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ABSTRACT

We study the problem of functional dependency(FD) discovery to impose domain
knowledge for downstream data preparation tasks. We introduce a framework in
which learning functional dependencies corresponds to solving a sparse regres-
sion problem. We show that our methods can scale to large data instances with
millions of tuples and hundreds of attributes, while recovering true FDs across a
diverse array of synthetic datasets, even in the presence of noisy data. Overall, our
methods show an average F1 improvement of 2× against state-of-the-art FD dis-
covery methods. Our system also obtains better F1 in downstream data repairing
task than manually defined FDs.

1 INTRODUCTION

Functional dependencies (FDs) are an integral part of data management systems. They are used in
database normalization to reduce data redundancy and improve data integrity (Garcia-Molina et al.,
1999). FDs are also critical in data preparation tasks, such as data profiling and data cleaning. For
instance, FDs can help guide feature engineering in machine learning pipelines (Ghiringhelli et al.,
2015) or can serve as a means to identify and repair erroneous values in the given dataset (Rekatsinas
et al., 2017; Chu et al., 2013). Unfortunately, FDs are typically unknown and it requires significant
effort and domain expertise to identify them.

Various works have focused on automating FD discovery, both in the database (Kruse & Naumann,
2018; Huhtala et al., 1999; Papenbrock et al., 2015) and the data mining communities (Mandros
et al., 2017; Reimherr & L. Nicolae, 2013). The works in the database community study how to
infer FDs that a dataset instance D does not violate. These approaches are well-suited for database
normalization purposes and for applications where strong closed-world assumptions on the given
dataset D hold. In contrast, the data mining community views FDs as statistical dependencies
manifested in a dataset and has focused on information theoretic measures to estimate FDs. These
approaches are more suited for data profiling and data cleaning applications. In this paper, we focus
on FDs that correspond to statistical dependencies in the generating distribution of a given dataset.

Challenges Inferring FDs from data observations poses many challenges. First, the candidate
space of possible FDs over a dataset increases exponentially with the number of attributes in a
dataset. Many of the existing methods rely on pruning are shown to exhibit poor scalability as the
number of columns increases (Kruse & Naumann, 2018; Mandros et al., 2017).

Moreover, in real-world datasets, missing or erroneous values introduce uncertainty in FD discovery.
This poses a challenge as noise can lead to the discovery of spurious FDs or to low recall with
respect to the true FDs in a dataset. The performance of existing methods (Kruse & Naumann,
2018; Mandros et al., 2017), in terms of runtime and accuracy, is sensitive to factors such as sample
sizes, prior assumptions on error rates, and the amount of records available in the input dataset. This
makes these methods cumbersome to use in data preparation tasks with heterogeneous datasets.

Our Contributions We propose a framework that relies on structure learning to solve FD discov-
ery. Specifically, we show that discovering FDs is equivalent to learning the graph structure over
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binary random variables. A key result in our work is to model the distribution that FDs impose over
pairs of records instead of the joint distribution over the attribute-values of the input dataset.

We compare our method against state-of-the-art methods from both the database and data mining
literature over a diverse array of synthetic datasets with varying number of attributes, domain sizes,
records, and amount of errors. We find that our method scales to large data instances with hun-
dreds of attributes and yields an average F1 improvement in discovering true FDs of more than 2×
compared to competing methods.

We also examine the effectiveness of our system on downstream data preparation tasks as an al-
ternative for manually defined domain knowledge. We show that dependencies discovered via our
method lead to higher-quality repairs in data repairing tasks compared with manually specified de-
pendencies. This demonstrates that our FD discovery method offers a viable solution to automating
weakly supervised data preparation tasks.

Outline In Section 2, we introduce our probabilistic model for FD discovery and the structure
learning method we use to infer its graphical structure. In Section 3, we present an experimental
evaluation of our system, and conclude in Section 4.

2 FRAMEWORK

In this section, we formalize the problem of functional dependency discovery and provide an
overview of our solution.

2.1 PROBLEM STATEMENT

We consider a relational schema R associated with a probability distribution PR. We assume access
to a noisy dataset D′ that follows schema R. Given a noisy data instance D′, our goal is to identify
the FDs that characterize the distribution PR that generated the clean version of D.

