
Under review as a conference paper at ICLR 2019

PREDICTED VARIABLES IN PROGRAMMING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Predicted Variables (PVars), an approach to making machine learning
(ML) a first class citizen in programming languages. There is a growing divide in
approaches to building systems: using human experts (e.g. programming) on the
one hand, and using behavior learned from data (e.g. ML) on the other hand. PVars
aim to make using ML in programming easier by hybridizing the two. We lever-
age the existing concept of variables and create a new type, a predicted variable.
PVars are akin to native variables with one important distinction: PVars determine
their value using ML when evaluated. We describe PVars and their interface, how
they can be used in programming, and demonstrate the feasibility of our approach
on three algorithmic problems: binary search, QuickSort, and caches. We show
experimentally that PVars are able to improve over the commonly used heuristics
and lead to a better performance than the original algorithms. As opposed to pre-
vious work applying ML to algorithmic problems, PVars have the advantage that
they can be used within the existing frameworks and do not require the existing
domain knowledge to be replaced. PVars allow for a seamless integration of ML
into existing systems and algorithms. Our PVars implementation currently relies
on standard Reinforcement Learning (RL) methods. To learn faster, PVars use
the heuristic function, which they are replacing, as an initial function. We show
that PVars quickly pick up the behavior of the initial function and then improve
performance beyond that without ever performing substantially worse – allowing
for a safe deployment in critical applications.

1 INTRODUCTION

Machine Learning (ML) has had many successes in the past decade in terms of techniques and
systems as well as in the number of areas in which it is successfully applied. However, using ML
has some cost that comes from the additional complexity added to software systems (Sculley et al.,
2014). There is a fundamental impedance mismatch between the approaches to system building.
Software systems have evolved from the idea that experts have full control over the behavior of the
system and specify the exact steps to be followed. ML on the other hand has evolved from learning
behavior by observing data. It allows for learning more complex but implicit programs leading to a
loss of control for programmers since the behavior is now controlled by data. We believe it is very
difficult to move from one to another of these approaches but that a hybrid between them needs to
exist which allows to leverage both the developer’s domain-specific knowledge and the adaptability
of ML systems.

We present Predicted Variables (PVars) as an approach to hybridize ML with programming. We
leverage the existing concept of a variable which is universal across all programming modalities
and add a new type, a predicted variable. PVars are akin to native variables with one important
distinction: a PVar determines its value using ML when evaluated. A developer will be able to use
a PVar just like any other variable, combine it with heuristics, domain specific knowledge, problem
constraints, etc. in ways that are fully under the programmer’s control. This represents an inversion
of control compared to how ML systems are usually built. PVars allow to integrate ML tightly into
algorithms whereas traditional ML systems are build around the model.

PVars aim to make using ML in software development easier by avoiding the overhead of going
through the traditional steps of building an ML system: (1) collecting and preparing training data,
(2) defining a training loss, (3) training an initial model, (4) tweaking and optimizing the model, (5)

1

Under review as a conference paper at ICLR 2019

integrating the model into their system, and (6) continuously updating and improving the model to
adjust for drift in the distribution of the data processed.

We show how these properties of PVars allow for applying ML in domains that have traditionally
not been using ML. We demonstrate that ML can help improve the performance of “classical” al-
gorithms that typically rely on a heuristic. The concrete implementation of PVars in this paper is
based on standard deep reinforcement learning (RL). We emphasize that this is just one possible
implementation. Other types of machine learning are in scope for PVars: supervised learning can be
used when ground truth is available, or active learning is applicable when humans are in the loop to
provide feedback.

While in this paper we show PVars in the context of the Python programming language and use con-
cepts from object oriented programming, everything described here applies directly to functional or
procedural programming languages as well. We describe the framework around the central concept
of a predicted variable but depending on the language the notion of a predicted function can be used
interchangeably.

We also introduce the notion of an initial function which can be the current heuristic that a PVar
is replacing. It allows the PVar to minimize regret in critical applications and allow for safe de-
ployment. This is a key strengths of our hybrid approach: it allows for better solutions while also
providing better guarantees to the programmer.

We demonstrate the feasibility of our approach on three algorithmic problems: binary search, Quick-
Sort, and caches where we replace and enrich commonly used heuristics. We show improvements
over common heuristics by injecting a predicted variable into an existing program, leaving much of
the algorithm (including the domain-specific knowledge) untouched. We consider these problems
the first applications of our newly defined interface and see the main contribution of this paper in
the general applicability of the framework. The problem selection in this paper was driven by the
desire for a self-contained setup and ease of reproducibility. PVars are applicable to more general
problems across a large variety of domains from system optimization to user modelling.

In our experiments we do not focus on the actual run time but rather on the effectiveness of the
ML models. While for the algorithmic examples in this paper, in a practical scenario speed is the
key metric, we see PVars as a more general interface that can be applied across a more diverse set
of problems including user modelling, predicting user preference, or content recommendations. In
many applications, speed is not a meaningful metric. Further, we believe that advances in specialized
hardware will enable running machine learning models at insignificant cost (Kraska et al., 2018).

Our main contributions are:

• we introduce the PVar API to smoothly integrate ML into software development;
• we show how standard RL methods can be leveraged through the PVars interface;
• we propose an approach to learn using the initial function, leveraging off-policy learning;
• we demonstrate the feasibility of our approach on 3 standard algorithmic problems.

The remainder of this paper is structured as follows: We describe how PVars can be used in software
development in sec. 2 and how we make use of the heuristics that we are replacing to guide the train-
ing and avoid unstable behavior in sec. 3. Sec. 4 describes our implementation and the application
of PVars to three algorithmic applications. We also describe the experiments that we performed to
demonstrate that PVars are an intuitive approach to bring ML closer to software development and
are applicable to different problems. We describe related work in sec. 5.

