
From Stroke to Finite Automata: An Offline
Recognition Approach

Abstract

A major challenge in making online education easier and more effective lies in1

developing automatic recognition, interpretation, and grading systems that can2

provide meaningful feedback to lecturers and students. Formal Languages and3

Automata Theory is a major module for many computer science and computing4

programmes worldwide. In such a module, students are taught how to design a5

finite state machine to recognise words in any given language. Despite the wide6

acceptance of this module by most universities across the globe, most students7

find this module difficult, boring and too abstract. Several research has been8

conducted on how to make this module interesting, but there still exist some gap.9

In this work, we propose and implement a system that assistant learners in learning10

this module. The system is in two units: unit one focus on offline recognition11

of hand-drawn finite automata diagram and the second unit focus on the tutor12

system. The system produced a 97% recognition rate. In future work, we intend13

to use formal grammars (second unit) to represent the recognised FA components,14

this will be used to automatically parse the output of the recognition system to15

determine if valid FA has been drawn.16

1 Introduction and Problem Statement17

Research in the area of handwritten document recognition is gradually shifting from normal text to18

the recognition of structured diagrams such as maths notation [1], music notation [2], engineering19

drawings [3], and UML1 [4]. Structured diagram recognition systems can be distinguished by the20

systems taking online input in an interactive manner from the system user (e.g. the user draws21

using electronic input devices such as tablets, electronic pens), or the systems that perform image22

processing on scanned paper documents obtained offline. This paper focuses on how to perform offline23

recognition on finite automata (FA) diagrams, which will be done using scanned or photographed24

paper documents obtained from students. Few structured diagram recognition are in existence, but to25

the best of our knowledge, this work will be the first to implement a system that can automatically26

recognise an hand-drawn FA image and automatically generate its corresponding transition table.27

This work attempts to solve a major problem faced by computer science (CS) students taking a course28

in formal language and automata theory (FLAT). We conducted a survey and realised that over 95%29

of Africa universities offer FLAT course in CS. Also, over 80% of the students find this course too30

difficult, abstract and boring. Numerous research has been conducted on how to make the course31

content of FLAT interesting and help learners on how to conceptualise the different topics [5–7]. The32

research conducted in [8] attempted to find out the difficulties experienced by FLAT learners; they33

identified problem-solving as the major challenge. FLAT tools used for visualization such as JFLAP234

[9] helps learners get an idea of the given problem and also check their solutions, however, these35

tools do not help them to further develop their problem-solving skills to a certain acceptable stage.36

To further develop their skills, most learners work on extra problems with feedback at each stage. In37

this work, we propose a tool that can serve as a tutor and help overcome all this challenge.38

1Unified modelling Language
2Java Formal Language and Automata Packages

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



a b
0, 1

1

Figure 1: A Finite Automaton.

The developed tool focuses on the offline ap-39

proach to learning FAs (see Figure 1). In this,40

we present an image recogniser trained to recog-41

nise hand-drawn FA diagrams (using machine42

learning approaches). Learners are allowed to43

draw FA images using their pen and paper and44

then take a picture/ capture of their drawn im-45

ages using either their phone camera or scanners.46

The captured FA image is uploaded into the tutor and the corresponding recognition button is pressed47

and the process begins. Once the process is done, the learner is given the option to save the recognised48

image as a .PNG or proceed to the next unit (within the tutoring system) where the corresponding49

transition table of the recognized image (output) can be generated by pressing the generate transition50

table button (using formal grammar technique). Once this button is pressed, the system checks if a51

valid FA diagram has been drawn and it automatically grades the student and give back suggestions52

and feedback on how to improve on her drawing in the future.53

Due to the theme of this workshop, we focus on the recognition aspect (machine learning) of this54

work and leave the formal computing (grammar) aspect out. The recognition system is implemented55

and tested in phases: Data Acquisition and Annotation → Pre-processing and Thinning → Stroke56

Extraction → Text and Graphics Separation → Segmentation → Arrow Detection and Recognition57

→ Shape Detection and Recognition → Text Recognition and Evaluation.58

2 Methodology and Technical Contributions59

To the best of our knowledge, this work will be the first to create a database3 and recognise FA60

diagrams using an offline approach. We collected 500 FA images (BBa) from students and split61

them into — 300 training images, 150 test images, and 50 validation images. We developed a tool to62

annotate these diagrams. During pre-processing, we removed noise and perform thresholding on the63

images. We improved on the existing Zhang-Suen thinning algorithm because of the nature of our64

drawing. The stroke extraction phase involves the extraction, merging and labelling of strokes. We65

used Markov Random Fields (energy function – unary and pairwise energy function) to perform this66

task. During the text and graphics separation, we used bidirectional long short-term memory recurrent67

neural network (BLSTM-RNN). We biased the result of this classifier during our experiment and got68

a stroke classification accuracy of 97.2 on our dataset i.e. 96.8 for the graphics/shape class and 97.569

for the class text. The classifier was tested on the IAM Online Database document, it achieved an70

accuracy of 96.5% on the database.

Figure 2: Text and stroke classification accuracy on DBa.

