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ABSTRACT

The loss landscapes of deep neural networks are poorly understood due to their
high nonconvexity. Empirically, the local minima of these loss functions can be
connected by a learned curve in model space, along which the loss remains nearly
constant. Yet, current path finding algorithms do not consider the influence of
symmetry in the loss surface caused by weight permutations of the networks cor-
responding to the minima. We propose a framework to investigate the effect of
symmetry on landscape connectivity by directly optimizing the weight permuta-
tions of the networks being connected. To learn a locally optimal permutation,
we introduce a proximal alternating minimization scheme and prove some con-
vergence guarantees. Using an neuron alignment technique, we derive an inex-
pensive heuristic for approximating a locally optimal weight permutation. Em-
pirically, optimizing the permutation is critical for efficiently learning a simple,
planar, low-loss curve between networks that successfully generalizes. As an ap-
plication, we also show that there is a performance gain, particularly for models
with less parameters, in the accuracy of ensembles constructed from the learned
curve with neuron alignment permutation.

1 INTRODUCTION

Loss surfaces of neural networks have been of recent interest in the deep learning community both
from a numerical (Dauphin et al. (2014); Sagun et al. (2014)) and a theoretical (Choromanska et al.
(2014); Safran & Shamir (2015)) perspective. Their optimization yields interesting examples of
a high-dimensional non-convex problem, where counter-intuitively gradient descent methods suc-
cessfully converge to non-spurious minima. Practically, recent advancements in several applications
have used insights on loss surfaces to justify their approaches. For instance, Moosavi-Dezfooli et al.
(2019) investigates regularizing the curvature of the loss surface to increase the adversarial robust-
ness of trained models.

One interesting question about these non-convex loss surfaces is to what extent trained models,
which correspond to local minima, are connected. Here, connection denotes the existence of a path
between the models, parameterized by their weights, along which loss is nearly constant. There has
been conjecture that such models are connected asymptotically, with respect to the width of hidden
layers. Recently, Freeman & Bruna (2016) proved this for rectified networks with one hidden layer.

When considering the connection between two neural networks, it is important for us to consider
what properties of the neural networks are intrinsic. There is a permutation ambiguity in the indexing
of units in a given hidden layer of a neural network, and as a result, this ambiguity extends to
the network weights themselves. Thus, there are numerous equivalent points in model space that
correspond to a given neural network. This creates weight symmetry in the loss landscape. It is
possible that the minimal loss paths between a network and all networks equivalent to a second
network could be quite different. If we do not consider the best path among this set, we could fail to
see to what extent models are intrinsically connected. Therefore, in this work we propose to develop
a technique for more robust model interpolation / optimal connection finding by investigating the
effect of weight symmetry in the loss landscape.The analyses and results will give us insight into the
geometry of level sets of the loss surfaces of deep networks that are often hard to study theoretically.

1



Under review as a conference paper at ICLR 2020

Related Work Freeman & Bruna (2016) is one of the first studies to rigorously prove that one hid-
den layer rectified networks are asymptotically connected and established relevant bounds. Several
recent numerical works have shown that parameterized curves along which loss is nearly constant
can be successfully learned. Concurrently, Garipov et al. (2018) proposed learning Bezier curves
and polygonal chains and Draxler et al. (2018) proposed learning a curve using nudged elastic band
energy between two models. Gotmare et al. (2018) showed that these algorithms work even for mod-
els trained using different hyperparameters, excluding network architecture. Recently, Kuditipudi
et al. (2019) analyzed the connectivity between ε-dropout stable networks. This body of work can
be seen as the extension of the linear averaging of models studied in (Goodfellow et al., 2014). In
fact, concurrent with our work, Singh & Jaggi (2019) applied neuron alignment to model averaging.

The symmetry groups in neural network weight space have long been formally studied (Chen et al.,
1993). While permutation ambiguity in the weights has been acknowledged, ostensibly ambiguity
due to scaling in the weights has received more attention in research. Numerous regularization
approaches based on weight scaling such as in (Cho & Lee, 2017) have been proposed to improve
the performance of learned models. Recently, Brea et al. (2019) studied the existence of permutation
plateaus in which the neurons in the layer of a network can all be permuted at the same cost.

