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ABSTRACT

In many machine learning applications, we are faced with incomplete datasets. In
the literature, missing data imputation techniques have been mostly concerned with
filling missing values. However, the existence of missing values is synonymous
with uncertainties not only over the distribution of missing values but also over
target class assignments that require careful consideration. In this paper, we pro-
pose a simple and effective method for imputing missing features and estimating
the distribution of target assignments given incomplete data. In order to make
imputations, we train a simple and effective generator network to generate im-
putations that a discriminator network is tasked to distinguish. Following this, a
predictor network is trained using the imputed samples from the generator net-
work to capture the classification uncertainties and make predictions accordingly.
The proposed method is evaluated on CIFAR-10 image dataset as well as three
real-world tabular classification datasets, under different missingness rates and
structures. Our experimental results show the effectiveness of the proposed method
in generating imputations as well as providing estimates for the class uncertainties
in a classification task when faced with missing values.

1 INTRODUCTION

While a large body of the machine learning literature is built upon the assumption of having access to
complete datasets, in many real-world problems only incomplete datasets are available. The existence
of missing values can be due to many different causes such as human subjects not adhering to certain
questions or features not being collected frequently due to financial or experimental limitations,
sensors failures, and so forth. Data imputation techniques have been suggested as a solution to bridge
this gap in the literature by replacing missing values with observed values.

Missing data imputation approaches can be categorized into single and multiple imputation methods.
Single imputation methods try to replace each missing value with a plausible value that is the best fit
given the value of other correlated features and knowledge extracted from the dataset (Hastie et al.,
1999; Anderson, 1957). While these methods are easy to implement and use in practice, imputed
values may induce bias by eliminating less likely but important values. Also, these methods do
not suggest a way to measure to what extent the imputed values are representative of the missing
values (Little & Rubin, 2019).

Multiple imputation (MI) techniques, as suggested by the name, try to use multiple imputed values
to impute each missing value. The result would be having a set of imputed datasets that enables
measuring how consistent and statistically significant are the results of the experiments (Rubin, 1976).
While MI offers interesting statistical insights about the reliability of analysis on incomplete data,
the insight is imprecise as it is mainly concerned about the population of data samples rather than
individual instances. Specifically, MI methods reason about the statistical properties on a limited
number of imputed datasets (less than 10 in most practical implementations) on the population of
samples within the dataset (Schafer & Graham, 2002; Murray et al., 2018).

The existence of missing values is synonymous with having uncertainty over these values that requires
careful consideration. In many real-world applications, we are dealing with supervised problems that
demand modeling and prediction based on incomplete data. Take for instance, prediction of class
assignments given an image in which a large portion of the frame is missing. In such a scenario,
based on observed frame parts, there might be multiple probable class assignments each having a
different likelihood. Here, we are not only interested in imputing missing values or measuring how
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robust our imputations are, but also it is highly desirable to measure the impact of missing values on
the prediction outcome for each instance.

In this paper, we propose the idea of Generative Imputation and Stochastic Prediction (GI) as a novel
approach to impute missing values and to measure class uncertainties arising from the distribution of
missing values. The suggested approach is based on neural networks trained using an adversarial
objective function. Additionally, a predictor is trained on the generated samples from the imputer
network which is able to reflect the impact of uncertainties over missing values. This enables
measuring different prediction outcomes and certainties for each specific instance. We evaluate
the effectiveness of the proposed method on different incomplete image and tabular datasets under
various missingness structures. 1

2 RELATED WORK

One of the simplest traditional methods for handling missing values includes imputing the occurrences
of missing values with constant values such as zeros or using mean values. To enhance the accuracy of
such imputations, alternatives such as k-nearest neighbors (KNN) (Hastie et al., 1999) and maximum
likelihood estimation (MLE) (Anderson, 1957) have been suggested to estimate values to be used
given an observed context. While these methods are easy to implement and analyze, they often fail to
capture the complex feature dependencies as well as structures present in many problems.

Rubin (1976) suggested a categorization for missingness mechanisms: missing completely at random
(MCAR), missing at random (MAR), and missing not at random (MNAR). Under the assumption
of MAR, the authors suggested multiple imputation (MI) as a stochastic imputation method. Here,
instead of imputing missing values using a single value, several values are sampled to represent the
distribution over the missing value. MI generates a few imputed complete datasets that are then used
independently in statistical modeling (Schafer & Graham, 2002; Little & Rubin, 2019). Usually, the
final goal of MI is to measure the robustness of the final statistical analysis amongst the imputed
datasets. In other words, it measures the quality of imputations and the statistical significance of
analysis on the imputed data. It should be noted that the number of imputations used in MI is
usually very limited. Also, often strong simplifying assumptions are made in modeling the data
distribution (e.g., multi-variate Gaussian or Student’s t distribution) which limit the applicability of
this method (Schafer & Graham, 2002; Murray et al., 2018).

More recently, autoencoder architectures have been suggested as powerful density estimators capable
of capturing complex distributions. Perhaps, denoising autoencoders (DAE) (Vincent et al., 2008) are
one of the most intuitive approaches in which a neural network is trained to reconstruct and denoise
its input. Following a more probabilistic perspective, variational autoencoders (VAE) (Kingma &
Welling, 2013) try to learn the data generating distribution via a latent representation. Specifically,
conditional variational autoencoders (CVAE) (Sohn et al., 2015) can be used to sample missing values
conditioned on observed values. For instance, Mattei & Frellsen (2018) suggested a method based on
deep latent variable models and importance sampling that offers a tighter likelihood bound compared
to the standard VAE bound. While these methods are powerful generative models applicable to
missing data imputation, often samples generated using autoencoders are biased toward the mode of
the distribution (e.g., resulting in blurry images, for vision tasks) (Goodfellow et al., 2014; Dumoulin
et al., 2016).

