score in both cases, but we notice an intriguing anomaly when ap-
plying cold-start quantization to layer 3: the ABX score deteriorates significantly, rising from 10.86
in the case of the non-quantized model to 38.21. This indicates that while VQ2 is capable of learn-
ing a finite inventory of units that are highly predictive of phonetic identity from either a warm-start
or cold-start initialization, cold-start training of VQ3 results in very little phonetic information cap-
tured by the quantizer. Interestingly, this model is still learning to infer visual semantics from the
speech signal, as evidenced by a high R@10 score; we later show in Section 4.2 that the reason for
this anomaly is because cold-start training of VQ3 results in the learning of word detectors. In all
cases except for model “{3}”, we note that the ABX scores achieved by our models are significantly
better than the baselines. Our best model in terms of ABX (“∅→ {2}”) achieves a 41.0% reduction
in ABX over the WaveNet-VQ baseline, at a cost of a 132.3% increase in RLE bitrate; however,
model “∅→ {3}” achieves a 24.7% reduction in ABX error rate with only a 2.4% increase in RLE
bitrate. These results do not constitute a fair comparison, however, because the WaveNet-VQ and
ResDAVEnet-VQ models were trained on different datasets; when training the WaveNet-VQ model
on the same set of audio captions used to train ResDAVEnet-VQ (but without the accompanying
images, since WaveNet-VQ is not a multimodal model), the ABX error rate increases to 24.87%,
tipping the results even more in favor of the ResDAVEnet-VQ models.

Quantizing two layers Quantizing multiple layers at once offers the possibility of learning a hi-
erarchy of units. Thus, we aim to capture phonetic information in a lower layer quantizer and
word-level information at a higher layer quantizer. Cold-start training of two quantizers (“{2, 3}”)
results in a significant drop in ABX performance for both VQ2 and VQ3, but also a drop in R@10 on
the Places validation set. We see much better results in terms of R@10 and ABX for the remaining
3 models which were initialized from the “∅” model or a model with only one quantizer enabled;
for example, model “{2} → {2, 3}” achieves an ABX of 14.52 with an RLE bitrate of 136.11,
representing a 27.3% ABX improvement over the best baseline while keeping the bitrate approxi-
mately the same. We see in model “{3} → {2, 3}” that the same phenomenon observed with model
“{3}” persists: VQ3 achieves relatively poor ABX, despite a high overall R@10 and strong ABX
with VQ2 at 13.55%. We confirm in Section 4.2 that the VQ3 layer of model “{3} → {2, 3}” does
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indeed capture word-level information, indicating that this model has successfully localized pho-
netic unit identity in the second layer and lexical unit identity in the third layer. Overall, our results
suggest that when learning hierarchical quantized representations with a ResDAVEnet-VQ model,
the nature of the representations learned is highly dependent on the training curriculum.

Table 2: ABX scores and RLE bitrates for various SNRs on the noisy ZeroSpeech19 English test set.
“R-B” stands for “RLE-Bitrate,” and (n) denotes a model trained on the noisy Places Audio dataset.
For the WaveNet-VQ models, (ZS) and (PA) respectively denote training on the ZeroSpeech 19
English training set, and the clean Places Audio dataset.

Model Layer Clean 20-30 dB 10-20 dB 0-10 dB
ABX R-B ABX R-B ABX R-B ABX R-B

WaveNet-VQ (ZS) N/A 19.98 136.74 21.22 141.07 27.51 144.28 42.55 126.96
WaveNet-VQ (PA) N/A 24.87 136.27 27.18 137.70 33.29 132.34 42.67 110.50

“∅” Res2 11.35 N/A 11.63 N/A 13.17 N/A 19.44 N/A
“∅” Res3 10.86 N/A 11.16 N/A 12.96 N/A 19.43 N/A

“∅→ {2}” VQ2 11.79 317.66 12.15 325.40 14.62 332.21 23.96 327.15
“{2} → {2, 3}” VQ2 12.51 341.85 12.56 350.28 14.82 362.73 25.02 330.54
“{2} → {2, 3}” VQ3 14.52 136.11 14.73 137.68 17.44 143.14 27.68 133.13
“{3} → {2, 3}” VQ2 13.55 271.91 13.65 272.46 15.69 267.70 24.06 244.52
“{3} → {2, 3}” VQ3 33.70 117.37 32.56 118.22 34.65 115.40 39.82 102.48