A second line of work studies network similarity. Kornblith et al. (2019) gives a comprehensive
review on the topic while introducing centered kernel alignment (CKA) for comparing the behavior
of different neural networks. CKA is an improvement over the canonical correlation analysis (CCA)
technique introduced in (Raghu et al., 2017) and explored further in (Morcos et al., 2018). Another
contribution in this direction is the neuron alignment algorithm from (Li et al., 2016), which showed
empirically that two networks of the same architecture learn a subset of similar features.

Contributions We summarize the main contributions of this work as follows:
1. We formalize this problem, and apply a proximal alternating minimization (PAM) scheme to split
the problem into iteratively optimizing the permutation of the second model weights and optimizing
the curve parameters. We prove convergence of this scheme to a local critical point for feed-forward
neural networks which are piece-wise analytic functions and continuously differentiable.
2. Motivated by the neuron alignment technique of (Li et al., 2016) and our PAM framework, we
introduce a heuristic for approximating the optimal weight permutation in order to learn aligned
curves connecting networks up to a symmetry in their weights.
3. We perform experiments on 3 datasets and 4 architectures affirming that more optimal curves
can be learned faster with neuron alignment. We observe that this aligned permutation is close to a
locally optimal permutation that PAM converges to under the same initialization.
4. For simple networks, we observe a notable improvement in ensemble accuracy when constructing
them by sampling the aligned as opposed to the unaligned curve or a set of independent models.

For the structure of this paper, we first review pertinent background on curve finding and neuron
alignment in Section 2. Then, we introduce our proposed optimization models and algorithms for
curve finding up to a weight permutation in Section 3. In Section 4, we discuss our experiments
in detail. In Section 5, we explore the effect of alignment on the performance of model ensembles
constructed through sampling along the curve.

2 BACKGROUND ON CONNECTIVITY AND ALIGNMENT

In this section we review the existing approaches for loss optima connectivity and neuron alignment.

Loss Optima Connectivity To learn the minimal loss path connecting two N -dimensional neural
networks, θ1 and θ2, we utilize the curve finding approach introduced in (Garipov et al., 2018).
Here we search for the path, r : [0, 1] 7→ RN , that connects the two models while minimizing the
average of the loss function, L, along the path. This problem is formalized in equation 1.

r∗ = arg min
r

∫
t∈[0,1]

L(r(t))‖r′(t)‖dt∫
t∈[0,1]

‖r′(t)‖dt
subject to r(0) = θ1, r(1) = θ2. (1)

For tractability, r∗ can be approximated by a parameterized curve rφ, where φ denotes the curve
parameters. For instance, as described in Section 4, this paper will be using the quadratic Bezier
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curve. Computationally, an arclength parameterization, that is ||r′(t)|| = 1 for all t, is assumed
to make optimization more computationally feasible. Note that if the endpoint networks are global
minima and a flat loss path does exist, then the optimal objective of equation 1 is unchanged.

An equivalent view under the arclength parameterization is that we are minimizing Et∼U [L(rφ(t))],
where U is the uniform distribution on the unit interval. This view is taken in Algorithm 2 in
Appendix C. For clarity, we emphasize that rφ denotes the curve on the loss surface between two
networks while rφ(t) denotes a point on that curve which is a neural network.

Neuron Alignment We give an overview of the neuron alignment framework in (Li et al., 2016).
Given input d drawn from the input data distribution D, let X(1)

l,i,:(d) ∈ Rk represent the activation
values of channel i in layer l of network θ1, where k is the number of units in the channel. As
an example, a channel could correspond to one unit in a hidden state or one filter output by a
convolutional layer, where k would be 1 or the number of pixels in the filter respectively.

Given networks, θ1 and θ2, we define the channel-wise mean and standard deviation for θ1 in equa-
tion 2. We also define the cross-correlation matrix, C(1,2)

l , denoting the cross-correlation between
each channel in θ1 and θ2 in layer l.