Recently, due to the success of generative adversarial networks (GAN), there has been great attention
toward applying them to impute missing values. For instance, Yoon et al. (2018) suggested an
imputation method based on adversarial and reconstruction loss terms. Li et al. (2019) introduced the
idea of using separate generator and discriminator networks to learn the missing data structure and
data distribution. These methods have been quite successful and are able to present the state-of-the-art
results. Though it should be noted that often the presence of additional loss terms may bias the
generated samples toward the mode of the distribution being modeled. Also, these methods are
often complicated to be applied in practical setups by practitioners. For instance, Yoon et al. (2018)
requires setting hyperparameters to adjust the influence of an MSE loss term as well as the rate of

1We plan to include a link to the source code and GitHub page related to this paper in the camera-ready
version.
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Figure 1: Block diagram of the proposed adversarial imputation method. h represents the blending
function of (1), and L is the adversarial loss function of (2).

discriminator hint vectors. Also as another example, Li et al. (2019) uses three generators and three
discriminators for the final imputer architecture.

From the perspective of supervised analysis, imputation and handling missing values are usually
considered as a preprocessing step. A few exceptions exist such as Bayesian models and decision
trees that permit direct analysis on incomplete data (Nielsen & Jensen, 2009; Zhang et al., 2005).
Note that while certain Bayesian methods such as probabilistic Bayesian networks allow handling of
missing values as unobserved variables. However, given an incomplete training dataset and without
any known causal structure as a priori, learning such models is a very challenging problem with the
complexity of at least NP-complete to learn the network architecture in addition to an iterative EM
optimization to learn model parameters (Darwiche, 2009; Neapolitan et al., 2004). We argue that
the simplistic approach of imputing missing values as a preprocessing step discards uncertainties
that exist in original incomplete data samples. Instead, there is a need for methods that reflect these
uncertainties on the final predicted target distribution. This work suggests the idea of training a
predictor on different imputed samples to capture the uncertainties over class assignments. Compared
to MI, the suggested method interleaves imputation and training a downstream prediction model,
enabling to estimate classification uncertainties for each instance.

3 PROPOSED METHOD

3.1 PROBLEM DEFINITION

In this paper, we make the general assumption of having access to an incomplete dataset D consisting
of a set of feature vector, mask vector, and target class pairs (xi,ki, yi). For each feature vector,
xi ∈ Rd, only a subset of the features is available. The mask vector ki ∈ {0, 1}d is used to indicate
available features and missing features by ones and zeros, respectively. Here, to represent features as
fixed-width vectors, arbitrary (or NaN) values are used to fill missing values. Also, for convenience,
we often use xobsi and xmissi to refer to the set of observed and missing features for the feature vector
xi.

We define our objective in two steps: (i) Imputing missing values via sampling from the conditional
distribution of missing features given observed features i.e., P (xmissi |xobsi ). (ii) Estimating the
distribution of target classes given the observed features and the distribution of missing features i.e.,
P (y|xobsi ,xmissi ). For the first part, we are interested in sampling from the conditional distribution
rather than finding the mode of the distribution as the most probable imputation. Similarly, for the
second part, we are interested in obtaining a distribution over the possible target assignments and the
confidence of each class rather than maximum likelihood class assignments.

3.2 GENERATIVE IMPUTATION

To generate samples from the distribution of missing features conditioned on the observed features,
we follow the idea first suggested by Yoon et al. (2018). In this paradigm, a generator network is
responsible for generating imputations while a discriminator is trying to distinguish imputed features
from observed features (see Figure 1).

Specifically, the generator function G(xi,ki, z) ∈ Rd generates an imputed feature vector, based on
observed features, the corresponding mask, and a Gaussian noise vector (z). Note that, in order to
achieve the final imputed vector, x̂i, we blend (or, merge) the output of the generator with the input
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features to replace generated values with the exact values of observed features:

x̂i,j =

{
xi,j if ki,j = 1

G(xi,ki, z)j if ki,j = 0
, (1)

where xi,j refers to j’th feature of sample i. Also, note that by sampling z multiple times, we can
obtain different imputation samples from the conditional distribution indicated by x̂li where l is the
sample number.

A discriminator network, D(x̂i), is trained to distinguish real and imputed features by generating a
predicted softmax mask output, k̂i. Here a binary cross-entropy loss per mask element is used as the
adversarial objective function:

max
G

min
D

L(G,D) = Ek∼D,k̂∼D(G(x,k,z)) [kT log(k̂) + (1− k)T log(1− k̂)]. (2)

The intuition behind this adversarial loss function is that given a generator function which captures
the data distribution successfully, the discriminator would not be able to distinguish the parts of the
feature vector that were originally missing.

Compared to Yoon et al. (2018), the objective function of (2) does not have an MSE loss term. Instead,
we use recent advances in GAN stabilization and training to improve the training process (see Section
3.4). While it is quite prevalent in the adversarial learning literature to use additional loss terms such
as mean squared error (MSE) to enhance the quality of generated samples, we decided to keep our
solution as simple as possible. Additionally, in our experiments, we provide supporting evidence that
this simple loss function enables us to sample from the conditional distribution and prevents biased
inclinations toward distribution modes.

3.3 STOCHASTIC PREDICTION

To capture the distribution of target classes given incomplete data, we suggest the idea of stochastic
prediction. As indicated in the previous section, the generator can be used to sample from the
conditional distribution. Here, a predictor is trained based on the imputed samples to predict class
assignments and to calculate the confidence of these assignments. For instance, for a specific test
sample at hand, if a certain missing feature is a strong indicator of the target class, we would like to
observe the impact of different imputations for that feature on the final hypothesis.