2 SOFTWARE DEVELOPMENT WITH PVARS

A PVar has a simple API that allows the developer to provide enough information about its context,
predict its value, and provide feedback about the quality of its predictions. PVars invert the control
compared to common ML approaches that are model centric. Here, the developer has full control
over how data and feedback are provided to the model, how inference is called, and how its results
are used.

To create a PVar, the developer chooses its output type (float, int, category, ...), shape, and range;
defines which data the PVar is able to observe (type, shape, range); and optionally provides an initial

2

Under review as a conference paper at ICLR 2019

function. In the following example we instantiate a scalar float PVar taking on values between 0
and 1, which can observe three scalar floats (each in the range between 0 and 10), and which uses a
simple initial function:
pvar = PVar(

output_def=(float,shape=[1],range=[0,1]),
observation_defs={’low’:(float,[1],[0,10]), ’high’:(float,[1],[0,10]),

’target’:(float,[1],[0,10])},
initial_function=lambda observations: 0.5)

The PVar can then be used like a normal variable. It determines its value at read time by using
inference in the underlying ML model, e.g.
value = pvar.Predict()
Specifically, developers should be able to use a PVar instead of a heuristic or an arbitrarily chosen
constant. PVars can also take the form of a stochastic variable, shielding the developer from the
underlying complexity of inference, sampling, and explore/exploit strategies.

The PVar determines its value on the basis of observations about the context that the developer
passes in:
pvar.Observe(’low’, 0.12)
pvar.Observe({’high’: 0.56, ’target’: 0.43})
A developer might provide additional side-information into the PVar that an engineered heuristic
would not be using but which a powerful model is able to use in order to improve performance.

The developer provides feedback about the quality of previous predictions once it becomes available:
pvar.Feedback(reward=10)
In this example we provide numerical feedback. Following common RL practice a PVar aims to
maximize the sum of reward values received over time (possibly discounted). In other setups, we
might become aware of the correct value in hindsight and provide the “ground truth” answer as
feedback, turning the learning task into a supervised learning problem. Some problems might have
multiple metrics to optimize for (run time, memory, network bandwidth) and the developer might
want to give feedback for each dimension.

This API allows for integrating PVars easily and transparently into existing applications with little
overhead. See listing 1 for how to use the PVar created above in binary search. In addition to the
API calls described above, model hyperparameters can be specified through additional configuration,
which can be tuned independently. The definition of the PVar only determines its interface (i.e. the
types and shapes of inputs and outputs).

3 INITIAL FUNCTIONS IN PREDICTED VARIABLES

We allow for the developer to pass an initial function to the PVar. We anticipate that in many cases
the initial function will be the heuristic that the PVar is replacing. Ideally it is a reasonable guess at
what values would be good for the PVar to return. The PVar will use this initial function to avoid
very bad performance in the initial predictions and observe the behavior of the initial function to
guide its own learning process, similar to imitation learning (Hussein et al., 2017). The existence of
the initial function should strictly improve the performance of a PVar. In the worst case, the PVar
could choose to ignore it completely, but ideally it will allow the PVar to explore solutions which
are not easily reachable from a random starting point. Further, the initial function plays the role of
a heuristic policy which explores the state and action space generating initial trajectories which are
then used for learning. Even though such exploration is biased, off-policy RL can train on this data.
In contrast to imitation learning where an agent tries to become as good as the expert, we explicitly
aim to outperform the initial function as quickly as possible, similar to Schmitt et al. (2018).

For a PVar to make use of the initial heuristic, and to balance between learning a good policy and the
safety of the initial function, it relies on a policy selection strategy. This strategy switches between
exploiting the learned policy, exploring alternative values, and using the initial function. It can be
applied at the action or episode level depending on the requirements. Finally, the initial function
provides a safety net: in case the learned policy starts to misbehave, the PVar can always fallback to
the initial function with little cost.

3

Under review as a conference paper at ICLR 2019

P
rogram

 B
inary

PVar

RL Policy

Episode Log

Observed Context

Client Code

pvar.Observe

pvar.Predict

pvar.Feedback

Models
(definitions & checkpoints)

Replay Buffer

Model Trainer
(agent code, optimizer, …)

Figure 1: An overview of the architecture for our experiments how client code communicates with a PVar and
how the model for the PVar is trained and updated.

4 APPLICATIONS OF PREDICTED VARIABLES IN ALGORITHMS

In the following we describe how PVars can be used in three different algorithmic problems and
how a developer can leverage the power of machine learning easily with just a few lines of code. We
show experimentally how using PVars helps improving the algorithm performance. The interface
described above naturally translates into an RL setting: the inputs to Observe calls are combined
into the state, the output of the Predict call is the action, and Feedback is the reward.

To evaluate the impact of PVars we measure cumulative regret over training episodes. Regret
measures how much worse (or better when it is negative) a method performs compared to another
method. Cumulative regret captures whether a method is better than another method over all previ-
ous decisions. For practical use cases we are interested in two properties: (1) Regret should never be
very high to guarantee acceptable performance of the PVar under all circumstances. (2) Cumulative
regret should become permanently negative as early as possible. This corresponds to the desire to
have better performance than the baseline model as soon as possible.

Unlike the usual setting which distinguishes a training and evaluation mode, we perform evaluation
from the point of view of the developer without this distinction. The developer just plugs in the
PVar and starts running the program as usual. Due to the online learning setup in which PVars
are operating, overfitting does not pose a concern (Dekel & Singer, 2005). The (cumulative) regret
numbers thus do contain potential performance regressions due to exploration noise. This effect
could be mitigated by performing only a fraction of the runs with exploration.