µ
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l,i = Ed∼D[

1

k
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To align the activations in layer l between networks θ1 and θ2, the neuron alignment algorithm
maximizes the sum of cross-correlation between aligned activations. Equivalently, this finds the
permutation,Pl, that maximizes the trace ofP T

l C
(1,2)
l,:,: , which is an instance of the linear assignment

problem. We formalize this optimization model in equation 3 below, where Kl represents the index
set of activations in layer l. We recommend Burkard & Cela (1999) as a reference for those unfa-
miliar with the assignment problem.

max
Pl

trace(P T
l C

(1,2)
l,:,: ) (3)

subject to Pl1 = 1,P T
l 1 = 1, Pl ∈ Z|Kl|×|Kl|+

The alignment technique is visualized in Figure 1a. This displays the cross-correlation matrix for the
TinyTen network and CIFAR100 dataset that we discuss later in Section 4. It is clear that the values
along the diagonal are much stronger after alignment. Figure 1b displays the mean cross-correlation
at each layer between corresponding neurons. This figure also shows the standard deviation of this
signal over a set of 3 network pairs. With this correlation signature being consistent over different
pairs and being increased highly with alignment, we can feel confident that some subset of highly
correlated features are being matched.

3 OPTIMA CONNECTIVITY CONSIDERING WEIGHT SYMMETRY

We clarify the idea of weight symmetry in a neural network. θ1 is a neural network on the loss
surface parameterized by its weights. A permutation Pl is in Π|Kl|, the set of permutations on Kl,
the index set of channels in layer l. For simplicity suppose we have an L layer feed-forward network
with activation function σ, weights {Wl}Ll=1, and input X0. Then the weight permutation ambiguity
becomes clear when we introduce the following set of permutations to the feedforward equation:

Y := WLP
T
L−1 ◦ σ ◦ PL−1WL−1P

T
L−2 ◦ σ ◦ PL−2WL−2P

T
L−3 ◦ ... ◦ σ ◦ P1W1X0 (4)

Then we can define the network weight permutation P as the block diagonal matrix,
blockdiag(P1,P2, ...,PL−1). Additionally, Pθ denotes the network parameterized by the weights
[P1W1,P2W2P

T
1 , ...,WLP

T
L−1]. Note that we omit permutationsP0 andPL, as the input and out-

put channels of neural networks have a fixed ordering, so they correspond to the identity I . Without
much difficulty this framework generalizes for more complicated architectures. We discuss this for
residual networks in Appendix E.
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(a) Cross-correlation between neurons (b) Mean cross-correlation at each layer

Figure 1: (1a) Cross-correlation between the activations in the first layer of a TinyTen model for
CIFAR100. The plot on the left uses the original indices of the second network, while the plot on
the right uses the reindexing of the second model consistent with alignment to the first. Note the
diagonal of the second matrix is much more positive than the first matrix, which implies a meaning-
ful correspondence between aligned units. (1b) The mean cross-correlation between corresponding
units for each layer before and after alignment. The standard deviation of this correlation signature
over a set of different network pairs is displayed. This shows that the quality of the correspondence
between the average pair of units at each layer can be strongly improved through alignment.

3.1 CURVE FINDING UP TO SYMMETRY

From equation 4, it becomes clear that the networks θ1 and Pθ1 share the same structure and
intermediate outputs up to indexing. Taking weight symmetry into account, we can find the optimal
curve connecting two networks up to symmetry with the model in equation 5.

φ∗,P ∗ = arg min
φ,P

Et∼U [L(rφ(t))] (5)

subject to rφ(0) = θ1, rφ(1) = Pθ2, P = blockdiag(P1,P2, ...,PL−1)

Pl ∈ Π|Kl| for l ∈ {1, 2, ..., L− 1}

3.1.1 PROXIMAL ALTERNATING MINIMIZATION AS A FRAMEWORK

We first introduce a framework to solve the generalized problem in equation 5. Theoretically, this
problem is fairly complicated and hard to analyze. Numerically, approaching the problem directly
with first order methods could be computationally intensive as we need to store gradients of φ andP
simultaneously. The problem can be more easily addressed using the method of proximal alternating
minimization (PAM) (Attouch et al., 2010). The PAM scheme involves iteratively solving the two
subproblems in equation 6. Here we let Q(φ,P ) denote the objective function in equation 5. We
only consider parameterized forms of r that satisfy the endpoint constraints for all φ and P . For
generality, we letR denote a regularization term on φ.