71

During the segmentation phase, the characteristics of an FA diagram components (various components72

are made up of strokes that are somehow connected to each other, hence forming a closed structure73

3will be made publicly available soon

2



of strokes) was utilised. We focus on finding the distance and convexity between the endpoints of74

consecutive strokes that form the FA structure. The values from the distance and convexity are used75

to reject improper strokes in the structure and to process and compute the confidence of promising76

strokes. To detect arrows or transitions, we developed an algorithm that searches and classifies an77

arrowhead and the shaft, the classifier accuracy is 98%. To detect and recognise circles or states,78

we used multiclass SVM classifier. We base the classifier on hybrid features capturing dynamic79

information and the visual appearance of symbols. Text recognition was done last. The input at this80

phase is the bounding box of the text layer extracted from the whole diagram during the text and81

graphics separation phase. We used Tesseract OCR [10] to process the content of the bounding boxes.82

The accuracy of the text recogniser was tested by comparing its output with the values of the input83

text and we got 92%.84

Table 1: FA datasets

Database Writers Patterns Diagrams Strokes Symbols
DBa 50 10 500 40,855 19,568
DBb 100 2 200 11,102 3,801

Table 2 shows a detailed overview of the datasets in Table 1 after separating them into training,85

validation and test dataset.86

Table 2: FA database overview

Writer Patterns Diagrams Strokes Symbols

DBa

Training set 50 10 300 20,426 11,562
Validation set 25 5 50 6,808 1,986
Test set 50 10 150 13,621 6,020

DBb
Training set 100 2 150 8,320 2,852
Test set 50 2 50 2,782 949

After the whole recognition phase, to test how easy and quick our algorithm can learn to recognise87

more difficult diagrams, we went further to collect 200 images from students examination papers. We88

created a database for this called DBb. The result of the whole recognition process is presented in89

Table 3.90

The recognition system achieved high precision (see Table 3). We test the online FA dataset (we call91

it DBon) of [11] using our algorithm. We went further to compare the performance of DBon with92

DBa and DBb. The results are presented in Table 3.93

Table 3: Stroke and symbol comparison between our algorithm and DBon.

Symbol
Class

Stroke
Recognition

Symbol
Recognition

DBon DBa DBb DBon DBa DBb

State 96.1 96.2 90.4 95.0 94.5 87.9
Final State 94.4 96.8 91.0 95.2 95.7 87.6
Text 99 90 90 99 90 90
Start Arrow 96.2 97.4 89.8 94.1 96.0 87.6
Arrow 92.2 96.6 87.6 93.1 94.0 93.1

3 Future Work94

We intend to extend the developed system for flowcharts and UML diagrams.95

References96

[1] J. Zhang, J. Du, S. Zhang, D. Liu, Y. Hu, J. Hu, S. Wei, and L. Dai, “Watch, attend and parse: An97

end-to-end neural network based approach to handwritten mathematical expression recognition,”98

Pattern Recognition, vol. 71, pp. 196–206, 2017.99

3



[2] J. Adamska, M. Piecuch, M. Podgórski, P. Walkiewicz, and E. Lukasik, “Mobile system for100

optical music recognition and music sound generation,” in IFIP International Conference on101

Computer Information Systems and Industrial Management. Springer, 2015, pp. 571–582.102

[3] T. Hammond and R. Davis, “Ladder, a sketching language for user interface developers,” in103

ACM SIGGRAPH 2007 courses. ACM, 2007, p. 35.104

[4] B. Di Martino and A. Esposito, “A rule-based procedure for automatic recognition of design105

patterns in uml diagrams,” Software: Practice and Experience, vol. 46, no. 7, pp. 983–1007,106

2016.107

[5] D. Berque, D. K. Johnson, and L. Jovanovic, “Teaching theory of computation using pen-based108

computers and an electronic whiteboard,” in ACM SIGCSE Bulletin, vol. 33, no. 3. ACM,109

2001, pp. 169–172.110

[6] C. I. Chesñevar, M. L. Cobo, and W. Yurcik, “Using theoretical computer simulators for formal111

languages and automata theory,” ACM SIGCSE Bulletin, vol. 35, no. 2, pp. 33–37, 2003.112

[7] D. Zingaro, “Another approach for resisting student resistance to formal methods,” ACM113

SIGCSE Bulletin, vol. 40, no. 4, pp. 56–57, 2008.114

[8] N. Pillay, “Learning difficulties experienced by students in a course on formal languages and115

automata theory,” ACM SIGCSE Bulletin, vol. 41, no. 4, pp. 48–52, 2010.116

[9] S. H. Rodger and T. W. Finley, JFLAP: an interactive formal languages and automata package.117

Jones & Bartlett Learning, 2006.118

[10] R. Smith, “An overview of the tesseract OCR engine,” in Ninth International Conference on119

Document Analysis and Recognition (ICDAR 2007), vol. 2. IEEE, 2007, pp. 629–633.120

[11] M. Bresler, D. Prusa, and V. Hlavác, “Detection of arrows in on-line sketched diagrams using121

relative stroke positioning,” in 2015 IEEE Winter Conference on Applications of Computer122

Vision. IEEE, 2015, pp. 610–617.123

4


	Introduction and Problem Statement
	Methodology and Technical Contributions
	Future Work