For our feasibility study we do not account for the computational costs of inference in the model.
PVars would be applicable to a wide variety of problems even if these costs were high, particu-
larly for problems relying on expensive approximation heuristics or working with inherently slow
hardware, such as filesystems.

Our implementation currently is a small library exposing the PVar interface to client applica-
tions (fig. 1). A PVar assembles observations, actions, and feedback into episode logs that are
passed to a replay buffer. The models are trained asynchronously. When a new checkpoint becomes
available the PVar loads it for use in consecutive steps.

4.1 EXPERIMENT SETUP

To enable PVars we leverage recent progress in RL for modelling and training. It allows to apply
PVars to the most general use cases. While we are only looking at RL methods here, PVars can
be used with other learning methods embedded such as supervised learning or multi-armed bandit
methods. We are building our models on DDQN (Hasselt et al., 2016) for categorical outputs and
on TD3 (Fujimoto et al., 2018) for continuous outputs. DDQN is a de facto standard in RL since
its success in AlphaGo (Silver et al., 2016). TD3 is a recent modification to DDPG (Lillicrap et al.,
2015) using a second critic network to avoid overestimating the expected reward. We summarize the
hyperparameters used in our experiments in the appendix (table 5). While these hyperparameters
are now new parameters that the developer can tweak, we hypothesize that on the one hand, tuning
hyperparameters is often simpler than manually defining new problem-specific heuristics and on
the other hand that improvements on automatic model tuning from the general machine learning
community will be easily applicable here too.

Our policy selection strategy starts by only evaluating the initial function and then gradually starts to
increase the use of the learned policy. It keeps track of the received rewards of these policies adjusts

4

Under review as a conference paper at ICLR 2019

Listing 1: Standard binary search (left) and a simple way to use a PVar in binary search (right).
1 def bsearch(x, a, l=0, r=len(a)-1):
2 if l > r: return None
3
4
5 q = 0.5
6 m = int(q*l + (1-q)*r)
7 if a[m] == x:
8 return m
9

10 if a[m] < x:
11 return bsearch(x, a, m+1, r)
12 return bsearch(x, a, l, m-1)

1def bsearch(x, a, l=0, r=len(a)-1):
2if l > r: return None
3pvar.Observe({’target’:x,
4’low’:a[l], ’high’:a[r]})
5q = pvar.Predict()
6m = int(q*l + (1-q)*r)
7if a[m] == x:
8return m
9pvar.Feedback(-1)
10if a[m] < x:
11return bsearch(x, a, m+1, r)
12return bsearch(x, a, l, m-1)

the use of the learned policy depending on its performance. We show the usage rate of the initial
function when we use it (fig. 2, bottom) demonstrating the effectiveness of this strategy.

Similar to many works that build on RL technology we are faced with the reproducibility issues
described by Henderson et al. (2018). Among multiple runs of any experiment, only some runs
exhibit the desired behavior, which we report. However, in the “failing” runs we observe baseline
performance because the initial function acts as a safety net. Thus, our experiments show that we can
outperfom the baseline heuristics without a high risk to fail badly. We do not claim to have a solution
to these reproducibility issues but any solution developed by the community will be applicable here.
To quantify the reproducibility of our results for the different problems, we provide the performance
of the learned policies in the appendix when re-running the same experiments multiple times.

4.2 BINARY SEARCH

Binary search (Williams, 1976) is a standard algorithm for finding the location lx of a target value
x in a sorted array A = {a0, a1, . . . , aN−1} of size N . Binary search has a worst case runtime
complexity of dlog2(N)e steps when no further knowledge about the distribution of data is available.
Knowing more about the distribution of the data can help to reduce expected runtime. For example,
if the array values follow a uniform distribution, the location of x can be approximated using linear
interpolation lx ≈ (N − 1)(x− a0)/(aN−1 − a0). We show how PVars can be used to speed up
binary search by learning to estimate the position lx for a more general case.

The simplest way of using a PVar is to directly estimate the location lx and incentivize the search
to do so in as few steps as possible by penalizing each step by the same negative reward (listing 1).
At each step, the PVar observes the values aL, aR at both ends of the search interval and the target
x. The PVar output q is used as the relative position of the next read index m, such that m =
qL+ (1− q)R.

In order to give a stronger learning signal to the model, the developer can incorporate problem-
specific knowledge into the reward function or into how the PVar is used. One way to shape
the reward is to account for problem reduction. For binary search, reducing the size of the re-
maining search space will speed up the search proportionally and should be rewarded accord-
ingly. By replacing the step-counting reward in listing 1 (line 9) with the search range reduction
(Rt−Lt)/(Rt+1−Lt+1), we directly reward reducing the size of the search space. By shaping the
reward like this, we are able to attribute the feedback signal to the current prediction and to reduce
the problem from RL to contextual bandit (which we implement by using a discount factor of 0).

Alternatively we can change the way the prediction is used to cast the problem in a way that
the PVar learns faster and is unable to predict very bad values. For many algorithms (includ-
ing binary search) it is possible to predict a combination of (or choice among) several existing
heuristics rather than predicting the value directly. We use two heuristics: (a) vanilla binary
search which splits the search range {aL, . . . , aR} into two equally large parts using the split
location lv = (L + R)/2, and (b) interpolation search which interpolates the split location as
li = ((aR − v)L+ (v − aL)R)/(aR − aL). We then use the value q of the PVar to mix between
these heuristics to get the predicted split position lq = qlv +(1−q)li. Since in practice both of these
heuristics work well on many distributions, any point in between will also work well. This reduces
the risk for the PVar to pick a value that is really bad which in turn helps learning. A disadvantage is
that it’s impossible to find the optimal strategy with values outside of the interval between lv and li.