P k+1 = arg minP Q(φk,P ) + 1
2νP
||P − P k||22

such that Pl ∈ Π|Kl| for l ∈ {1, 2, ..., L− 1}
P = blockdiag(P1,P2, ...,PL−1)

φk+1 = arg minφ Q(φ,P k+1) +R(φ) + 1
2νφ
||φ− φk||22

(6)

Computing the unaligned curve is equivalent to solving the PAM scheme with a very large value of
νP . In fact, we are able to prove local convergence results for a certain class of networks.
Theorem 3.1 (Convergence). Let {φk+1,P k+1} be the sequence produced by equation 6. Assume
that rφ(t) corresponds to a feed-forward neural network with activation function σ for t ∈ [0, 1].
Assume that L, rφ, and σ are all piece-wise analytic functions in C1 and locally Lipschitz differ-
entiable in φ and P . Additionally, assume R is piece-wise analytic in the primal variables and
bounded below. Lastly, assume that the input data is bounded and the norm of the network weights
are constrained to be bounded above. Then the following statements hold:

1. Q(φk+1,P k+1) +R(φk+1) + 1
2νφ
||φk+1 − φk||22 + 1

2νP
||P k+1 −P k||22 ≤ Q(φk,P k) +

R(φk),∀k ≥ 0

2. {φk,P k} converges to a critical point of Q(φ,P ) +R(φ)
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Proof See Appendix D

Remark Theorem 3.1 does not extend to neural networks with ReLU activation functions. In
Appendix D, we address a technique utilizing this theorem for learning a curve connecting rectified
networks while still generating a sequence of iterates with monotonic decreasing objective value.

3.1.2 NEURON ALIGNMENT AS AN INITIALIZATION

In spite of convergence guarantees, PAM still requires a good initialization as the loss landscape is
nonconvex. This is critical for avoiding convergence to non-global optima. Conceptually, neuron
alignment introduced in (Li et al., 2016) is able to match subsets of similar feature representations.
Thus, we believe that the permutation on the network weights induced by neuron alignment could
be meaningful enough to provide a good initialization of P .

In practice, we solve the linear sum assignment problem formulated in equation 3 using the Hun-
garian algorithm. See Kuhn (1955) for further reading on the Hungarian algorithm. Algorithm 1
summarizes the process for efficiently computing a permutation of the network weights from neu-
ron alignment. For an L layer network with a maximum layer width of M , we compute P using a
subset of the training data. Then the cost of computing the cross-correlation matrices for all layers
is dominated by the forward propogation through the network to accumulate the activations. The
running time needed to compute all needed linear assignments is O(LM3). This is on the order of
the running time associated with one iteration of forward propagation. Then neuron alignment is
relatively cheap as the time complexity of computing curves using neuron alignment is on the same
order as traditional curve finding. We refer to these different curves as aligned and unaligned.

Data: Trained Neural Networks θ1 and θ2, Subset of Training Data X0

Result: Aligned Neural Networks θ1 and Pθ2

Initialize Pθ2 := [Ŵ 2
1 , Ŵ

2
2 , ..., Ŵ

2
L] as [W 2

1 ,W
2
2 , ...,W

2
L];

for each layer l in {1, 2, ..., L− 1} do
for each network j in {1, 2} do

compute activations, X(j)
l = σ ◦W j

l X(j)
l−1 ;

for each element in the batch, vectorize X(j)
l if applicable ;

compute, Z(j)
l , the Z-score normalization of the activations ;

end
compute the cross-correlation matrix, C(1,2)

l = Z
(1)
l Z

(2)T
l ;

compute Pl by solving the assignment problem associated with C(1,2)
l using the Hungarian

algorithm ;
update Ŵ 2

l → PlŴ
2
l , Ŵ 2

l+1 → Ŵ 2
l+1P

T
l

end
Algorithm 1: Computing Permutation via Neuron Alignment

4 EXPERIMENTS

Datasets In our experiments, we trained neural networks to classify images from CIFAR10 and
CIFAR100 (Krizhevsky et al., 2009), as well as STL10 (Coates et al., 2011). The loss function is
the cross entropy loss on the softmax of the logits output by the networks. 20% of the images in the
training set are used for computing alignments between pairs of models. We augment the data using
color normalization, random horizontal flips, random rotation, and random cropping to prevent the
models from overfitting on the training set.