Formally, we are interested in finding the certainty of class assignments given observed features:

Ψ = P (y|xobsi ). (3)

Here, Ψ is a vector where each element is representing a certain class. Rewriting (3) as a marginal
we have:

Ψ =

∫
P (xmissi )P (y|xobsi ,xmissi ) dxmissi . (4)

Approximating the integration using a summation, given enough samples, Ψ can be estimated by:

Ψ ≈ 1

N

∑
P (y|xobsi , x̂missi ), (5)

where x̂missi are samples taken from the conditional distribution of missing features given observed
ones. We use the suggested generative imputation method to generate samples required for this
approximation. Rewriting (1) using Hadamard product and as function of the noise vector:

x̂i = ki � xi + (1− ki)�G(xi,ki, z) (6)

Assuming that a predictor, Fθ, is available which predicts class assignments for a complete feature
vector, Ψ can be estimated as:

Ψ = Ez[Fθ(x̂i)] ≈
1

N

∑N
l=1Fθ(x̂

l
i) . (7)

Algorithm 1 presents the suggested algorithm for training the predictor. It consists of taking samples
from the incomplete dataset, then imputing them using our generator network, and using the imputed
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Algorithm 1: Training the predictor.
Input: G (trained imputer), D (dataset)
Output: Fθ (trained predictor)
foreach Training Epoch do

foreach (xi, ki, yi) in D do
z ∼ N(0, I)
x̂i ← ki�xi+(1−ki)�G(xi,ki, z)

ypredi ← Fθ(x̂i)
loss← L(yi, y

pred
i )

Backpropagate loss
Update Fθ

Algorithm 2: Estimating target distributions.
Input: Fθ (trained predictor), (x, k) (test

sample), N (ensemble samples)
Output: Ψ (distribution over target classes)
Ψ← zeros ∈ R#classes

foreach Ensemble Sample 1 to N do
z ∼ N(0, I)
x̂← k � x + (1− k)�G(x,k, z)
ypred ← Fθ(x̂)
j ← argmax(ypred)
Ψj ← Ψj + 1

N

samples to update the predictor. Note that, on each epoch and for each sample, the generator generates
a new sample from the conditional distribution. Intuitively, it means that the predictor observes and
learns to operate under different imputations for a given sample. This is different from approaches
such as multiple imputation where several predictors are trained on different imputed versions of a
dataset.

Algorithm 2 presents the suggested algorithm for making predictions and estimating target distribu-
tions given a trained predictor model. Here, a sample is imputed N times and inference on this set
results in an ensemble of predictions over different imputations. The output of this algorithm can be
interpreted as a distribution over the confidence of class assignments given a partially observed test
sample. The following claims justify the validity of Algorithm 1and Algorithm 2.

Claim 1. (Generalization of the predictor). If we assume imputed x̂is are samples from the underlying
feature distribution, then the assigned training set labels can be modeled as labels generated from a
noisy labeling process.

Claim 1 permits the analysis of the generalization and convergence for the predictor trained using
Algorithm 1 based on current literature in training models with noisy labels (Natarajan et al., 2013;
Reed et al., 2014; Chen et al., 2019). From the analysis provided by Chen et al. (2019), test accuracy
in asymmetric label noise conditions is a quadratic function of the label noise:

P (yi = ŷi) = (1− ε)2 + ε2, (8)

where ŷi is underlying true label for the imputed feature vector (x̂i), and yi is the label provided by
the incomplete dataset. In (8), label noise ratio, ε, represents the probability of the label transition
from a certain target class to another:

ε = 1− P (ŷi = j|yi = j). (9)

In practice, ε is determined by the problem-specific underlying data distribution as well as the
distribution of missing values.

Justification for claim 1 is straightforward, assume that {ŷi1 . . . ŷiN} are underlying true labels for
each of {x̂i1 . . . x̂iN}. During training, for any imputed sample in {x̂i1 . . . x̂iN}, we use the dataset
provided label, y, to calculate the loss and to update model parameters. In the case that any of
{ŷi1 . . . ŷiN} is different from y, the loss term corresponding to that term would be calculated using
a wrong label. Here, if we consider the average impact on gradients for batches of samples rather
than individual cases, the overall impact on training would be very similar to the case of training
using noisy labels.

Claim 2. (Approximation of the target distribution). If we assume:
(i) imputed x̂is are valid samples from the underlying feature distribution,
(ii) a good predictor can be trained using the incomplete data,
(iii) enough samples are used and the Monte Carlo estimator is unbiased,
then the target distribution, Ψ, can be estimated accurately.

This claim supports Algorithm 2 that is suggested to estimate the target distribution given a partially
observed feature vector.
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The first assumption is consistent with the theoretical analysis of generative adversarial networks
that they can converge to the true underlying distribution (Arora et al., 2018; Liu et al., 2017). The
second assumption is supported by Claim 1. Regarding the last assumption, each sample requires
one forward computation of the generator and predictor networks which, based on the scalability
of current network architectures, usually permits thousands of samples to be taken at a reasonable
computational cost.

3.4 IMPLEMENTATION DETAILS

As we conduct experiments on image and tabular datasets, we use different architectures for each.
For image datasets, we used a generator and discriminator architectures similar to the ones suggested
by Wang et al. (2018). However, we improved these architectures using self-attention layers (Zhang
et al., 2018). It should be noted that, while Zhang et al. (2018) suggests using a single self-attention
layer in the middle of the network, we observed consistent improvements by inserting multiple
self-attention layers before each residual block within the network. Furthermore, as input to the
generator, we concatenate input image, mask, and a random z frame along the channels dimension
and use it as input. For tabular datasets, we use a simple 4 layer network consisting of fully-connected
and batch-norm layers. Also, the input to the generator is the concatenation of a feature vector, mask
vector, and a z vector of size 1

8 of the input. For all experiments, we use an ensemble size (N ) equal
to 128.

We used Adam (Kingma & Ba, 2014) for model optimization. Two time-scale update rule
(TTUR) (Heusel et al., 2017) was used to balance training the generator and discriminator net-
works. We explored best TTUR learning-rate settings from the set of {0.001, 0.0005, 0.0001,
0.00005}. Here, Adam parameters β1 and β2 are set to 0.5 and 0.999, respectively. Also, spectral
normalization was used to stabilize both the generator and discriminator network in our experiments
with image data (Miyato et al., 2018). For the predictor network, we used the default Adam settings
as suggested by Kingma & Ba (2014). In all training procedures, we decay learning rate by a factor of
5 after reaching a plateau. For all experiments, we use a batch size of 64. Based on our experiments,
we found that pretraining the discriminator while fixing the generator network for the first 5% of the
training epochs helps the stability of training.