5

Under review as a conference paper at ICLR 2019

 5

 10

 15

 20

 25

 30

 35

 40

C
o
s
t

(#
 o

f
lo

o
k
u
p
s
),

 s
m

o
o
th

e
d

Cost of binary search

Heuristics mix, shaped reward
Heuristics mix, simple reward

Position, shaped reward
Position, simple reward

Position, simple, no init. func.
Interpolation (baseline)

Vanilla (baseline)

1000 2000 3000 4000 5000
-15000

-10000

-5000

0

5000

10000

15000

20000

C
u
m

u
la

ti
v
e
 r

e
g
re

t

Episode

Cumulative regret of PVars against vanilla

0%

20%

40%

60%

 80%

0 1000 2000 3000 4000 5000In
it
ia

l
fu

n
c
ti
o
n
 u

s
a
g
e

Episode

Figure 2: The cost of different variants of binary search (top left), cumulative regret compared to vanilla binary
search (right), and initial function usage (bottom).

Listing 2: A QuickSort implementation that uses a PVar to choose the number of samples to compute the next
pivot. As feedback, we use the cost of the step compared to the optimal partitioning.

1 def qsort(a, l=0, r=len(a)):
2 if r <= l+1:
3 return
4 m = pivot(a, l, r)
5 qsort(a, l, m-1)
6 qsort(a, m+1, r)
7

8 def delta_cost(c_pivot, n, a, b):
9 # See eq. 1

1def pivot(a, l, r):
2pvar.Observe({’left’:l, ’right’:r})
3q = min(1+2*pvar.Predict(), r-l)
4v = median(sample(a[l:r], q))
5m = partition(a, l, r, v)
6c = cost_of_median_and_partition()
7d = delta_cost(c, r-l, m-l, r-m)
8pvar.Feedback(1/d)
9return m

To evaluate our approaches we are using a test environment where in each episode, we sample an
array of 5000 elements from a randomly chosen distribution (uniform, triangular, normal, pareto,
power, gamma and chisquare), sort it, scale to [−104, 104] and search for a random element.

Figure 2 shows the results for the different variants of binary search using a PVar and compares
them to the vanilla binary search baseline. The results show that the simplest case (pink line) where
we directly predict the relative position with the simple reward and without using an initial function
performs poorly initially but then becomes nearly as good as the baseline (cumulative regret becomes
nearly constant after an initial bad period). The next case (yellow line) has an identical setup but
we are using the initial function and we see that the initial regret is substantially smaller. By using
the shaped reward (blue line), the PVar is able to learn the behavior of the baseline quickly. Both
approaches that are mixing the heuristics (green and red lines) significantly outperform the baselines.

In the appendix (table 1) we give details about when each of the different variants of using a PVar in
binary search reaches break-even.

4.3 QUICKSORT

QuickSort (Hoare, 1962) sorts an array in-place by partitioning it into two sets (smaller/larger than
the pivot) recursively until the array is fully sorted. QuickSort is one of the most commonly used
sorting algorithms where many heuristics have been proposed to choose the pivot element. While
the average time complexity of QuickSort is θ(N log(N)), a worst case time complexity of O(N2)
can happen when the pivot elements are badly chosen. The optimal choice for a pivot is the median
of the range, which splits it into two parts of equal size.

To improve QuickSort using a PVar we aim at tuning the pivot selection heuristic. To allow for sort-
ing arbitrary types, we decided to use the PVar to determine the number of elements that are sampled
from the array to be sorted and then pick the median from these samples as the pivot (listing 2). As

6

Under review as a conference paper at ICLR 2019

 23500

 24000

 24500

 25000

 25500

 26000

 26500

 27000

 0 200 400 600 800 1000

C
o
s
t

(r
e
a
d
=

1
,w

ri
te

=
1
,c

m
p
=

0
.5

)

Episode

(a)

PVar samples
Vanilla (baseline)

Random3 (baseline)
Random9 (baseline)
Adaptive (baseline)

 0 200 400 600 800 1000
-2.5e+06

-2e+06

-1.5e+06

-1e+06

-500000

0

500000

C
u
m

u
la

ti
v
e
 r

e
g
re

t

Episode

(b)

Figure 3: Results from using a PVar for selecting the number of pivots in QuickSort. (a) shows the overall
cost for the different baseline methods and for the variant with a PVar over training episodes. (b) shows the
cumulative regret of the PVar method compared to each of the baselines over training episodes.

 0%

 20%

 40%

 60%

 80%

 100%

 10 100 1000

F
ra

c
ti
o
n
 o

f
s
a
m

p
le

s

Size of the array to sort (log scale)

Predicted number of samples to use, such that pivot=median(samples)

15 samples (19%)
13 samples (20%)
11 samples (22%)
9 samples (24%)
7 samples (27%)
5 samples (31%)
3 samples (37%)
1 sample (50%)

Figure 4: Fraction of pivots chosen by the PVar in QuickSort after 5000 episodes. The expected approximation
error of the median is given in the legend, next to the number of samples.

feedback signal for a recursion step we use an estimate of its impact on the computational cost ∆c.