“∅” (n) Res2 13.32 N/A 12.30 N/A 12.97 N/A 16.91 N/A
“∅” (n) Res3 11.85 N/A 11.90 N/A 12.44 N/A 16.09 N/A

“∅→ {2}” (n) VQ2 12.64 342.53 12.20 348.57 13.34 359.43 18.82 373.60
“{2} → {2, 3}” (n) VQ2 13.42 365.89 13.71 359.14 14.57 370.67 18.78 392.10
“{2} → {2, 3}” (n) VQ3 14.39 179.19 14.92 180.36 15.38 182.27 19.58 188.32
“{3} → {2, 3}” (n) VQ2 16.52 223.28 16.47 223.61 17.75 225.72 22.68 230.01
“{3} → {2, 3}” (n) VQ3 26.21 187.31 25.88 187.92 26.34 188.49 31.26 191.28

Training and testing on noisy data In Hsu et al. (2019), it was shown that representations learned
by a ResDAVEnet model were far more robust to train/test domain mismatch in terms of background
noise, channel characteristics, and speaker identity than standard spectral features when training a
supervised speech recognizer. Here, we examine whether this robustness is also exemplified by
the quantized versions of this model. We construct three additional test sets using the ZeroSpeech
2019 English testing data by adding noise sampled from the AudioSet (Jansen et al., 2018) dataset.
For each ZeroSpeech testing waveform, we randomly sampled an AudioSet waveform of the same
duration and performed linear mixing with a signal-to-noise ratio (SNR) selected randomly within
a specified range. We construct low, medium, and high noise testing sets, corresponding to SNRs
of 20-30 dB, 10-20 dB, and 0-10 dB. We then perform the ABX discrimination task on these noisy
waveforms, displaying the results in Table 2. We find that for all models, a worsening SNR results in
a deterioration in ABX performance. However, the ResDAVEnet-VQ models prove to be far more
noise robust than the Wavenet-VQ model; even in the high noise testing set, the best ResDAVEnet-
VQ model achieves an ABX of 23.96%, while the WaveNet-VQ models degrade to nearly-random
ABX scores of 42.55% and 42.67%.

Given that a ResDAVEnet-VQ model trained on the “clean” Places Audio captions is highly robust
to additive noise on the ABX discrimination task, we investigated whether adding noise to the Places
Audio captions themselves would result in an even higher degree of noise robustness. To that end,
we followed a similar data augmentation approach to create a noisy version of the Places Audio
captions, where the SNR of each caption was randomly chosen to sit within the range of 0-30 dB.
The bottom half of Table 2 shows the results of training several ResDAVEnet-VQ models on the
noisy Places Audio captions and testing on the clean and noisy ZeroSpeech ABX tasks. In general,
we observe a degradation ABX score in the clean conditions, but with a significantly higher degree
of noise robustness in the noisier conditions.

Visualization of learned units To better measure the correspondence between the VQ units and
English phones, we compute corpus-level co-occurrence statistics (at the frame-level) across the
TIMIT training set, excluding the sa dialect sentences. To facilitate visualization, we use the
“∅ → {2}” model with a codebook size of 128. We display the conditional probability matrix
P (phone|unit) in Figure 3, with the rows and columns ordered via spectral co-clustering with 10
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Figure 3: Conditional probability matrix displaying P (phone|unit) using the “∅ → {2}” model
with a VQ2 codebook size of 128. For visualization, we saturate the color scaling at probability 0.5.

clusters in order to group together phones that share similar sets of VQ codes. Visually, there is a
strong mapping between TIMIT phone labels and ResDAVEnet-VQ codes. In some cases, redun-
dant codes are used for the same phone label (this is especially the case for the silence label), and
in other cases we see that phones belonging to the same manner class often tend to share codebook
units. We can numerically quantify the mapping between the phone and unit labels with the normal-
ized mutual information measure (NMI), which we found to be .378 in this case. We also include
several caption spectrograms with their time-aligned unit sequences in Figures 5, 6, and 7 in the
supplementary material.