In our work, we combine the probability-based and logic-based interpretations of FDs. For any pair
of tuples ti and tj sampled from PR, we denote Iij = 1(ti[Y ] = tj [Y ]) where 1(·) is the indicator
function, and denote ti[X] the value assignment for attributes X in tuple ti. Given a distribution PR,
we say that an FD X → Y , with X ⊆ R and Y ∈ R, holds for PR if for all pairs of tuples ti, tj in
R we have that

Pr(Iij = 1; ti[X], tj [X]) ∝
{

1, when ti[X] = tj [X]

θ, otherwise
(1)

with θ =
∑

y∈V (Y ) PR(y; ti[X]) · PR(y; tj [X]). This condition states that the two random events∧
A∈X ti[A] = tj [A] and 1(ti[Y ] = tj [Y ]) are deterministically correlated when the FD X → Y

holds, otherwise they are independent.

Under this interpretation, the problem of FD discovery corresponds to learning the structural depen-
dencies amongst attributes of R that satisfy the above condition. Specifically, our system is build
upon a probabilistic graphical model, which consists of binary random variables that model these
two random events. The edges in the model represent statistical dependencies that capture the re-
lation in Equation 1. Each true FD in the data generating distribution corresponds to a directed
subgraph with V-structure. Thus, we can reframe our goal as to learn the graphical structure of
this probabilistic graphical model. Furthermore, this formulation enjoys better sample complexity
than applying structure learning on the raw input dataset. We focus on the case of discrete random
variables to explain this argument. The sample complexity of state-of-the-art structure learning al-
gorithms is proportional to k4 (Wu et al., 2018) where k is the size of the domain of a variable.
Our model restricts the domain of the random variables to be k = 2, and hence, yields better sample
complexity than applying structure learning directly on the raw input.

2.2 SOLUTION OVERVIEW

Model Relaxation As learning the structure of a directed graphical model with V-structure pat-
terns is NP-hard (Chickering et al., 2004). We relax our initial model to a linear structural equation
model that approximates the condition in Equation 1. We use ZA ∈ {0, 1} (A ∈ R) to denote the
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random event of sampling two tuples from distribution PR such that they have the same value for
attribute A. First, we relax the random variables {ZA}A∈R to take values in [0, 1] instead of {0, 1}.
Second, from Equation 1, we have that when

∧
A∈X ti[A] = tj [A] =

∧
A∈X ZA = True it must be

that 1(ti[Y ] = tj [Y ]) = ZY = 1. We consider the random vector Z = {ZA1
, ZA2

, . . . , ZA|R|} ∈
[0, 1]l that corresponds to the random variables associated with the attributes in schema R. Based
on the aforementioned relaxed condition, FDs force this random vector to follow a linear structured
equation model. Hence, we can write that:

Z = BTZ + ε, (2)

where we assume that E[ε] = 0 and εj ⊥⊥ (ZA1
, . . . , ZAj−1

) for all j, where⊥⊥ denotes conditional
independence. Since our model corresponds to a directed graphical model, matrix B is a strictly
upper triangular matrix. B is known as the autoregression matrix of the system (Loh & Bühlmann,
2014). For DAG G with vertex set V = {ZA1 , ZA2 , . . . , ZA|R|} and edge set E = {(j, k) : Bjk 6=
0}, the joint distribution factorizes as P (ZA1

, . . . , ZA|R|) =
∏|R|

j=1 P (ZAj
|ZA1

, . . . , ZAj−1
). Given

samples {Zi}Ni=1, our goal is to infer the unknown matrix B.

Structural Learning Our structure learning algorithm is built upon a recent result of Loh and
Buehlmann (Loh & Bühlmann, 2014) on learning the structure of linear causal networks via inverse
covariance estimation. Given a linear model as the one shown in Equation 2, it can be shown that
the inverse covariance matrix Θ = Σ−1 of the model can be written as:

Θ = Σ−1 = (I −B)Ω−1(I −B)T (3)

where I is the identity matrix, B is the autoregression matrix of the model, and Ω = cov[ε]
with cov[·] denoting the covariance matrix. The structure learning algorithm proceeds as fol-
lows: Suppose we have N observations with an empirical covariance matrix S, we estimate
sparse inverse covariance θ by solving the following optimization problem: minΘ�0 f(Θ) :=
− log det(Θ) + tr(SΘ) + λ ‖Θ‖1 using Graphical Lasso (Friedman et al., 2008). Graphical Lasso
is shown to scale favorably to large instances and hence is appropriate for our setting. Given the es-
timated inverse covariance matrix Θ̂, we use the Bunch-Kaufman algorithm to obtain a factorization
of Θ̂ and obtain an estimate for the autoregression matrix B̂.