∆c =
cpivot + ∆crecursive

cexpected
=
cpivot + (a log a+ b log b− 2n

2 log n
2)

n log n
, (1)

where n is the size of the array, a and b are the sizes of the partitions with n = a + b and cpivot =
cmedian+cpartition is the cost to compute the median of the samples and to partition the array. ∆crecursive
takes into account how close the current partition is to the ideal case (median). The cost is a weighted
sum of number of reads, writes, and comparisons. Similar to the shaped reward in binary search, this
reward allows us to reduce the RL problem to a contextual bandit problem and we use a discount of
0.

For evaluation we are using a test environment where we sort randomly shuffled arrays. Results of
the experiments are presented in fig. 3. It shows that the learned method outperforms all baseline
heuristics within less than 100 episodes. ‘Vanilla’ corresponds to a standard QuickSort implemen-
tation that picks one pivot at random in each step. ‘Random3’ and ‘Random9’ sample 3 and 9
random elements respectively and use the median of these as pivots. ‘Adaptive’ uses the median of
max(1, blog2(n)− 1c) randomly sampled elements as pivot when partitioning a range of size n. It
uses more samples at for larger arrays, leading to a better approximation of the median, and thus to
faster problem size reduction.

Fig. 4 shows that the PVar learns a non-trivial policy. The PVar learns to select more samples at
larger array sizes which is similar to the behavior that we hand-coded in the adaptive baseline but
in this case no manual heuristic engineering was necessary and a better policy was learned. Also,
note that a PVar-based method is able to adapt to changing environments which is not the case for
engineered heuristics. One surprising result is that the PVar prefers 13 over 15 samples at large array
sizes. We hypothesize this happens because relatively few examples of large arrays are seen during
training (one per episode, while arrays of smaller sizes are seen multiple times per episode).

4.4 CACHES

Caches are a commonly used component to speed up computing systems. They use a cache replace-
ment policy (CRP) to determine which element to evict when the cache is full and a new element
needs to be stored. Probably the most popular CRP is the least recently used (LRU) heuristic which
evicts the element with the oldest access timestamp. A number of approaches have been proposed
to improve cache performance using machine learning (see sec. 5). We propose two different ap-
proaches how PVars can be used in a CRP to improve cache performance.

Discrete (listing 3): A PVar directly predicts which element to evict or chooses not to evict at all
(by predicting an invalid index). That is, the PVar learns to become a CRP itself. While this is the

7

Under review as a conference paper at ICLR 2019

Listing 3: Cache replacement policy directly predicting eviction decisions (Discrete).
1 keys = ... # keys now in cache.
2

3 # Returns evicted key or None.
4 def miss(key):
5 pvar.Feedback(-1) # Miss penalty.
6 pvar.Observe(’access’, key)
7 pvar.Observe(’memory’, keys)
8 return evict(pvar.Predict())

1def evict(i):
2if i >= len(keys): return None
3pvar.Feedback(-1) # Evict penalty.
4pvar.Observe(’evict’, keys[i])
5return keys[i]
6def hit(key):
7pvar.Feedback(1) # Hit reward.
8pvar.Observe(’access’, key)

Listing 4: Cache replacement policy using a priority queue (Continuous).
1 q = min_priority_queue(capacity)
2 def priority(key):
3 pvar.Observe(...)
4 score = pvar.Predict()
5 score *= capacity * scale
6 return time() + score

1def hit(key):
2pvar.Feedback(1) # Hit reward.
3q.update(key, priority(key))
4def miss(key):
5pvar.Feedback(-1) # Miss penalty.
6return q.push(key, priority(key))

Observation Network
(when using key embeddings)

Actor

Access
(history)

E
m

be
d

Action

 Critic

C
on

ca
t

Memory
Eviction

(history)

C
on

ca
tFC

FC
FC

Conv1D

Conv1D

Conv1D

FC
FC

FC

FC V
al

ue

Figure 5: The architecture of the neural networks for TD3 with key embedding network.

simplest way to use a PVar, it makes it more difficult to learn a CRP better than LRU (in fact, even
learning to be on par with LRU is non-trivial in this setting).

Continuous (listing 4): A PVar is used to enhance LRU by predicting an offset to the last access
timestamp. Here, the PVar learns which items to keep in the cache longer and which items to evict
sooner. In this case it becomes trivial to be as good as LRU by predicting a zero offset. The PVar
value in (−1, 1) is scaled to get a reasonable value range for the offsets. It is also possible to choose
not to store the element by predicting a sufficiently negative score.

In both approaches the feedback given to the PVar is whether an item was found in the cache (+1)
or not (−1). In the discrete approach we also give a reward of−1 if the eviction actually takes place.

In our implementation the observations are the history of accesses, memory contents, and evicted
elements. The PVar can observe (1) keys as a categorical input or (2) features of the keys.

Observing keys as categorical input allows to avoid feature engineering and enables directly learn-
ing the properties of particular keys (e.g. which keys are accessed the most) but makes it difficult to
deal with rare and unseen keys. To handle keys as input we train an embedding layer shared between
the actor and critic networks (fig. 5).

As features of the keys we observe historical frequencies computed over a window of fixed size.
This approach requires more effort from the developer to implement such features, but pays off with
better performance and the fact that the model does not rely on particular key values.

We experiment with three combinations of these options: (1) discrete caches observing keys, (2)
continuous caches observing keys, (3) continuous caches observing frequencies. For evaluation we
use a cache with size 10 and integer keys from 1 to 100. We use two synthetic access patterns of
length 1000, sampled i.i.d. from a power law distribution with α = 0.1 and α = 0.5. Fig. 6 shows
results for the three variants of predicted caches, a standard LRU cache, and an oracle cache to give
a theoretical, non-achievable, upper bound on the performance.

We look at the hit ratio without exploration to understand the potential performance of the model
once learning has converged. However, cumulative regret is still reported under exploration noise.