Table 3: Performance of the VQ3 layer from the “{3} → {2, 3}” model when codes are treated as
word detectors. Codes are ranked by the highest F1 score among the retrieved words for a given
code. Word hypotheses for a given code are ranked by the F1 score. P denotes precision, R recall,
and occ the number of co-occurrences of the code and word in the data.

rank code Top Hypotheses Second Hypotheses
word F1 P R occ word F1 P R occ

1 918 pantry 90.67 88.29 93.18 41 spice 3.96 2.20 20.00 1
2 596 kitchen 90.08 91.59 88.63 304 countertop 1.64 0.84 29.63 8
3 88 classroom 88.97 89.05 88.89 72 classrooms 5.01 2.57 100.00 2
4 58 baseball 88.71 88.63 88.78 182 player 3.01 1.65 17.11 13
5 706 background 87.86 91.93 84.14 838 ground 0.58 0.39 1.18 4

· · ·
198 237 lobby 68.43 56.77 86.11 31 waiting 9.93 7.86 13.46 14
199 829 shirt 68.41 71.49 65.58 322 shirts 18.28 10.37 76.79 43
200 59 grass 68.31 56.53 86.28 503 grassy 15.30 8.67 65.35 83

4.2 FROM PHONES TO WORDS: LEARNING A HIERARCHY OF UNITS

As shown in Table 1, all of the ResDAVEnet-VQ models which underwent cold-start training of VQ3
exhibited a similar phenomenon in which the ABX error rate of that layer was particularly high,
despite the model performing well at the image-caption retrieval task. We hypothesized that this
could be due to VQ3 learning to recognize higher level linguistic units, such as words. To examine
this empirically, we inferred the VQ3 unit sequence for every audio caption in the Places Audio
training set according to several different models. Using the estimated word-level transcriptions of
the utterances (provided by the Google SpeechRecognition API), we computed precision, recall,
and F1 scores for every unique (word, VQ3 code) pair for a given model and quantization layer.
We then ranked the VQ codes in descending order according to their maximum F1 score for any
word in the vocabulary. Table 3 shows a sampling of these statistics for model “{3} → {2, 3}”. In
the supplementary material, we include many more examples for this model in Table 7, as well as
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Figure 4: Visualization of the precision, recall, and F1 scores of individual VQ3 codes when treated
as word detectors on the Places Audio captions.

examples for the “{2} → {2, 3}” model (which did not learn VQ3 word detectors) in Table 8. It
should be emphasized that these models are exactly the same in all respects, except for the order in
which their quantizers were trained.

We examine the overall performance of VQ3 as a word detector for these models in Figure 4. The
right hand side of Figure 4 displays the number of VQ3 codes whose maximum F1 score is above
a given threshold, while the left hand side shows the distribution of precision and recall scores for
the top 250 words ranked by F1. This gives an approximate indication of how many VQ3 codes
have learned to specialize as detectors for a specific word. We see that the VQ3 layer of model
“{3} → {2, 3}” learns 279 codebook entries with an F1 score above 0.5. In contrast, the VQ3 layer
of model “{2} → {2, 3}” learns only a handful of word-detecting codebook entries with an F1 of
greater than 0.5. This experiment supports the notion that the reason for the poor ABX performances
of the VQ3 layer in models “{3}” and “{3} → {2, 3}” is in fact due to its specialization for detecting
specific words, and that this specialization only emerges when the VQ3 layer is learned before
the VQ2 layer. Section A.2 in the supplementary material examines this phenomenon in greater
experimental detail.

5 CONCLUSIONS

In this paper, we demonstrated that the neural vector quantization layers proposed by van den Oord
et al. (2017) can be integrated into the visually-grounded speech models proposed by Harwath et al.
(2019). This resulted in the ability of the speech model to directly represent speech units, such as
phones and words, as discrete latent variables. We presented extensive experiments and analysis
of these learned representations, demonstrating significant improvements in phone discrimination
ability over the current state-of-the-art models for sub-word speech unit discovery. We demonstrated
that these units are also far more robust to noise and domain shift than units derived from previously
proposed models. These results supported the notion that semantic supervision via a discriminative,
multimodal grounding objective has the potential to be more powerful than reconstruction-based
objectives typically used in unsupervised speech models.