Architectures Four different model architectures are used. Table 1 summarizes relevant properties
of these architectures. The first architectures considered were the TinySix and TinyTen models.
TinyTen, introduced in (Kornblith et al., 2019), is a narrow 10 layer convolutional neural network
that uses batch-normalization, ReLU activations, and global average pooling. TinySix is equivalent
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to TinyTen with layers 2, 4, 5, and 7 removed. These are useful models for concept testing and
allow us to gain insight to networks that are underparameterized. We also include ResNet32 (He
et al., 2016) in our experiments to understand the effect of skip connections on curve finding with
alignment. VGG16-BN is the third architecture that we considered in our experiments (Simonyan
& Zisserman, 2014). VGG16 has significantly more parameters compared to other models. We
chose this set of architectures for its varying properties and because of their prevalence in numerical
experiments in related literature.

All models used as curve endpoints are trained using stochastic gradient descent. We set a learning
rate of 1E−1 that decays by a factor of 0.5 every 20 epochs. Weight decay of 5E−4 was used for
regularization. Each model was trained for 250 epochs, and all models were seen to converge.

Table 1: Properties of models used in this study

Model Number of
Parameters Depth Accuracy

CIFAR10 CIFAR100 STL10
TinySix 34,596 6 77.0± 0.3 40.1± 0.3 65.1± 0.1
TinyTen 86,778 10 88.7± 0.2 58.1± 0.5 73.8± 0.3

ResNet32 466,906 32 92.9± 0.2 67.1± 0.5 76.5± 0.3
VGG16-BN 15,253,578 16 93.1± 0.2 70.9± 0.3 72.5± 1.5

Quadratic Bezier curves All curves are parameterized as quadratic Bezier curves. Bezier curves
are popular in computer graphics as they can be defined by their control points. In the current study,
we refer to endpoint models as θ1 and θ2 as well as the control point, θc. Then r is defined in
equation 7

rφ(t) = (1− t)2θ1 + 2(1− t)tθc + t2θ2. (7)
Then θc is the learnable parameter in φ. Of course one could consider more complicated curve
parameterizations. In practice, we find a simple curve to be enough for our experiments, and consider
the learning of a planar curve along which loss is nearly constant to be significant in itself.

We explicitly define this curve for use in the PAM algorithm in equation 8. Here the curve has been
reparameterized so that the control point is a function of the permutation P . θ̃c captures the devia-
tion of the control point from the linear midpoint between θ1 and Pθ2. For PAM, θ̃c is the learnable
curve parameter in φ. It is zero initialized so that the initial curve is a linear interpolation between
models as in traditional curve finding. This coupling of the control point with the permutation was
seen to be critical for the success of PAM.

r(t; θ̃c,P ) = (1− t)2θ1 + 2(1− t)t
(
θ1 + Pθ2

2
+ θ̃c

)
+ t2Pθ2. (8)

4.1 TRAINING CURVES

For each architecture, we train 12, 6, and 6 different models using different random initializations
for CIFAR10, CIFAR100, and STL10 respectively. Thus we have 6 or 3 independent model pairs
for a dataset. We learn four classes of curves:

• Unaligned: Solution to algorithm 2 given networks θ1 and θ2

• PAM Unaligned: Solution to equation 6 given networks θ1 and θ2 with P (0) = I

• PAM Aligned: Solution to equation 6 given networks θ1 and θ2 with P (0) = PAl

• Aligned: Solution to algorithm 2 given networks θ1 and PAlθ2

where PAl denotes the permutation learned by neuron alignment (algorithm 1).

We learn PAM curves for all architectures except VGG16, as its size made this computationally
prohibitive. We train two sets of each curve class. One set involves the curves learned when the
random seed for curve finding is fixed for all model pairs. The other set consists of the curves
learned when the random seed is different for each model pair. We find that the learned curves for
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different seeds are similar up to reindexing the endpoints. For Figures 2, 3, and 4, we use the first set
of curves so that interesting geometric features on the loss surface are not averaged out. For tables
and other figures, we use the second set of curves as they are more general.

Table 2: The average accuracy along the curve with standard deviation is reported for each com-
bination of dataset, network architecture, and curve class. This shows that aligned curves not only
outperform the unaligned curves which do not consider the permutation ambiguity, they perform as
well as the PAM curves which learn a locally optimal permutation 1. Note that aligned accuracies
are typically as high as the trained model accuracies in Table 1.