Both implementations that work directly on key embeddings learn to behave similar to the LRU
baseline without exploration (comparable hit ratio). However, the continuous variant pays a higher
penalty for exploration (higher cumulative regret). Note that this means that the continuous variant

8

Under review as a conference paper at ICLR 2019

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

0 0.5M 1M 2M 3M

H
it
 R

a
ti
o

Global Step

(a)

discrete keys
continuous keys

continuous frequency
lru

oracle

0 5k 10k 15k
-1e+06

-500000

0

500000

1e+06

1.5e+06

2e+06

C
u
m

u
la

ti
v
e
 r

e
g
re

t

Episode

(b)

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0 0.5M 1M 2M 3M

H
it
 R

a
ti
o

Global Step

(a)

discrete keys
continuous keys

continuous frequency
lru

oracle

0 5k 10k 15k
-1e+06

-800000

-600000

-400000

-200000

0

200000

400000

600000

800000

1e+06

C
u
m

u
la

ti
v
e
 r

e
g
re

t

Episode

(b)

Figure 6: Cache performance for power law access patterns. Top: α = 0.1, bottom: α = 0.5. (a) Hit Ratio
(w/o exploration) and (b) Cumulative Regret (with exploration)

learned to predict constant offsets (which is trivial), however the discrete implementation actually
learned to become an LRU CRP which is non-trivial. The continuous implementation with frequen-
cies quickly outperforms the LRU baseline, making the cost/benefit worthwhile long-term (negative
cumulative regret after a few hundred episodes).

5 RELATED WORK

Similar to our proposed interface, probabilistic programming (Gordon et al., 2014) introduces in-
terfaces which simplify the developer complexity when working with statistical models and con-
ditioning variable values on run-time observations. In contrast to PVars, the introduced interfaces
are specialized on working with distributions and graphical models. In the space of approximate
computing, (Sampson et al., 2011) propose a programming interface for approximate computation.
While similar in spirit, this work does not explicitly target machine learning models.

Similar in spirit to our approach is (Kraska et al., 2018) which proposes to incorporate neural models
into database systems by replacing existing index structures with neural models that can be both
faster and smaller. PVars in contrast aim not to replace existing data structures or algorithms but
transparently integrate with standard algorithms and systems. PVars are general enough to be used
to improve the heuristics in algorithms (as done here), to optimize database systems (similar to
Kraska et al. (2018)), or to simply replace an arbitrarily chosen constant. Another approach that is
similar to PVars is Spiral (Bychkovsky et al., 2018) but it is far more limited in scope than PVars in
that it aims to predict boolean values only and relies on ground truth data for model building.

Similarly, a number of papers apply machine learning to algorithmic problems, e.g. Neural Turing
Machines (Graves et al., 2014) aims to build a full neural model for program execution. Kaempfer
& Wolf (2018); Kool et al. (2018); Bello et al. (2016) propose end-to-end ML approaches to combi-
natorial optimization problems. In contrast to PVars these approaches replace the existing methods
with an ML-system. These are a good demonstration of the inversion of control mentioned above:
using ML requires to give full control to the ML system.

There are a few approaches that are related to our use of the initial function, however most common
problems where RL is applied do not have a good initial function. Generally related is the idea
of imitation learning (Hussein et al., 2017) where the agent aims to replicate the behavior of an
expert. Typically the amount of training data created by an expert is very limited. Based on imitation
learning is the idea to use previously trained agents to kickstart the learning of a new model (Schmitt
et al., 2018) where the authors concurrently use a teacher and a student model and encourage the

9

Under review as a conference paper at ICLR 2019

student model to learn from the teacher through an auxiliary loss that is decreased over time as the
student becomes better.

In some applications it may be possible to obtain additional training data from experts from other
sources, e.g. (Hester et al., 2018; Aytar et al., 2018) leverage YouTube videos of gameplay to increase
training speed of their agents. These approaches work well in cases where it is possible to leverage
external data sources.

Caches are an interesting application area where multiple teams have shown in the past that ML
can improve cache performance (Zhong et al., 2018; Lykouris & Vassilvitskii, 2018; Hashemi et al.,
2018; Narayanan et al., 2018; Gramacy et al., 2002). In contrast to our approach, all ML models
work on caches specifically and build task-dependent models that do not generalize to other tasks.

Algorithm selection has been an approach to apply RL for improving sorting algorithms (Lagoudakis
& Littman, 2000). Search algorithms have also been improved using genetic algorithms to tweak
code optimization (Li et al., 2005).

6 CONCLUSION

We have introduced a new programming concept called a predicted variable (PVar) aiming to make it
easier for developers to use machine learning from their existing code. Contrary to other approaches,
PVars can easily be integrated and hand full control to the developer over how ML models are
used and trained. PVars bridge the chasm between the traditional approaches of software systems
building and machine learning modeling and thus allow for the developer to focus on refining their
algorithm and metrics rather than working on building pipelines to incorporate machine learning.
PVars achieve this by reusing the existing concept of variables in programming in a novel way
where the value of the variable is determined using machine learning. PVar observes information
about its context and receives feedback about the quality of predictions instead of being assigned a
value directly.

We have studied the feasibility of PVars in three algorithmic problems. For each we show how
easy PVars can be incorporated, how performance improves in comparison to not using a PVar
at all. Specifically, through our experiments we highlight both advantages and disadvantages that
reinforcement learning brings when used as a solution for a generic interface as PVars.