Further detail on exact architectures, experiments, software dependencies, etc. as well as ablation
studies is provided in the appendices.

4 EXPERIMENTS

4.1 DATASETS

To evaluate the proposed method we use CIFAR-10 (Krizhevsky & Hinton, 2009) as an image
classification dataset as well as three non-image datasets: UCI Landsat (Dua & Graff, 2017)2,
MIT-BIH arrhythmia (Moody & Mark, 2001), and Diabetes classification (Kachuee et al., 2019) 3.
CIFAR-10 dataset consists of 60,000 32x32 images from 10 different classes. For this task, we use
train and test sets as provided by the dataset. As a preprocessing step, we normalize pixel values to
the range of [0,1] and subtract the mean image. The only data augmentation we use for this task is to
randomly flip training images for each batch.

UCI Landsat consists of 6435 samples of 36 features from 6 different categories. We follow the
same train and test split as provided by the dataset. MIT-BIH dataset consists of annotated heartbeat
signals from which we used the preprocessed version available online4 consisting of 92062 samples
of 5 different arrhythmia classes. Diabetes dataset is a real-world health dataset of 92,062 samples
and 45 features from different categories such as questionnaire, demographics, medical examination,
and lab results. The objective is to classify between three different diabetes conditions i.e., normal,
pre-diabetes, and diabetes. As MIT-BIH and Diabetes datasets do not provide explicit train and test
sets, we randomly select 80% of samples as a training set and the rest as a test set. To preprocess
our tabular datasets, statistical and unity based normalization are used to balance the variance of

2https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)
3https://github.com/mkachuee/Opportunistic
4https://www.kaggle.com/shayanfazeli/heartbeat
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different features and center them around zero. Also, while different encoding and representation
methods are suggested in the literature to handle categorical features (Jang et al., 2016; Nazabal et al.,
2018), in this paper, we take the simple approach of encoding categorical variables using one-hot
representation and smoothing them by adding Gaussian noise with zero mean and variance equal
to 5% of feature variances. In our experiments, we observed a reasonable performance using the
suggested simple smoothing; however, more advanced encoding methods are also applicable in this
setup and can be applied to enhance the performances even further.

4.2 MISSINGNESS MECHANISMS

In our experiments, we consider MCAR uniform and MCAR rectangular missingness structures.
In MCAR uniform, each feature of each sample is missing based on a Bernoulli distribution with
a certain missingness probability (i.e., missing rate) independent of other features. In addition
to the case of uniform missingness, for image tasks, we use rectangular missingness/observation
structure where rectangular regions of dataset images are missing/observed. To control the rate of
missingness and decide on the regions that are missing for each case, we use a latent beta distribution
that samples rectangular region’s width and height such that the average missing rate is maintained.
For missing rates less than 50% we make the assumption of having a random rectangular region to be
missing, whereas for missing rates more than 50% we assume that only a random rectangular region
is observed and the rest of the image is missing.

We would like to note that while the suggested solution in this paper is readily compatible with MAR
structures, in our experiments, to simplify the presentation of results and to have a fair comparison
with other work that does not support the MAR assumption, we limited the scope of our experiments
to MCAR. Furthermore, to simulate incomplete datasets and to make sure the same features are
missing without explicitly storing masks, we use hashed feature vectors to seed random number
generators used to sample missing features. More detail is provided in Appendix C.

4.3 EVALUATION MEASURES

Fréchet inception distance (FID) (Heusel et al., 2017) score is used to measure the quality of missing
data imputation in experiments with images5. We also considered using root means squared error
(RMSE); however, we decided not to use this measure as we observed an inconsistent behavior using
RMSE in our comparisons as RMSE favors methods that show less variance rather than realistic
and sharp samples from the distribution. Also, for each dataset and each missingness scenario, we
report top-1 classification accuracy based on the majority vote estimated using Algorithm 2. Another
measure that we use in this paper is the comparison between the estimated target certainties and
average accuracies achieved for each confidence assignment. We run each experiment multiple times:
4 times for CIFAR-10 and 8 times for tabular datasets. We report the mean and standard deviation of
results for each case.

We compare our results with MisGAN (Li et al., 2019) and GAIN (Yoon et al., 2018) as the state of
the art imputation algorithms based on GANs as well as basic denoising autoencoder (DAE) (Vincent
et al., 2008) and multiple imputation by chained equations (MICE) (Buuren & Groothuis-Oudshoorn,
2010) as baselines. For experiments using MisGAN, we used the same architectures and hyper-
parameters as suggested by the MisGAN authors6. The only modification was to adapt the last
generator layer to generate images with resolutions as we use. Regarding GAIN, we used the same
network architecture as our implementation of GI and hyper-parameters as used by the GAIN authors7.
In the DAE implementation, due to the incomplete data assumption, only observed features appear in
the loss function, ignoring reconstruction terms corresponding to missing features. Due to scalability
issues, we were only able to use MICE for the smaller non-image datasets. For these methods, to
train and evaluate classifiers, we use predictors trained on imputed datasets rather than the stochastic
predictor suggested in Algorithm 1.
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Figure 2: Comparison of FID scores on CIFAR-10 dataset for (a) uniform and (b) rectangular
missingness. Lower FID score is better. In many cases, variance values are very small and only
observable by magnifying the figures.