We also showed how multiple vector quantizers could be employed simultaneously within a single
ResDAVEnet-VQ model, and that these quantizers could be made to specialize in learning a hier-
archy of speech units: specifically, phones in the lower quantizer and words in the upper quantizer.
Our analysis showed that hundreds of codebooks in the upper quantizer learned to perform as word
detectors, and that these detectors were highly accurate. Our experiments also revealed that this
behavior only emerged when VQ3 was trained before VQ2. These results suggest the importance
of the learning curriculum, which should be more deeply investigated in future work. Future work
should attempt to make explicit what kind of compositional rules are implicitly encoded by these
models when mapping sequences of codes from the lower quantizer to word-level units in the up-
per quantizer; the automatic derivation of a sub-word unit inventory, vocabulary, and pronunciation
lexicon could serve as the starting point for a fully unsupervised speech recognition system. Future
work should also investigate whether layers above VQ3 could be made to learn even higher-level
linguistic abstractions, such as grammar, syntax, and compositional reasoning.
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Santiago Pascual, Mirco Ravanelli, Joan Serrà, Antonio Bonafonte, and Yoshua Bengio. Learning
problem-agnostic speech representations from multiple self-supervised tasks. In Proc. Annual
Conference of International Speech Communication Association (INTERSPEECH), 2019.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. arXiv preprint arXiv:1906.00446, 2019.

Deb Roy. Grounded spoken language acquisition: Experiments in word learning. IEEE Transactions
on Multimedia, 5(2):197–209, 2003.

Deb Roy and Alex Pentland. Learning words from sights and sounds: a computational model.
Cognitive Science, 26:113–146, 2002.

Odette Scharenborg, Laurent Besacier, Alan W. Black, Mark Hasegawa-Johnson, Florian Metze,
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Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. CoRR, abs/1807.03748, 2018. URL http://arxiv.org/abs/1807.03748.

Balakrishnan Varadarajan, Sanjeev Khudanpur, and Emmanuel Dupoux. Unsupervised learning of
acoustic sub-word units. In Proceedings of ACL-08: HLT, Short Papers, 2008.

Martin Versteegh, Roland Thiolliere, Thomas Schatz, Xuan Nga Cao, Xavier Anguera, Aren Jansen,
and Emmanuel Dupoux. The zero resource speech challenge 2015. In Proc. Annual Conference
of International Speech Communication Association (INTERSPEECH), 2015.

Virginia de Sa. Learning classification with unlabeled data. In Proc. Neural Information Processing
Systems (NeurIPS), 1994.

Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research (JMLR), 2009.

Yaodong Zhang and James Glass. Unsupervised spoken keyword spotting via segmental dtw on
gaussian posteriorgrams. In Proc. IEEE Workshop on Automatic Speech Recognition and Under-
standing (ASRU), 2009.

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learning deep
features for scene recognition using places database. In Proc. Neural Information Processing
Systems (NeurIPS), 2014.

15

http://arxiv.org/abs/1807.03748


Published as a conference paper at ICLR 2020

A APPENDIX

A.1 VARYING THE CODEBOOK SIZE.

In Table 4, we examine the impact of varying the codebook size of model “∅ → {2}” from 128
through 2048. We find that the ABX score is best for 1024 codebook vectors, although the perfor-
mance is quite good for all models. Unsurprisingly, models with smaller codebooks also achieve
lower bitrates.

Table 4: ABX scores and bitrates for various codebook sizes on the clean ZeroSpeech19 English
test set, using the “∅→ {2}” model.

Codebook size R@10 ABX Bitrate RLE-Bitrate Segment-ABX Segment-Bitrate

128 .772 14.25 295.65 212.27 15.42 179.38
256 .756 12.95 341.18 260.10 14.21 228.07
512 .761 12.59 363.95 288.64 13.10 259.94

1024 .760 11.79 390.61 317.66 12.66 289.11
2048 .768 12.41 360.04 283.68 13.15 254.23

A.2 THE IMPACT OF THE VQ TRAINING CURRICULUM ON THE LOCALIZATION OF WORD
DETECTORS

Table 5: ABX scores on the Ze-
roSpeech 19 English test set using
features derived from the output of
the Res3 block of the ResDAVEnet
audio branch (pre-quantization).