Note that we do not claim to have the best possible machine learning model for each of these prob-
lems but our contribution lies in building a framework that allows for using ML easily, spreading
its use, and improving the performance in places where machine learning would not have been used
otherwise. PVars are applicable to more general problems across a large variety of domains from
system optimization to user modelling. Our current implementation of PVars is built on standard
RL methods but other ML methods such as supervised learning are in scope as well if the problem
is appropriate.

FUTURE WORK

In this paper we barely scratch the surface of the new opportunities created with PVars. The current
rate of progress in ML will enable better results and wider applicability of PVars to new applications.
We hope that PVars will inspire the use of ML in places where it has not been considered before.

We plan to release the code to reproduce the results in this paper. Further, we hope to make PVars a
standard feature in C++29, Python 4, and Java 12. ;)

ACKNOWLEDGMENTS

The authors would like to thank George Baggott, Gabor Bartok, Jesse Berent, Andrew Bunner,
Sergio Guadarrama, Efi Kokiopoulou, Anoop Korattikara , Eugene Kripichov, Ketan Mandke, Rif
Sauros, Luciano Sbaiz, and Weikang Zhou for discussions and support.

10

Under review as a conference paper at ICLR 2019

REFERENCES

Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine, Ziyu Wang, and Nando de Freitas. Playing
hard exploration games by watching YouTube. In NIPS, 2018.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. ArXiV, 2016.

Vladimir Bychkovsky, Jim Cipar, Alvin Wen, Lili Hu, and Saurav Mohapatra. Spi-
ral: Self-tuning services via real-time machine learning. Technical report, Facebook,
2018. https://code.fb.com/data-infrastructure/spiral-self-tuning-services-via-real-time-machine-
learning/.

Ofer Dekel and Yoram Singer. Data-driven online to batch conversions. In NIPS, 2005.

Scott Fujimoto, Herke van Hoof, and Dave Meger. Addressing function approximation error in
actor-critic methods. In ICML, 2018.

Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. Probabilis-
tic programming. In Proceedings of the on Future of Software Engineering, FOSE 2014, pp.
167–181, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2865-4. doi: 10.1145/2593882.
2593900. URL http://doi.acm.org/10.1145/2593882.2593900.

Robert B. Gramacy, Manfred K. Warmuth, Scott A. Brandt, and Ismail Ari. Adaptive caching by
refetching. In NIPS, 2002.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing machines. ArXiV, 2014.

Milad Hashemi, Kevin Swersky, Jamie A. Smith, Grant Ayers, Heiner Litz, Jichuan Chang, Christo-
foros E. Kozyrakis, and Parthasarathy Ranganathan. Learning memory access patterns. In ICML,
2018.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI, 2016.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In AAAI, 2018.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Andrew
Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z. Leibo, and Audrunas
Gruslys. Learning from demonstrations for real world reinforcement learning. In AAAI, 2018.

C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Comput. Surv., 2017.

Yoav Kaempfer and Lior Wolf. Learning the multiple traveling salesmen problem with permutation
invariant pooling networks. ArXiV, 2018.

Wouter Kool, Herke van Hoof, and Max Welling. Attention solves your TSP, approximately. ArXiV,
2018.

Tim Kraska, Alex Beutel, Ed Huai hsin Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for
learned index structures. In SIGMOD, 2018.

Michail G. Lagoudakis and Michael L. Littman. Algorithm selection using reinforcement learning.
In ICML, 2000.

Xiaoming Li, María Jesús Garzarán, and David A. Padua. Optimizing sorting with genetic algo-
rithms. Int. Sym. on Code Generation and Optimization, 2005.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. ArXiV,
2015.

11

http://doi.acm.org/10.1145/2593882.2593900

Under review as a conference paper at ICLR 2019

Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. In
ICML, 2018.

Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-Li Zhang. Deepcache:
A deep learning based framework for content caching. In NetAI’18, 2018.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan
Grossman. Enerj: Approximate data types for safe and general low-power computation. In ACM
SIGPLAN Notices, volume 46, pp. 164–174. ACM, 2011.

Simon Schmitt, Jonathan J. Hudson, Augustin Zídek, Simon Osindero, Carl Doersch, Wojciech
Czarnecki, Joel Z. Leibo, Heinrich Küttler, Andrew Zisserman, Karen Simonyan, and S. M. Ali
Eslami. Kickstarting deep reinforcement learning. ArXiV, 2018.

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay
Chaudhary, and Michael Young. Machine learning: The high interest credit card of technical
debt. In SE4ML: Software Engineering for Machine Learning (NIPS 2014 Workshop), 2014.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of Go with deep neural networks and tree search. Nature, 2016.

Louis F. Williams, Jr. A modification to the half-interval search (binary search) method. In Proc.
14th Annual Southeast Regional Conference, 1976.

Chen Zhong, Mustafa Cenk Gursoy, and Senem Velipasalar. A deep reinforcement learning-based
framework for content caching. In CISS, 2018.

A BREAK-EVEN FOR BINARY SEARCH VARIANTS

Table 1 gives details about when each of the different variants of using a PVar in binary search
reaches break-even. The numbers indicate how many episodes it takes for the cumulative regret
to become permanently negative, which means that for any additional evaluations after that point
the user has a net benefit from using a PVar compared to not using ML at all. The table shows
that reward shaping and using the predictions smartly improve performance but it also shows that
even simple methods are able to give improvements. Note, that no model outperforms interpolation
search on a uniform distribution as it is the best approximation for this distribution.

Table 1: Training episodes required for the cumulative regret to become permanently negative (compared to all
baselines) for all combinations of Prediction, Reward, and use of initial functions (“–”: does not happen within
5000 episodes).