4.4 RESULTS

Figure 2 presents the comparison of FID scores on the CIFAR-10 dataset at different missing rates
for uniform and rectangular missingness. As it can be inferred from these plots, GI outperforms
other alternatives in all cases. Also, it can be seen that GAIN is able to provide more reasonable
results for uniform missing data structure compared to MisGAN which is mainly effective in the
rectangular missing data structure. One possible explanation for this behavior might be the fact that
GAIN has an MSE loss term acting similar to an autoencoder loss smoothing noisy missing pixels.
On the other hand, MisGAN tries to explicitly model missingness structure and is more successful in
capturing a more structured missingness such as the case of a rectangular structure. Table 1 provides
a comparison between the top-1 classification accuracy achieved using each method at different
missing rates and structures. From this table, GI outperforms other work by achieving the best results
in 5 out of 6 cases8.

Table 2 presents a comparison of classification accuracies for Landsat, MIT-BIH, and Diabetes
datasets at different missing rates. In the Landsat benchmark, GI outperforms other work in all cases.
Regarding the MIT-BIH experiemts, GI outperforms other work for missing rates more than 30%
while achieving similar accuracies to GAIN for lower missing rates. In the diabetes classification
task, GI appears to be most effective imputing missing rates more than 20%.

Figure 3 shows a comparison of accuracy versus certainty plots for GI, MisGAN, and GAIN on
Landsat dataset at the missing rate of 40%. To generate these figures we trained each imputation
method and then used Algorithm 1 to train predictors on imputed samples. Finally, Algorithm 2 used
to measure the average accuracy at different prediction confidence levels based on a sample of 128
imputations for each test example. As it can be seen from the plots, GI provides results closest to the
ideal case of having average confidence values equal to average accuracies.

4.5 VISUALIZATION USING SYNTHESIZED DATA

In order to provide further insight into the operation of GI and how imputations can potentially
influence the outcomes of predictions, we conduct experiments on a synthesized dataset. The original
underlying data distribution is generated by sampling 5000 samples from 4 Gaussians of standard
deviation 0.1 centered on the vertices of a unit square. We assign two different classes to each cluster

5https://github.com/mseitzer/pytorch-fid is adapted to measure the FID scores.
6https://github.com/steveli/misgan
7https://github.com/jsyoon0823/GAIN
8An earlier version of this paper reported results that are different from the current manuscript. The current

version is using the stochastic predictor exclusively on the suggested imputation method and trained using more
precise hyper-parameter settings.
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Table 1: Top-1 CIFAR-10 classification accuracy for different missing rates and structures.

Accuracy at Missing Rate (%)
MCAR Uniform MCAR Rect.

Method 20% 40% 60% 20% 40% 60%
GI 89.5 (±0.45) 87.1 (±0.54) 80.3 (±0.26) 84.0 (±0.03) 76.9 (±0.03) 66.1 (±0.16)

MisGAN 86.5 (±0.31) 83.7 (±0.40) 78.7 (±0.26) 82.9 (±0.44) 75.6 (±0.20) 65.0 (±0.31)

GAIN 88.7 (±0.45) 86.0 (±0.86) 81.8 (±0.03) 81.7 (±0.03) 73.6 (±0.35) 58.4 (±1.66)

DAE 88.0 (±0.22) 84.0 (±0.50) 79.8 (±0.71) 83.3 (±0.64) 75.5 (±0.44) 63.8 (±0.24)

Mean 85.7 (±0.02) 83.4 (±0.38) 79.2 (±0.16) 82.7 (±0.15) 75.3 (±0.16) 64.0 (±0.32)

Table 2: Comparison of classification accuracies for Landsat, MIT-BIH, and Diabetes datasets at
different missing rates.

Accuracy at Missing Rate (%)a

Dataset Method 10% 20% 30% 40%

Landsat (Dua & Graff, 2017)

GI 89.9 (±0.36) 89.6 (±0.36) 89.0 (±0.03) 88.0 (±0.22)

MisGAN 87.2 (±0.01) 85.7 (±0.19) 84.0 (±0.61) 82.9 (±0.75)

GAIN 89.7 (±0.42) 89.4 (±0.56) 88.4 (±0.71) 87.7 (±0.10)

DAE 89.4 (±0.10) 88.6 (±0.54) 87.5 (±0.14) 86.6 (±0.21)

MICE 89.5 (±0.16) 89.3 (±0.10) 88.1 (±0.49) 87.5 (±0.03)

MIT-BIH (Moody & Mark, 2001)

GI 98.5 (±0.02) 98.4 (±0.03) 98.2 (±0.07) 97.7 (±0.03)

MisGAN 97.8 (±0.13) 97.4 (±0.07) 96.7 (±0.07) 96.2 (±0.09)

GAIN 98.5 (±0.02) 98.4 (±0.06) 98.0 (±0.09) 97.5 (±0.18)

DAE 98.4 (±0.02) 98.2 (±0.11) 97.9 (±0.09) 97.4 (±0.02)

MICE 98.4 (±0.01) 98.3 (±0.01) 98.1 (±0.01) 97.5 (±0.12)

Diabetes (Kachuee et al., 2019)

GI 89.6 (±0.13) 89.0 (±0.03) 88.2 (±0.62) 86.8 (±0.38)

MisGAN 89.7 (±0.01) 88.9 (±0.30) 87.6 (±0.02) 86.4 (±0.68)

GAIN 89.2 (±0.09) 88.3 (±0.02) 86.9 (±0.09) 83.8 (±1.44)

DAE 89.3 (±0.05) 88.2 (±0.19) 86.9 (±0.09) 84.8 (±0.03)

MICE 89.8 (±0.08) 88.8 (±0.01) 88.0 (±0.08) 86.1 (±0.02)

aBaseline accuracies for complete datasets (zero missing rate) are equal to 90.9%, 98.6%, and 90.7% for
Landsat, MIT-BIH and Diabetes, respectively.

such that diagonal vertices are of the same class (see Figure 4a, classes are represented with colors).
From this underlying distribution, we make an incomplete dataset with 50% of values missing.

