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Abstract

Monitoring patients in ICU is a challenging
and high-cost task. Hence, predicting the con-
dition of patients during their ICU stay can
help provide better acute care and plan the hos-
pital’s resources. There has been continuous
progress in machine learning research for ICU
management, and most of this work has fo-
cused on using time series signals recorded by
ICU instruments. In our work, we show that
adding clinical notes as another modality im-
proves the performance of the model for three
benchmark tasks: in-hospital mortality predic-
tion, modeling decompensation, and length of
stay forecasting that play an important role
in ICU management. While the time-series
data is measured at regular intervals, doctor
notes are charted at irregular times, making it
challenging to model them together. We pro-
pose a method to model them jointly, achiev-
ing considerable improvement across bench-
mark tasks over baseline time-series model.

1 Introduction

With the advancement of medical technology, pa-
tients admitted into the intensive care unit (ICU)
are monitored by different instruments on their
bedside, which measure different vital signals
about patient’s health. During their stay, doc-
tors visit the patient intermittently for check-ups
and make clinical notes about the patient’s health
and physiological progress. These notes can be
perceived as summarized expert knowledge about
the patient’s state. All these data about instru-
ment readings, procedures, lab events, and clin-
ical notes are recorded for reference. Availabil-
ity of ICU data and enormous progress in ma-
chine learning have opened up new possibilities
for health care research. Monitoring patients in
ICU is a challenging and high-cost task. Hence,
predicting the condition of patients during their
ICU stay can help plan better resource usage for

Figure 1: Doctor notes compliments measured physio-
logical signals for better ICU management.

patients that need it most in a cost-effective way.
Prior works (Harutyunyan et al., 2017; Ghassemi
et al., 2015; Suresh et al., 2018; Song et al., 2018;
Caballero Barajas and Akella, 2015) have focused
exclusively on modeling the problem using the
time series signals from medical instruments. Ex-
pert knowledge from doctor’s notes has been ig-
nored in the literature.

In this work, we use clinical notes in addi-
tion to the time-series data for improved predic-
tion on benchmark ICU management tasks (Haru-
tyunyan et al., 2017). While the time-series data
is measured continuously, the doctor notes are
charted at intermittent times. This creates a new
challenge to model continuous time series and
discrete time note events jointly. We propose
such a multi-modal deep neural network that com-
prises of recurrent units for the time-series and
convolution network for the clinical notes. We
demonstrate that adding clinical notes improves
the AUC-PR scores on in-hospital mortality pre-
diction (+7.8%) and modeling decompensation
(+6.1%), and kappa score on length of stay fore-
casting (+3.4%).

2 Related Work and Problem Context

Here we formally define the problems and provide
a review of machine learning approaches for clin-
ical prediction tasks.

Problem Definitions. We use the definitions of
the benchmark tasks defined by Harutyunyan et al.
(2017) as the following three problems:
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1. In-hospital Mortality: This is a binary clas-
sification problem to predict whether a pa-
tient dies before being discharged from the
first two days of ICU data.

2. Decompensation: Focus is to detect patients
who are physiologically declining. Decom-
pensation is defined as a sequential prediction
task where the model has to predict at each
hour after ICU admission. Target at each
hour is to predict the mortality of the patient
within a 24 hour time window.

3. Length of Stay Forecasting (LOS): The
benchmark defines LOS as a prediction of
bucketed remaining ICU stay with a multi-
class classification problem. Remaining ICU
stay time is discretized into 10 buckets: {0−
1, 1− 2, 2− 3, 3− 4, 4− 5, 5− 6, 6− 7, 7−
8, 8− 14, 14+} days where first bucket, cov-
ers the patients staying for less than a day (24
hours) in ICU and so on. This is only done
for the patients that did not die in ICU.

These tasks have been identified as key perfor-
mance indicators of models that can be beneficial
in ICU management in the literature. Most of the
recent work has focused on using RNN to model
the temporal dependency of the instrument time
series signals for these tasks (Harutyunyan et al.
(2017), Song et al. (2018)).

Natural Language Processing for BioMedical
Texts. Biomedical text is traditionally studied
using SVM models (Perotte et al., 2013) with n-
grams, bag-of-words, and semantic features. The
recent development in deep learning based tech-
niques for NLP is adapted for clinical notes. Con-
volutional neural networks is used to predict ICD-
10 codes from clinical texts (Mullenbach et al.,
2018; Li et al., 2018). Rios and Kavuluru (2015);
Baker et al. (2016) used convolutional neural net-
works to classify various biomedical articles. Pre-
trained word and sentence embeddings have also
shown good results for sentence similarity tasks
(Chen et al., 2018). However, none of these works
have utilized doctor notes for ICU clinical predic-
tion tasks.