Model ID Res3 ABX

“∅” 10.86
“∅→ {2}” 11.61
“∅→ {3}” 10.91

“∅→ {2, 3}” 12.68

“{2}” 11.45
“{2} → {2, 3}” 11.37

“{3}” 32.24
“{3} → {2, 3}” 28.33

In Section 4.2, we showed that cold-start training of the VQ3
layer caused its codebook vectors to specialize as word de-
tectors, whereas warm-start training did not. Our subsequent
experiments (Table 6) revealed that when adding a third quan-
tization layer at the Res4 position to a model that did not learn
word detectors at VQ3, the VQ4 layer did in fact learn many
word detectors. This suggests implicit word recognition ability
can be localized at different layers in the ResDAVEnet audio
model, and exactly where it emerges depends upon the VQ
training curriculum. We hypothesize that this is due in part to
two factors:

1. In a warm-start model, whatever type of informa-
tion (subword-like, word-like) the continuous model
learned to encode at a particular convolutional layer
(or residual block) does not change after a quantizer
is appended to that layer.

2. In a cold-start model, each active quantization layer
forms a potential bottleneck, restricting the amount of
information that is able to pass through to subsequent
layers.

According to this hypothesis, if word-level recognition tends to emerge at a particular layer in an
unconstrained network with no quantization bottleneck, it will stay there when quantization is in-
troduced for fine-tuning. However, when a quantization bottleneck is introduced from the very
beginning of training, the gradient flowing down into the lower network layers is more constrained
during the initial training epochs (when the gradient tends to be the largest). This may have the ef-
fect of steering the optimizer into a different part of the parameter space, in which word recognition
occurs at a different layer than it otherwise would.

We present results from two experiments that support this view. In Table 5, we show the ABX
scores of the Res3 layer prior to quantization (if present) during the course of three different training
curricula resulting in a “{2, 3}” final model. We observe that the ABX error rate changes very little
within each individual curriculum. This indicates that the initial model sets the stage for which layer
learns to capture phonetic information with the highest salience, and that subsequent training steps
do not tend to move this information elsewhere.

16



Published as a conference paper at ICLR 2020

Table 6: The number of codebook vectors at a particular VQ layer that learned to be a detector for
any word with an F1 score greater than 0.5.

# Quantized Layers Model ID VQ Layer # Word Detectors (F1 > 0.5)

1 “{3}” 3 210
“∅→ {3}” 3 20

2

“{2, 3}” 2 93
3 100

“∅→ {2, 3}” 2 1
3 18

“{2} → {2, 3}” 2 0
3 5

“{3} → {2, 3}” 2 32
3 279

3 “{2} → {2, 3} → {2, 3, 4}”
2 0
3 8
4 253

Table 6 displays the number of word detectors learned by various VQ layers across different training
curricula. Here, we claim that a codebook vector belonging to a particular VQ layer has learned to
be a word detector if its F1 score for any word appearing in the test set exceeds 0.5 (as measured on
the test set). There are several interesting things to note here. First, we only observe a significant
number of word detectors at the VQ3 layer when that layer is trained from a cold-start. Even when
adding a second VQ layer as in the “{3} → {2, 3}” model, these detectors remain at VQ3.

Jointly training VQ2 and VQ3 together from a cold-start results in the word detectors being di-
vided between those layers. While this experiment demonstrates that it is possible to jointly train
two quantizers at once, the {2, 3} model learned the smallest total number of word detectors of
any model. Additionally, we were unable to successfully train a cold-start {2, 3, 4} model; these
experiments suggest that training quantizers one by one may be easier in general.

For all models beginning from a “∅” or “{2}” initial model, we do not observe any word detectors
at either VQ2 or VQ3. However, a third quantizer at the VQ4 position in the “{2} → {2, 3} →
{2, 3, 4}” model was able to capture words. We hypothesize that in all models not trained from a
“{3}” initialization, word recognition is implicitly learned by the Res4 layer, and adding a quantizer
to the output of this layer serves to make the categorical nature of those representations explicit.