The incomplete synthesized dataset is used to train GI and other imputation methods. We take a
random test sample in which the second feature has a value of about 0.1 and the other feature is
missing. Ideally, in the imputation phase, we would like to sample from the condition distribution
i.e. P (x1|x2 = 0.1) (see Figure 4b). Here, in the prediction phase, an ideal method would decide on
not making a confident classification and report the uncertainty. Note that solely observing the value
of 0.1 for the second feature does not provide any useful evidence for the prediction. Figure 4c-f
provide samples and classification results for GI, MisGAN, GAIN, and DAE. As it can be inferred
from these figures, GI generates reasonable samples from the conditional distribution and also reflects
this uncertainty over the prediction. On the other hand MisGAN, probably due to its complexity of
using three different generators and discriminator pairs, is suffering from mode collapse and is unable
to generate samples from the other class, resulting in over-confident assignments. GAIN, perhaps
due to the MSE loss terms, is inclined towards the mean of the conditional distribution at the origin.
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Figure 3: Accuracy versus certainty plots for (a) GI, (b) MisGAN, and (c) GAIN on Landsat dataset
at the missing rate of 40%.

DAE, as expected, due to its MSE loss term, only captures the expected value of the distribution
mean hence reducing the MSE error and generates over-smoothed imputations.
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Figure 4: Evaluation using synthesized data: (a) samples from the underlying distribution, (b) samples
from the conditional underlying distribution, (c-f) samples from the conditional distribution generate
by GI, MisGAN, GAIN, and DAE.

5 CONCLUSION

In this paper, we proposed a novel method to generate imputations and measure uncertainties over
target class assignments based on incomplete feature vectors. We evaluated the effectiveness of the
suggested approach on image and tabular data via using different measures such as FID distance,
classification accuracy, and confidence versus accuracy plots. According to the experiments, the
proposed method not only can generate accurate imputations but also is able to model prediction
uncertainties arising from missing values. The proposed method is applicable to many real-world
applications where only an incomplete dataset is available, and modeling classification uncertainties
is a necessity.
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A IMPLEMENTATION AND EXPERIMENTS

Table 3 presents the list of software dependencies and versions used in our implementation. To
produce results related to this paper, we used a workstation with 4 NVIDIA GeForce RTX-2080Ti
GPUs, a 12 core Intel Core i9-7920X processor, and 128 GB memory. Each experiment took between
about 4 hours to 48 hours, based on the task and method being tested.

Table 3: Software dependencies.

Dependency Version

python 3.7.1

pytorch 1.0.0

cuda100 1.0

ipython 7.2.0

jupyter 1.0.0

numpy 1.15.4

pandas 0.24.1

scikit-learn 0.20.1

scipy 1.1.0

torchvision 0.2.1

tqdm 4.28.1

matplotlib 3.0.1

B NETWORK ARCHITECTURES

Table 4 shows the exact architectures used in this paper. To show each layer or block we used the
following notation. CxSyPz-t represents a 2-d convolution layer of kernel size x, stride y, padding
z, and number of output channels t followed by ReLU activation. Attn represents a self-attention
layer similar to Zhang et al.9. R-x represents a residual block consisting of two 2-d convolutions
with kernel size 3 (padding size 1), batch normalization, and ReLU activation. CTxSyPz-t is the
convolution transpose corresponding to CxSyPz-t. FC-x is representing a linear fully-connected
layer of x output neurons with biases. We use spectral normalization as suggested by Miyato et al.10

for all convolutional layers in both generator and discriminator networks.

Table 4: Network architectures used in our experiments.

Dataset Generator/Discriminator Architecture Predictor Architecture
C7S1P3-64, C3S2P1-128, Attn, R-128,

CIFAR-10 Attn, R-128, Attn, R-128, Attn, ResNet-18 11,12

R-128, CT3S2P1-128, CT7S1P3-3, Tanh/Sigmoid

Landsat
FC-64, Sigmoid, BNorm, FC-64, Sigmoid, BNorm, FC-64, ReLU, BNorm, FC-64,

FC-64, Sigmoid, BNorm, FC-36, Tanh/Sigmoid ReLU, BNorm, FC-6, Softmax

MIT-BIH
FC-1860, ReLU, BNorm, FC-1860, ReLU, BNorm, FC-1860, ReLU, BNorm, FC-1860,

FC-1860, ReLU, BNorm, FC-186, Tanh/Sigmoid ReLU, BNorm, FC-5, Softmax

Diabetes
FC-45, ReLU, BNorm, FC-45, ReLU, BNorm, FC-22, ReLU, BNorm, FC-22,

FC-45, ReLU, BNorm, FC-45, Tanh/Sigmoid ReLU, BNorm, FC-3, Softmax

9Zhang, Han, et al. "Self-attention generative adversarial networks." arXiv preprint arXiv:1805.08318 (2018).
10Miyato, Takeru, et al. "Spectral normalization for generative adversarial networks." arXiv preprint

arXiv:1802.05957 (2018).
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C MISSING DATA MECHANISMS

In this paper, we conduct experiments on two mechanisms for missing values: MCAR uniform and
MCAR rectangular. As in our experiments and comparisons, we consider the case where only an
incomplete dataset is available for training. It is crucial to guarantee that each method has only access
to a unique incomplete version of each sample. However, it is relatively expensive to load and store
feature masks for each sample in the dataset. Instead, we generate missing values during the data
load for each batch. A hashing mechanism is used to ensure that the same parts are missing for each
sample throughout the training. Note that we set system, python, and external library hash seeds to
fixed values to ensure the consistency between different runs.

Algorithm 3 presents the procedure used for generating missing values with uniform structure. This
algorithm is sampling independent Bernoulli distributions with probabilities equal to the missing rate.
Algorithm 4 shows the outline for the rectangular missing structure used in image experiments. It
consists of selecting a random point as the center of the rectangle and then deciding on parameters
to be used for the beta distribution based on the missing rate. Finally, the width and height of
the rectangular region are sampled from the latent beta distribution. In other words, we generate
rectangular regions centered at random locations within the image which have width and height
values determined by samples from a latent beta distribution. Here, distribution parameters, α and β,
are used to control the average missing rate. The outcome would be rectangular regions of different
shape at different locations within the frame with the expected portion of missing area equal to the
missing rate.