Multi Modal Learning. Multi-modal learning
has shown success in speech, natural language
and computer vision (Ngiam et al. (2011), Srivas-
tava and Salakhutdinov (2012), Mao et al. (2014)).
In health care research, Xu et al. (2018) accom-
modated supplemental information like diagnosis,

medications, lab events etc to improve model per-
formance.

3 Methods

In this section, we describe the models used in this
study. We start by introducing the notations used,
then describe the baseline architecture, and finally
present our proposed multimodal network.

For a patient’s length of ICU stay of T hours,
we have time series observations, xt at each time
step t (1 hour interval) measured by instruments
along with doctor’s note ni recorded at irregular
time stamps. Formally, for each patient’s ICU
stay, we have time series data [xt]

T
t=1 of length

T , and K doctor notes [Ni]
K
i=1 charted at time

[TC(i)]Ki=1, where K is generally much smaller
than T . For in-hospital mortality prediction, m
is a binary label at t = 48 hours, which indi-
cates whether the person dies in ICU before be-
ing discharged. For decompensation prediction
performed hourly, [dt]Tt=5 are the binary labels at
each time step t, which indicates whether the per-
son dies in ICU within the next 24 hours. For
LOS forecasting also performed hourly, [lt]Tt=5 are
multi-class labels defined by buckets of the re-
maining length of stay of the patient in ICU. Fi-
nally, we denote NT as the concatenated doctor’s
note during the ICU stay of the patient (i.e.,, from
t = 1 to t = T ).

3.1 Baseline: Time-Series LSTM Model
Our baseline model is similar to the models de-
fined by Harutyunyan et al. (2017). For all the
three tasks, we used a Long Short Term Mem-
ory or LSTM (Hochreiter and Schmidhuber, 1997)
network to model the temporal dependencies be-
tween the time series observations, [xt]

T
t=1. At

each step, the LSTM composes the current in-
put xt with its previous hidden state ht−1 to gen-
erate its current hidden state ht; that is, ht =
LSTM(xt, ht−1) for t = 1 to t = T . The predic-
tions for the three tasks are then performed with
the corresponding hidden states as follows:

m̂ = sigmoid(Wmh48 + bm)

d̂t = sigmoid(Wdht + bd) for t = 5 . . . T

l̂t = softmax(Wlht + bl) for t = 5 . . . T

(1)

where m̂, d̂t, and l̂t are the probabilities for in-
hospital mortality, decompensation, and LOS, re-
spectively, andWm,Wd, andWl are the respective
weights of the fully-connected (FC) layer. Notice
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Figure 2: Block diagram from the in-hospital mortality
multi-modal network.

that the in-hospital mortality is predicted at end of
48 hours, while the predictions for decompensa-
tion and LOS tasks are done at each time step after
first four hours of ICU stay. We trained the models
using cross entropy (CE) loss defined as below.

Lihm = CE(m, m̂)

Ldecom =
1

T

∑
t

CE(dt, d̂t)

Llos =
1

T

∑
t

CE(lt, l̂t)

(2)

3.2 Multi-Modal Neural Network
In our multimodal model, our goal is to improve
the predictions by taking both the time series data
xt and the doctor notes ni as input to the network.

Convolutional Feature Extractor for Doctor
Notes. As shown in Fig. 2, we adopt a convo-
lutional approach similar to Kim (2014) to extract
the textual features from the doctor’s notes. For a
piece of clinical note N , our CNN takes the word
embeddings e = (e1, e2, . . . , en) as input and ap-
plies 1D convolution operations, followed by max-
pooling over time to generate a p dimensional fea-
ture vector ẑ, which is fed to the fully connected
layer along side the LSTM output from time series
signal (described in the next paragraph) for further
processing. From now onwards, we denote the 1D
convolution over note N as ẑ = Conv1D(N).

Model for In-Hospital Mortality. This model
takes the time series signals [xt]

T
t=1 and all notes

[Ni]
K
i=1 to predict the mortality label m at t = T

(T = 48). For this, [xt]Tt=1 is processed through
an LSTM layer just like the baseline model in Sec.
3.1, and for the notes, we concatenate (⊗) all the
notes N1 to NK charted between t = 1 to t = T
to generate a single documentNT . More formally,

NT = N1 ⊗N2 ⊗ · · · ⊗NK

ht = LSTM(xt, ht−1) for t = 1 . . . T

ẑ = Conv1D(NT )

m̂ = sigmoid(W1h48 +W2ẑ + b)

(3)

We use pre-trained word2vec embeddings
(Mikolov et al., 2013) trained on both MIMIC-III
clinical notes and PubMed articles to initialize
our methods as it outperforms other embeddings
as shown in (Chen et al., 2018). We also freeze
the embedding layer parameters, as we did not
observe any improvement by fine-tuning them.