A.3 WORD DETECTOR TABLES FOR VARIOUS MODELS

In Table 7, we show a sampling of 50 word-detecting codebook entries from the VQ layer of the
“{3} → {2, 3}” model (many word detectors learned). Analagous results for the “{2} → {2, 3}”
model (few word detectors learned) are shown in Table 8.

A.4 UNIT VISUALIZATION FOR INDIVIDUAL CAPTION SPECTROGRAMS

To provide a better intuitive understanding of what the units learned by our models look like, in
Figures 5, 6, and 7, we display speech spectrograms for several Places caption fragments. Along
with each spectrogram we display the time-aligned, ground-truth, word-level text (top transcription),
the inferred unit sequence for the VQ4 layer (middle transcription), and the unit sequence for the
VQ3 (bottom transcription) layer. All VQ unit alignments in these figures are derived from the
“{2} → {2, 3} → {2, 3, 4}” model.
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Table 7: Performance of the VQ3 layer from the “{3} → {2, 3}” model when codes are treated as
word detectors. Codes are ranked by the highest F1 score among the retrieved words for a given
code. Word hypotheses for a given code are ranked by the F1 score.

rank code Top Hypotheses Second Hypotheses
word F1 P R occ word F1 P R occ

1 918 pantry 90.67 88.29 93.18 41 spice 3.96 2.20 20.00 1
2 596 kitchen 90.08 91.59 88.63 304 countertop 1.64 0.84 29.63 8
3 88 classroom 88.97 89.05 88.89 72 classrooms 5.01 2.57 100.00 2
4 58 baseball 88.71 88.63 88.78 182 player 3.01 1.65 17.11 13
5 706 background 87.86 91.93 84.14 838 ground 0.58 0.39 1.18 4
6 736 museum 87.35 93.44 82.00 41 museums 5.47 2.81 100.00 1
7 274 subway 87.26 88.34 86.21 75 assembly 5.32 2.85 40.00 4
8 116 construction 87.07 89.78 84.52 131 constructed 2.43 1.25 38.46 5
9 892 walking 87.06 87.57 86.55 412 walk 7.07 3.97 31.94 23
10 557 concrete 86.53 90.98 82.50 99 concur 1.21 0.61 100.00 1
11 48 desert 86.50 90.30 83.01 171 dozen 2.76 1.49 18.18 2
12 534 background 86.18 81.95 90.86 905 back 8.95 5.83 19.34 64
13 44 patio 85.82 90.87 81.29 113 patios 1.56 0.79 100.00 1
14 625 background 85.17 92.92 78.61 783 back 1.63 1.01 4.23 14
15 732 closet 84.92 94.64 77.01 67 closets 4.96 2.68 33.33 2
16 30 waterfall 84.90 75.73 96.61 57 waterfalls 14.26 7.68 100.00 7
17 388 courtyard 84.89 92.16 78.69 48 graveyard 5.50 3.24 18.18 4
18 560 hospital 84.70 91.48 78.85 41 horses 1.55 1.92 1.30 1
19 18 driveway 84.56 90.10 79.66 47 driveways 3.52 1.82 50.00 1
20 598 palm 84.39 82.08 86.84 99 plum 1.57 0.79 100.00 1
21 85 yellow 84.30 83.93 84.66 574 yellowish 1.98 1.00 100.00 7
22 584 playground 84.18 77.37 92.31 36 play 6.32 4.75 9.43 5
23 162 stadium 83.82 84.50 83.15 74 boardwalk 9.12 4.91 63.16 12
24 769 bamboo 83.79 93.68 75.79 72 baboons 2.03 1.03 100.00 1
25 193 small 83.55 90.46 77.63 791 smaller 2.15 1.10 50.00 15
26 412 podium 83.53 76.73 91.67 22 auditorium 8.69 5.82 17.14 6
27 108 highway 83.52 79.58 87.88 58 highlights 5.44 2.87 50.00 3
28 394 church 83.34 75.98 92.28 227 religious 6.34 3.45 39.39 13
29 661 distance 83.32 78.96 88.19 351 lounge 1.63 0.86 14.71 5
30 708 distance 82.97 96.32 72.86 290 farmland 1.35 0.68 55.56 5
31 14 gallery 82.97 85.08 80.95 17 art 11.39 12.15 10.71 9
32 996 large 82.95 87.05 79.21 1753 very 2.83 1.72 8.01 94
33 944 cathedral 82.78 79.22 86.67 52 feed 2.74 1.41 50.00 1
34 122 purple 82.63 91.98 75.00 138 proportion 1.66 0.84 50.00 1
35 630 trees 82.52 80.39 84.77 1258 tree 15.48 9.47 42.33 171