In order to decide on the beta distribution parameters i.e. α and β we use numerical simulations.
Specifically, we fix one of the parameters to 1 and change the other parameter in the range of [1,10],
while measuring the average missing rate caused by each case. Figure 5 shows the missing rates
caused by different beta distribution parameters. The first half of Figure 5 (missing rates less than
about 0.18) corresponds to setting β to 1 and changing α values; and the other half fixing α to 1
and changing β values. To generate missing rates more than 50% we invert our masks and limit the
observation to the rectangular region while the rest of the image is missing. Note that missing rates
indicate the ratio of features that are missing on the average case. As we are using a latent model for
sampling width and height for the rectangles, the actual missing ratios for each specific sample differs
between samples. See Table 5 for visual examples of different missing rates and missing structures.

Algorithm 3: MCAR uniform generation.
Input: x (complete feature), r (missing rate)
Output: xm (incomplete feature)
seedx ← hash(x)
k← 1−Bernoulli(seedx, shape(x), prob = r)
xm ← k � x + (1− k)�NaN

Algorithm 4: MCAR rect. generation.
Input: x (complete feature), r (missing rate)
Output: xm (incomplete feature)
seedx ← hash(x)
nx, ny ← shape(x)
(px, py) ∼ (uniform(0, nx), uniform(0, ny))
α, β ← beta_params(r) // beta_params gives α, β for

each missing rate based on numerical
simulations

(w, h) ∼ (Beta(α, β)× nx), Beta(α, β)× ny))
k← rect_mask(px, py, w, h)
xm ← k � x + (1− k)�NaN

11He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016.

12https://github.com/kuangliu/pytorch-cifar
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Figure 5: Simulation results for measuring average missing rate given different beta distribution
parameters.

Table 5: Examples of uniform and rectangular missing structures at different missing rates.
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D ABLATION STUDY

Figure 6 presents a comparison between using (GI W/ Atten.) and not using (GI W/O Atten.)
self-attention layers before each residual block in the proposed architecture. We report FID scores
on CIFAR-10 with rectangular missingness. As it can be inferred from this comparison, using
self-attention achieves a consistent improvement over the baseline. We also examined the case of
uniform missingness; however, we did not observe any significant improvement for this case. One
possible explanation could be the fact that imputing missing data with a uniform structure can be
done by processing local regions and does not require attending to different distant regions across the
image.
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Figure 6: Comparison of FID scores achieved with (GI W/ Atten.) and without (GI W/O Atten.)
self-attention layers on CIFAR-10 dataset and rectangular missingness. Lower FID score is better.

Figure 7 shows a comparison of classification accuracies for the Landsat dataset achieved using
different ensemble sizes (N ). As it can be seen from this figure, higher values ofN result in improved
accuracies, especially for higher missing rates. Also, it can be observed that for N values more than
64 the difference is negligible.
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Figure 7: Comparison of classification accuracies achieved with different ensemble size (N ).
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To study the benefits of the suggested stochastic predictor, we conducted experiments comparing GI
with its non-stochastic variation (N=1). Here, the CIFAR-10 dataset with the rectangular missing
structure and missing rates from 20% to as high as 90% is used. From Table 6 it can be inferred
that as the rate of missingness increases, the benefits of the suggested predictor algorithm increase
significantly. We hypothesize that at higher rates of missingness, the conditional distribution of
missing features becomes multimodal. In such a scenario, the suggested method captures the
uncertainties over the target distribution resulting in the predictor to make more reliable class
assignments.

Table 6: Comparison of CIFAR-10 accuracies for the stochastic (N=128) and the deterministic (N=1)
predictor under rectangular missingness.

Accuracy at Missing Rate (%)
Method 20% 40% 60% 70% 80% 90%
GI (N=128) 84.0 76.9 66.1 59.1 46.0 32.1

GI (N=1) 83.6 75.7 65.1 56.7 42.8 29.4

% difference (normalized) 0.5 1.6 1.5 4.1 6.9 8.4
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E VISUAL COMPARISON

Table 7 and 8 provide a visual comparison of GI, MisGAN, and GAIN. For each missingness structure,
we compare the best two imputation methods based on FID scores in Figure 2 i.e., GI versus MisGAN
for rectangular missingness and GI versus GAIN for uniform missingness. From Table 7 it can be
seen that GI is more capable in the reconstruction of fine details such as horse legs, car wheels, or
plane wings. Regarding the results provided in Table 8, GI imputed samples are generally sharper
and more realistic, which is consistent with our hypothesis about the drawbacks of the MSE term in
the GAIN objective function.

Table 7: Visual comparison of GI and MisGAN for rectangular missingness. In this visualization, we
compare the best two methods for the rectangular missing structure i.e., GI and MisGAN.

Original Mask Samples

GI

MisGAN

GI

MisGAN

GI

MisGAN
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Table 8: Visual comparison of GI and GAIN for uniform missingness. In this visualization, we
compare the best two methods for the uniform missing structure i.e., GI and GAIN.

Original Mask Samples

GI

GAIN

GI

GAIN

GI

GAIN
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F ANALYSIS OF THE RMSE MEASURE

Table 9 presents the comparison of different imputation methods using the RMSE measure on
CIFAR-10 for different missing structures and rates. Generally, RMSE values for the uniform
missing structure are lower than their rectangular counterparts. It is consistent with our intuition that
imputing uniform missingness is most similar to denoising problems where the RMSE measure is
frequently used. Additionally, comparing the performance of different imputation methods using
the FID measure (Section 4.4) does not demonstrate a clear correlation to results shown in Table 9.
Nonetheless, it is well-known that the FID measure is more suited to measuring the performance of
generated images from the underlying distribution (Heusel et al., 2017).