Model Curve Class CIFAR10 CIFAR100 STL10

TinySix
Unaligned 73.8± 0.4 38.8± 0.2 64.1± 0.3
PAM Unaligned 75.8± 0.4 41.2± 0.3 64.5± 0.3
PAM Aligned 76.3± 0.3 41.4± 0.5 65.4± 0.2
Aligned 76.3± 0.3 41.6± 0.5 65.4± 0.2

TinyTen
Unaligned 87.2± 0.2 56.0± 0.2 73.7± 0.4
PAM Unaligned 87.9± 0.2 57.1± 0.1 73.9± 0.3
PAM Aligned 88.6± 0.1 58.5± 0.2 74.0± 0.3
Aligned 88.6± 0.1 58.7± 0.2 74.1± 0.3

ResNet32
Unaligned 92.4± 0.2 66.5± 0.2 76.6± 0.2
PAM Unaligned 92.5± 0.1 66.8± 0.1 76.7± 0.3
PAM Aligned 92.5± 0.1 66.9± 0.2 76.9± 0.2
Aligned 92.9± 0.2 67.7± 0.1 76.7± 0.2

VGG16 Unaligned 93.0± 0.1 70.7± 0.1 74.5± 1.0
Aligned 93.3± 0.1 71.6± 0.1 74.7± 0.8

4.1.1 NEURON ALIGNMENT

First, we investigate the effects of using neuron alignment as a heuristic for curve finding up to
symmetry. That is, we are determining some weight permutation PAl and then finding the curve
between networks θ1 and PAlθ2. The unaligned and aligned curves were both trained for 200
epochs using stochastic gradient descent with an annealing learning rate. The training of these
curves share the same hyperparameters as the training of the individual models.

(a) (b)

Figure 2: Test loss (left) and accuracy (right) of the learned quadratic Bezier curve between model
endpoints trained on CIFAR100. Results are compared for aligned (blue) and unaligned (green)
curves. This shows that aligned curves have better generalization performance and do not suffer
from large drops in accuracy typical for unaligned curves.

The test accuracy can be seen for each dataset and curve class in Table 2. Clearly, the aligned curves
outperform the unaligned curve. In many cases, the average accuracy along the aligned curves in

1Strictly speaking, the algorithm converges to a local optima in the convex relaxation of the domain. The
learned permutation is the projection of this optima to the feasible set.
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Figure 3: Test accuracy on CIFAR100 across the plane containing θ1, θ2, and Palθ2, where Pal
is determined using neuron alignment. This plane contains the two different intializations used in
our curve finding experiments. The default initialization, θ2 − θ1, and the aligned initialization,
Palθ2 − θ1. This shows that the aligned initialization is notably better.

Figure 4: Test accuracy on CIFAR100 across the plane containing the bezier curve, rφ(t).

comparable to the trained models used as endpoints. Table 4 contains the minimum accuracy along
the curve, indicating that while aligned curves do not suffer from the same generalization gap that
unaligned curves are prone to. Finally, Table 5 contains the training loss for each case at convergence.
Overall, it is clear that the strongest gains from using alignment are in the case of underparameter-
ized networks. As seen in Table 2, the largest increase in performance is for TinySix on CIFAR100
while the smallest gain is made for STL10 on VGG16. This is inline with observations by (Freeman
& Bruna, 2016).

The test loss and accuracy along the learned curves for CIFAR100 are shown in Figure 2. The
corresponding Fourier transform of the loss along the curve for assessing curve smoothness is dis-
played in Figure 11. We observe that, as expected, the accuracy at each point along the aligned
curve exceeds that of the unaligned curve, while the loss along the curve is also smoother with neu-
ron alignment. We are comparing loss and accuracy at the curve parameter, t. Noteworthy is the
prominent presence of the accuracy barrier along the unaligned curve around t at 0.8 for all models.
This accuracy barrier corresponds to a clear loss barrier for Tiny-10 and ResNet32. In contrast, for
VGG16 there is a valley in the loss function at this point on the unaligned curve with worse gener-
alization performance. Overall, we find that loss along the aligned curves varies more smoothly as
seen in Figure 11, and this leads to better generalization of the interpolated models.
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Figure 3 displays the planes which contains the initializations for curve finding. It is clear that the
aligned initialization has better objective value. This can also be seen for the other datasets in Figure
7. The planes containing the learned curves are displayed in Figures 4 and 13. These are the planes
containing θ1, Pθ2, and θc, although the control point is out of bounds of the figure. The axis is
determined by Gram-Schmidt orthonormalization. The loss displayed on the planes containing the
linear initializations and the Bezier curves can be seen in Figures 6 and 12.