186 375 boy 69.90 65.45 75.00 93 boys 20.87 13.09 51.43 18
187 634 ground 69.78 73.92 66.08 224 playground 7.45 3.94 69.23 27
188 69 courtyard 69.55 57.98 86.89 53 plaza 28.89 19.87 52.94 9
189 281 wooden 69.50 57.89 86.92 525 wood 23.55 14.52 62.20 153
190 812 lighthouse 69.41 59.74 82.81 53 lighthouses 11.69 6.21 100.00 5
191 225 house 69.13 61.59 78.78 516 houses 18.29 10.31 80.73 88
192 705 dark 69.11 68.57 69.66 186 darker 3.05 1.56 75.00 6
193 980 building 69.10 77.48 62.35 1161 buildings 25.72 15.71 70.78 281
194 844 grass 69.01 61.85 78.04 455 grassy 21.70 12.42 85.83 109
195 446 lake 68.69 78.63 60.98 125 late 5.02 2.90 18.52 5
196 182 trash 68.64 66.79 70.59 48 boulders 10.16 6.27 26.67 4
197 437 photograph 68.63 59.06 81.89 588 photographs 30.56 18.46 88.73 181
198 237 lobby 68.43 56.77 86.11 31 waiting 9.93 7.86 13.46 14
199 829 shirt 68.41 71.49 65.58 322 shirts 18.28 10.37 76.79 43
200 59 grass 68.31 56.53 86.28 503 grassy 15.30 8.67 65.35 83
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Table 8: Performance of the VQ3 layer from the “{2} → {2, 3}” model when codes are treated as
word detectors. Codes are ranked by the highest F1 score among the retrieved words for a given
code. Word hypotheses for a given code are ranked by the F1 score.

rank code Top Hypotheses Second Hypotheses
word F1 P R occ word F1 P R occ

1 924 people 76.71 67.49 88.85 1665 computer 2.17 1.12 40.40 40
2 749 white 76.47 66.92 89.21 2265 one 4.15 2.50 12.14 134
3 530 building 75.47 64.84 90.28 1681 buildings 23.93 13.81 89.67 356
4 505 blue 59.12 46.90 79.96 1093 pool 10.74 5.89 60.80 152
5 581 snow 57.61 41.77 92.83 466 snowy 16.63 9.12 94.50 103
6 778 building 52.10 36.71 89.69 1670 buildings 14.30 7.78 88.16 350
7 144 with 49.12 41.58 59.99 3386 wooden 6.32 3.34 60.60 366
8 299 small 47.83 32.78 88.42 901 snow 30.55 18.35 91.24 458
9 550 large 45.13 30.50 86.76 1920 car 8.57 4.52 82.13 216
10 76 trees 44.82 29.76 90.77 1347 tree 15.21 8.31 89.36 361
11 831 water 41.84 27.50 87.43 1210 wall 17.57 9.87 79.97 491
12 1015 large 39.59 26.06 82.29 1821 cars 6.58 3.42 84.21 224
13 80 red 39.15 26.13 78.05 992 bed 9.14 4.91 66.67 168
14 719 woman 38.71 24.95 86.31 687 women 7.75 4.09 72.41 126
15 614 people 37.71 25.10 75.83 1421 table 22.10 12.75 82.93 656
16 816 water 37.71 24.25 84.75 1173 river 5.72 2.97 80.22 215
17 457 sky 35.71 23.20 77.47 540 skies 11.81 6.33 88.12 141
18 480 has 34.88 25.01 57.64 1204 house 9.88 5.48 50.38 330
19 245 yellow 34.14 21.17 88.05 597 flowers 13.44 7.27 89.43 237
20 968 picture 34.11 22.32 72.33 1686 pictures 16.79 9.38 79.77 698
21 985 trees 33.88 22.04 73.25 1087 tree 10.96 5.93 72.52 293
22 536 man 33.53 20.71 88.06 1128 standing 9.06 4.86 66.17 532
23 0 black 33.49 20.81 85.77 1163 background 21.15 12.28 76.20 759
24 815 with 33.21 22.76 61.36 3463 white 8.60 4.85 38.05 966
25 293 large 33.13 23.80 54.50 1206 bridge 19.09 10.78 83.18 371
26 870 trees 32.87 20.79 78.44 1164 train 12.97 7.00 88.03 353
27 153 yellow 32.42 19.94 86.73 588 area 15.39 9.47 40.92 354
28 243 front 32.13 20.97 68.69 895 from 14.34 8.51 45.49 358
29 538 black 31.40 19.64 78.24 1061 glass 8.28 4.36 82.90 223
30 526 small 31.34 19.08 87.83 895 large 5.91 4.04 11.03 244
31 395 picture 31.32 20.90 62.46 1456 pictures 13.98 7.80 67.54 591
32 133 white 29.82 18.98 69.55 1766 black 16.34 9.32 66.37 900
33 715 white 29.45 19.73 58.05 1474 like 9.92 5.89 31.29 388
34 39 picture 29.37 22.51 42.26 985 like 9.82 5.79 32.26 400
35 740 trees 29.31 18.52 70.35 1044 showcasing 3.88 2.00 61.51 155