Similarly, in Table 10, we provide RMSE values corresponding to experiments on the tabular datasets.
Here, GAIN and DAE provide very similar results that are generally better than GI or MisGAN. This
signifies our hypothesis that the MSE loss term may skew generated samples toward the mean of the
distribution, resulting in better RMSE values but not necessarily higher final classification accuracies
(see Table 2).

Table 9: Comparison of imputation RMSE values for CIFAR-10 at different missing structures and
rates.

RMSE at Missing Rate (%)
MCAR Uniform MCAR Rect.

Method 20% 40% 60% 20% 40% 60%
GI 0.026 (±0.003) 0.057 (±0.008) 0.090 (±0.006) 0.097 (±0.02) 0.148 (±0.001) 0.660 (±0.010)

MisGAN 0.079 (±0.001) 0.161 (±0.001) 0.257 (±0.002) 0.106 (±0.005) 0.158 (±0.004) 0.250 (±0.001)

GAIN 0.027 (±0.003) 0.045 (±0.001) 0.072 (±0.005) 0.340 (±0.047) 0.511 (±0.001) 0.660 (±0.010)

DAE 0.036 (±0.001) 0.075 (±0.002) 0.121 (±0.005) 0.116 (±0.007) 0.160 (±0.001) 0.233 (±0.029)

Table 10: Comparison of imputation RMSE values for Landsat, MIT-BIH, and Diabetes datasets at
different missing rates.

RMSE at Missing Rate (%)
Dataset Method 10% 20% 30% 40%

Landsat (Dua & Graff, 2017)

GI 0.040 (±0.005) 0.067 (±0.007) 0.076 (±0.020) 0.136 (±0.002)

MisGAN 0.068 (±0.001) 0.096 (±0.001) 0.118 (±0.001) 0.136 (±0.001)

GAIN 0.018 (±0.001) 0.024 (±0.001) 0.030 (±0.001) 0.037 (±0.001)

DAE 0.020 (±0.001) 0.031 (±0.001) 0.041 (±0.001) 0.052 (±0.001)

MIT-BIH (Moody & Mark, 2001)

GI 0.038 (±0.001) 0.060 (±0.004) 0.071 (±0.002) 0.095 (±0.002)

MisGAN 0.073 (±0.007) 0.092 (±0.002) 0.115 (±0.003) 0.111 (±0.001)

GAIN 0.032 (±0.008) 0.046 (±0.001) 0.055 (±0.004) 0.067 (±0.007)

DAE 0.029 (±0.001) 0.048 (±0.008) 0.061 (±0.009) 0.068 (±0.003)

Diabetes (Kachuee et al., 2019)

GI 0.080 (±0.002) 0.118 (±0.008) 0.149 (±0.020) 0.189 (±0.009)

MisGAN 0.082 (±0.004) 0.111 (±0.002) 0.133 (±0.001) 0.151 (±0.001)

GAIN 0.064 (±0.001) 0.092 (±0.001) 0.119 (±0.001) 0.140 (±0.001)

DAE 0.065 (±0.001) 0.093 (±0.001) 0.118 (±0.001) 0.143 (±0.001)
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G IMPACT OF TRAINING NOISE

Addition of noise to input vectors often serves as an input augmentation and results in improved
generalization accuracies. In order to verify that the improved GI performance is not merely due
to the introduction of noise in the suggested architecture, we conducted an experiment by adding
different amounts of Gaussian noise during the training process for GAIN and GI. Specifically, we
compared how the CIFAR-10 test accuracies change at different degrees of training noise for uniform
and rectangular missingess structures at the average missing rate of 40%.

According to Table 11, adding small amounts of Gaussian noise (e.g., std=0.0125) improves the
generalization under uniform missingness for both GI and GAIN. Even in this case, GI is still
outperforming GAIN in terms of final classification performance. It is also interesting to point out
that for the case of rectangular missingness adding Gaussian noise results in a consistent reduction in
the classification accuracy for both methods.

Table 11: Top-1 CIFAR-10 classification accuracy at 40% missing rate using added training noise.

Accuracy (%)
MCAR Uniform (40%) MCAR Rect. (40%)

Noise STD GI GAIN GI GAIN
0.0 87.1 86.0 76.9 73.6

0.0125 87.3 86.3 76.8 73.3

0.025 86.5 86.6 76.7 73.2

0.05 85.6 84.7 73.7 72.4

0.1 82.0 80.6 68.7 67.0
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H IMPACT OF THE MSE LOSS TERM

In our earlier discussions, we stated that the MSE loss term used in GAIN would bias the distribution
of generated samples toward the mean of the distribution. Here, a synthesized dataset is used to
illustrate the impact of MSE loss term on the distribution of generated samples. A hyperparameter,
λ, controls the weight of the MSE term in the final objective function. As it can be observed from
Figure 8, the higher the λ parameter, the lower the variance of the generated samples (i.e., more bias
toward the mean of the distribution).
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Figure 8: Comparison of generating samples from a Gaussian distribution (a) samples from the
original distribution, (b) samples generated using GAIN imputers with different significance of the
MSE term (controlled by λ).
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I IMPACT OF THE DISCRIMINATOR HINT VECTOR

Yoon et al. (2018) suggested the idea of guiding the discriminator network using a hint mechanism.
A hint vector reveals a subset of features that are missing to the discriminator. In Figure 9 and 10 we
provide a comparison of learning curves for GI implemented using different hint rates. From Figure 9,
using the hint mechanism does not result in any noticeable improvement in the final imputation
quality justifying the added complexity. For the case of the rectangular missing structure in Figure 10;
however, using the hint vector causes instabilities in the training process. One possible explanation is:
providing even a small portion of the mask as a hint, due to the deterministic nature of the rectangular
shape it is equivalent to providing region boundaries to the discriminator making it obvious for the
discriminator. In GAN training we generally want to have equal competition between the generator
and discriminator.
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Figure 9: Learning curves for CIFAR-10 with uniform missing structure at different discriminator
hint rates.
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Figure 10: Learning curves for CIFAR-10 with rectangular missing structure at different discriminator
hint rates.
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