FD generation Finally, we use the autoregression matrix B̂ to generate FDs. We do so by consid-
ering the non-zero off-diagonal entries of the estimated inverse covariance matrix. The final output
of our model is a collection of discovered FDs of the form X→ Y where X ⊆ R and Y ∈ R.

3 EXPERIMENTS

We compare our system against several FD discovery methods on synthetic datasets and evaluate
our system in a downstream data preparation task with real-world datasets.

Using Our System to Discover Controlled FDs in Synthetic Datasets We generated synthetic
datasets to capture different data properties and control data generating distribution. Then, We use
them to compare our system against state-of-the-art methods over the goal of finding true FDs held
for data generating distribution. We considered two competing methods: PYRO (Kruse & Naumann,
2018), the state-of-the-art FD discovery method in the database community, and RFI (Mandros et al.,
2017), the state-of-the-art FD discovery approach in the data mining community. In the results, our
system consistently outperforms all other methods in terms of F1-score across all settings, with an
F1 improvement of more than 2× on average. In detail, PYRO has an average precision of 0.24%
and an average recall of 57.58% on datasets with low amount of noises (≤ 1%). The behavior is
expected as PYRO follows a logic-based interpretation of FDs. It aims to discover all FDs holding
for a given dataset instead of the FDs imposed in the data generating distribution. For RFI, it exhibits
poor scalability and only completed 9 out of 24 synthetic settings. For the cases RFI terminates, it
exhibits high precision (an average of 84.44%) for small cardinality domains with a large number
of samples and low amount of noises. As the sample size decreases or the noise rate increases we
find that the performance of RFI drops significantly. Overall, the average precision and recall for
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RFI are 24.41% and 64.81% on datasets with low amount of noises. Our system maintains good
precision and recall for datasets with low amount of noises with an average precision of 85.60% and
an average recall of 99.75%. This verifies our hypothesis that structure learning along with the data
transformation step introduced in Section 2.2 leads to a more accurate FD discovery solution.

Using Our System to Automate Data Cleaning Recent work (Rekatsinas et al., 2017) showed
that integrity constraints such as FDs can be used to train machine learning models for data cleaning
in a weakly supervised manner. A limitation of this work is that it relies on users to specify these
constraints. Here, we test if our system can be used to automate this process and address this pain
point. For our experiments, we use the open-source version of the system from (Rekatsinas et al.,
2017), as it provides a collection of manually specified FDs for the Hospital dataset. We perform
the following experiment:

(1) We compare the manual FDs in that repository with the FDs discovered by our system. The
autoregression matrix output by our system is shown in Figure 1. We find that the discovered FDs
are meaningful. For example, we see that attributes ‘Provider Number’ and ‘Hospital Name’ deter-
mine most other attributes. We also see that ‘Address1’ determines location-related attributes such
as ‘City’, ‘Zip code’ and ‘County’. In repairing, the precision, recall, and F1 reported by the data
cleaning system for the manual constraints are 0.91, 0.70, and 0.79 respectively, while the corre-
sponding metrics for the FDs discovered by our system is 0.93, 0.72, and 0.81. We see that this
performance is better than the manually specified FDs.

(2) We run PYRO and RFI respectively over the same dataset and evaluate the repairing performance
with their discovered FDs. For RFI, it is more than 8000× slower than PYRO and our system with
the same hardware setting. From the discovered FDs, we find RFI has the problem of overfitting
to the dataset – some discovered relations hold for the given dataset instance, but does not convey
any real-world meaning. We attribute this behavior to the fact that the domain of the left hand side
is too large compared with the domain of the right hand side. This makes it more likely to observe
a spurious FD when the number of data samples is limited. In repairing, the precision, recall, and
F1 with RFI discovered FDs are 1.00, 0.61, 0.76 respectively. For PYRO, it outputs 434 FDs, many
of which are not particularly meaningful. This results in a poor average precision of 0.16. These
findings support the applicability and advantage of our system to discover FDs that are useful in
downstream data preparation tasks.
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Figure 1: The autoregression matrix estimated by our system for the Hospital dataset.

4 CONCLUSIONS

We introduced our system, a structure learning framework to solve the problem of FD discovery
for data preparation tasks. A key result in our work is to model the distribution that FDs impose
over pairs of records instead of the joint distribution over the attribute-values of the input dataset.
Specifically, we introduce a method that convert FD discovery to a structure learning problem over
a linear structured equation model. We empirically show that our system outperforms state-of-the-
art FD discovery methods and can produce meaningful FDs that are useful for downstream data
preparation tasks.
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