186 129 area 6.62 3.69 32.37 280 snow 6.08 3.23 51.20 257
187 288 picture 6.61 3.76 27.63 644 pictures 4.91 2.58 52.91 463
188 374 there’s 6.61 3.73 28.71 775 that 5.14 2.91 21.81 614
189 1003 front 6.59 3.65 34.00 443 some 4.56 2.64 16.84 345
190 396 multi 6.45 6.25 6.67 1 towers 5.41 6.25 4.76 1
191 790 photo 6.23 3.35 44.27 247 by 5.66 3.06 37.60 229
192 522 field 6.14 3.22 63.22 385 photo 6.01 3.19 51.79 289
193 42 man 5.96 3.19 45.12 578 middle 3.85 1.98 68.11 314
194 801 sitting 5.91 3.15 48.56 405 with 5.00 3.65 7.92 447
195 181 trees 5.89 3.16 43.19 641 with 5.13 3.22 12.72 718
196 791 with 5.84 3.58 15.86 895 that 3.21 1.79 15.88 447
197 975 purple 5.72 2.99 64.13 118 parked 4.67 2.42 65.93 120
198 38 structure 5.62 6.20 5.14 13 graph 4.03 2.19 25.00 2
199 432 parking 5.61 2.90 83.12 133 park 5.56 2.87 82.89 126
200 329 standing 5.60 2.97 49.63 399 woman 3.09 1.62 34.67 276
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Figure 5: Two different captions containing the phrase “many people.” In both cases, the VQ4 layer
infers the same unit sequence (872, 360, 712, middle transcription) beneath the phrase. The VQ3
units are somewhat noisier, but contain the common subsequence (956, 265, 80, 401, 262, 762, 246,
774, 828, 386, bottom transcription).
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Figure 6: Two different captions containing word “train”. In both cases, the VQ4 layer infers the
same unit sequence (680, 248, top transcription) surrounding the word “train”. The VQ3 alignments
contain the same common subsequence (358, 306, 908, 564, 950, 770, bottom transcription). Notice
that the same (358, 306) VQ3 unit sequence is aligned to the /tr/ phone cluster at the beginning of
both instances of the word “train,” as well as the /tr/ at the beginning of both instances of “tree” in
Figure 7. Unit 358 is also found covering the /tr/ at the beginning of the word “tracks” in the topmost
spectrogram (although unit 306 is absent in this case).
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Figure 7: Two different captions containing word “trees”. In both cases, the VQ4 layer infers
the same unit sequence (8, 412, 50, top transcription) surrounding the word “trees”. The VQ3
alignments contain the same common subsequence (358, 306, 648, 677, 730, bottom transcription).
Notice that the (358, 306) VQ3 unit sequence is aligned to the /tr/ phone cluster at the beginning of
both instances of “trees,” and this same unit sequence is inferred for the /tr/ phone sequence in both
instances of “train” in Figure 6.
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