Prediction Position Heuristics Mix
Reward simple shaped simple shaped
Initial function no yes no yes no yes no yes
Random – – – – 1058 – 425 258
Chisquare – – 3231 4885 3937 285 409 240
Gamma – – 3218 – – 248 594 –
Normal – – 3396 – 1048 283 403 252
Pareto – – 4255 4586 – 398 508 256
Power – – – – 1053 – 1234 234
Triangular – – – – 519 2618 666 2291
Uniform – – – – – – – –

B REPRODUCIBILITY: GOALS AND METRICS

We do not claim to have solved reinforcement learning reproducibility and throughout our experi-
ments we are facing the same issues as the larger community. The core aspect of the PVars frame-
work is the ability to rely on the initial function or algorithmic formulation to limit the costs of a

12

Under review as a conference paper at ICLR 2019

poorly performing learned policy. We illustrate this by looking at metrics over 100 restarts of the
different experiments and highlight that, while some experiments for some problems are more re-
producible than others, we do not perform worse than the initial function provided by the developer.

The design construct specific to PVars and what distinguishes it from standard Reinforcement Learn-
ing is that it is applied in software control where often developers are able to provide safe initial
functions or write the algorithm in a way that limits the cost of a poorly performing policy.

B.1 BINARY SEARCH

To quantify the reproducibility, we ran the experiment from Sec. 4.2 120× and report the cumulative
regret per episode (average number of extra steps per search episode) compared to vanilla binary
search. On average, the cumulative regret is: -1.59 @5K (-2.20 @50K). The break-even point is
reached in 85% of the cases, and within an average of 1965 episodes. The performance breakdown
by percentile, and the number of steps at which the break-even point is reached are referenced in
table 2.

Table 2: Binary Search reproducibility: average regret per episode (lower is better) and break-even point
Percentile 1 5 10 25 50 75 90 95 99
Regret @5K episodes -2.71 -2.66 -2.62 -2.45 -2.03 -1.01 0.44 0.70 0.78
Regret @50K episodes -3.99 -3.83 -3.76 -3.64 -3.34 -2.85 3.80 3.86 3.92
Break-even point (episodes) 127 201 271 417 758 2403 ∞ ∞ ∞

B.2 QUICKSORT

To quantify the reproducibility, we ran the experiment described in Sec. 4.3 115× and report the
cumulative regret per episode (average number of extra operations, as read=write=1, compare=0.5
per sort) compared to vanilla QuickSort. On average, the cumulative regret per episode is -913 @1K
(-1064 @10K) on a total operation cost of 25.1K per sort. The break-even point is reached in 94%
of the cases, and in an average after 368 episodes. The performance breakdown by percentile, and
the number of steps at which the break-even point is reached are referenced in table 3.

Table 3: QuickSort reproducibility: average regret per episode (lower is better) and break-even point
Percentile 1 5 10 25 50 75 90 95 99
Regret @1K episodes -1273 -1248 -1214 -1146 -1029 -916 -409 372 425
Regret @10K episodes -1356 -1306 -1267 -1219 -1146 -1034 -945 -285 393
Break-even point (episodes) 0 0 0 37 93 141 307 7370 ∞

B.3 CACHES

In order to quantify the reproducibility of our experiments we ran 100 times the same experiment
illustrated in sec. 4.4 and we report the performance of the learned cache policy using predicted
variables when compared with LRU heuristic, by looking at the cumulative regret metric after 20000
episodes. We break down the cumulative regret by percentiles in table 4.

Table 4: Caches reproducibility: average regret per episode (lower is better) and break-even point
Percentile 1 5 10 25 50 75 90 95 99
Regret @20K episodes -8.25 -5.88 -3.49 -0.00 0.00 0.02 0.34 0.84 2.17
Break even point (episodes) 32 157 472 ∞ ∞ ∞ ∞ ∞ ∞

When counting the number of runs for which there exists an episode where the cumulative regret is
strictly negative until the end, we note that this happens for 26% of the runs. For 60% of the runs the
cumulative regret does not become positive, meaning that using the learned cache policy is at least
as good as using the LRU heuristic. This leaves us with 14% of the runs resulting in strictly worse
performance than relying on the LRU heuristic.

13

Under review as a conference paper at ICLR 2019

C TD3, DDQN HYPERPARAMETERS

In table 5 we provide the hyperparameters used for different experiments in order to ease repro-
ducibility of our work. Together with Sec. B this details our entire experimental results and setup.

Table 5: Parameters for the different experiments described below (FC=fully connected layer, LR=learning
rate). See (Henderson et al., 2018) for details on these parameters.

Binary search QuickSort Caches (discrete) Caches (continuous)
Learning algorithm TD3 DDQN DDQN TD3
Actor network FC16 → tanh – – FC10 → tanh
Critic/value network FC16 (FC16,ReLU)2 → FC (FC10,ReLU)2 → FC FC10

Key embedding size – – 8
Discount 0.8, 0 0 0.8
LR actor 10−3 – – 10−4

Initial function decay yes no
Batch size 256 1024
Action noise σ 0.03 – – 0.01
Target noise σ 0.2 – – 0.01
Temperature – 0.1 –
Update ratio (τ) 0.05 0.001
Common: Optimizer: Adam; LR critic: 10−4; Replay buffer: Uniform, FIFO, size 20000; Update period: 1.

14

	Introduction
	Software Development with PVars
	Initial Functions in Predicted Variables
	Applications of Predicted Variables in Algorithms
	Experiment Setup
	Binary Search
	QuickSort
	Caches

	Related work
	Conclusion
	Break-even for binary search variants
	Reproducibility: Goals and Metrics
	Binary Search
	QuickSort
	Caches

	TD3, DDQN Hyperparameters