Model for Decompensation and Length of Stay.
Being sequential prediction problems, modeling
decompensation and length-of-stay requires spe-
cial technique to align the discrete text events to
continuous time series signals, measured at 1 event
per hour. Unlike in-hospital mortality, here we ex-
tract feature maps zi by processing each note Ni

independently using 1D convolution operations.
For each time step t = 1, 2 . . . T , let zt denote
the extracted text feature map to be used for pre-
diction at time step t. We compute zt as follows.

zi = Conv1D(Ni) for i = 1 . . .K

w(t, i) = exp[−λ ∗ (t− CT (i))]

zt =
1

M

M∑
i=1

ziw(t, i)

(4)

whereM is the number of doctor notes seen before
time-step t, and λ is a decay hyperparameter tuned
on a validation data. Notice that zt is computed as
a weighted sum of the feature vectors, where the
weights are computed with an exponential decay
function. The intuition behind using a decay is
to give preference to recent notes as they better
describe the current state of the patient.

The time series data xt is modeled using an
LSTM as before. We concatenate the attenuated
output from the CNN with the LSTM output for
the prediction tasks as follows:

ht = LSTM(xt, ht−1)

d̂t = sigmoid(W 1
d ht +W 2

d zt + b)

l̂t = softmax(W 1
l ht +W 2

l zt + b)

(5)

Both our baselines and multimodal networks are
regularized using dropout and weight decay. We
used Adam Optimizer to train all our models.

4 Experiments

We used MIMIC-III (Johnson et al., 2016) dataset
for all our experiments following Harutyunyan
et al. (2017)’s benchmark setup for processing the
time series signals from ICU instruments. We
use the same test-set defined in the benchmark
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Figure 3: Block diagram from decompensation and
length of stay prediction multi-modal network.

and then 15% of remaining data as validation set.
However, We dropped all clinical notes which
doesn’t have any chart time associated and then
dropped all the patients without any notes. Notes
which have been charted before ICU admission
are concatenated and treated as one note at t = 1.

For in-hospital mortality task, best performing
baseline and multimodal network have 256 hidden
units LSTM cell. For convolution operation, we
used 256 filters for each of kernel size 2, 3 and 4.
For decompensation and LOS prediction, we used
64 hidden units for LSTM and 128 filters for each
2,3 and 4 size convolution filters. The best decay
factor λ for text features was 0.01.

5 Results
We use Area Under Precision-Recall (AUCPR)
metric for in-hospital mortality and decompensa-
tion tasks as they suffer from class imbalance with
only 10% patients suffering mortality, following
the benchmark. Davis and Goadrich (2006) sug-
gest AUCPR for imbalanced class problems. We
use Cohen’s linear weighted kappa, which mea-
sures the correlation between predicted and actual
multi-class buckets to evaluate LOS in accordance
with Harutyunyan et al. (2017).

We compared multimodal network with the
baseline time series LSTM models for all three
tasks. Results from our experiments are docu-
mented in Table 1. Our proposed multimodal net-
work outperforms the time series models for all
three tasks. For in-hospital mortality prediction,
we see an improvement of around 7.8% over the
baseline time series LSTM model. The other two
problems were more challenging itself than the
first task, and modeling the notes for sequential
task was difficult. With our multimodal network,
we saw an improvement of around 6% and 3.5%
for decompensation and LOS, respectively.

In-Hospital Mortality
AUCROC AUCPR

Baseline (No Text) 0.844 0.487
Text-Only 0.793 0.303

MultiModal - Avg WE 0.851 0.492
MultiModal - 1DCNN 0.865 0.525

Decompensation
AUCROC AUCPR

Baseline (No Text) 0.892 0.325
Text-Only 0.789 0.081

MultiModal - Avg WE 0.902 0.311
MultiModal - 1DCNN 0.907 0.345

Length of Stay
Kappa

Baseline (No Text) 0.438
Text Only 0.341

MultiModal - Avg WE 0.449
MultiModal - 1DCNN 0.453

Table 1: Evaluated results for all three tasks.

We did not observe a change in perfor-
mance with respect to results reported in bench-
mark (Harutyunyan et al., 2017) study despite
dropping patients with no notes or chart time. In
order to understand the predictive power of clin-
ical notes, we also train text only models using
CNN part from our proposed model. Additionally,
we try average word embedding without CNN as
another method to extract feature from the text
as a baseline. Text-only-models perform poorly
compared to time-series baseline. Hence, text can
only provide additional predictive power on top of
time-series data.

6 Conclusion

Identifying the patient’s condition in advance is of
critical importance for acute care and ICU man-
agement. Literature has exclusively focused on
using time-series measurements from ICU instru-
ments to this end. In this work, we demonstrate
that utilizing clinical notes along with time-series
data can improve the prediction performance sig-
nificantly. In the future, we expect to improve
more using advanced models for the clinical notes
since text summarizes expert knowledge about a
patient’s condition.
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