(a) CIFAR100 training loss (b) CIFAR100 training accuracy

Figure 5: The training loss and training accuracy for learning the quadratic Bezier curve between
model endpoints. These are compared for aligned and unaligned curves. This shows that the training
of aligned curves converges to lower loss value in less epochs than the training of unaligned curves.

Practically, the neuron alignment heurisitc for determining the permutation P may be enough and
avoids performing more complicated optimization. We see this by noting the relative flatness of
the accuracy along the aligned curves in Figure 2b. Additionally, Figure 5 indicates much faster
convergence when learning φ using neuron alignment, which is quite impressive. For example,
the aligned curve takes 100 epochs less to achieve the training accuracy that the unaligned curve
converges to, when TinyTen is used on CIFAR100. Even for VGG16, the aligned curve reaches the
milestone 40 epochs earlier. Figures 8 and 9 display these training curves for the additional datasets.

While these observations are promising, we intend to provide insight into why neuron alignment
works, whih is addressed in Appendix F where we investigate how the alignment is preserved along
the learned curve. We find that the midpoints of the unaligned curves are highly aligned to each
endpoint even though the endpoints themselves are weakly aligned at best. Then, we find that curve
finding is essentially trying to smoothly interpolate similar feature representations. Sensibly, neuron
alignment of the endpoints makes this task easier.

4.1.2 PROXIMAL ALTERNATING MINIMIZATION

Proximal alternating minimization provides a comprehensive formulation for learning the weight
permutation P directly, coupled with some convergence guarantees. We find that curves learned
using PAM perform better than the unaligned curves as seen in Table 2. As was the case for the
aligned curves, this performance gain is more notable in underparameterized models. Notably, the
aligned curves perform comparably to PAM aligned. This indicates that PAl is already close to
the locally optimal permutation when PAl is chosen as the initialization for PAM. Additionally, the
performance gain of PAM Aligned over PAM Unaligned shows that this permutation is not easy to
learn when P (0) is not necessarily close. Then training aligned curves is an inexpensive way to
approximate the solution to a rigorous optimization method with good initialization. We stress that
this observation shows that the gain from neuron alignment is not trivial.

We now address some technical points in the training of the PAM curves. To learn each curve, we
perform 4 iterations of PAM. The permutation subproblem entails 20 epochs of projected stochastic
gradient descent to the set of doubly stochastic matrices. This is done as the set of doubly stochas-
tic matrices is the convex relaxation of the set of permutations. This projection is accomplished
through 20 iterations of alternating projection of the updated permutation to the set of nonnegative
matrices and the set of matrices with row and column sum of 1. After the 20 epochs of projected
gradient descent, each layer permutation is projected to the set of permutations, Π|Kl|. The curve

9
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parameter subproblem, which optimizes θ̃c from equation 8, entails 40 epochs of stochastic gradient
descent. The same hyperparameters are used as in training the endpoint models. The learning rates
are annealed with each iteration of PAM. This training can be seen for CIFAR100 in Figure 10.

The outlier case in Table 2 is for ResNet32 where Aligned notably outperforms PAM Aligned. This
result is due to the integral nature of the problem. Essentially, during PAM Aligned, the scheme
learns a more optimal doubly stochastic matrix that actually projects to a worse permutation at the
end of the permutation subproblem. This is a known possible negative, when solving a problem in
the convex hull and then projecting back to the feasible set.

5 APPLICATION: CONSTRUCTING ENSEMBLES ALONG ALIGNED CURVES

We investigate if the diversity of models along the curve suffers due to alignment through the lens
of constructing network ensembles. We consider the simple ensemble that performs classification
by averaging the probability distributions output by the individual networks. In our experiment, we
look at four cases. The ensemble formed by considering the curve endpoints, the ensembles formed
by the curve endpoints and the midpoint, and an ensemble of the curve endpoints and a third inde-
pendent model. We consider ensembling only on the CIFAR100 dataset with results for the aligned
and unaligned case being summarized in Table 3. We see that at best, ensembles constructed by
sampling along the unaligned curve perform as well as the independent ensemble. When construct-
ing ensembles by sampling along the aligned curve, those outperform the independent ensemble
for the TinySix, TinyTen, and Resnet32 case and show comparable performance for VGG16. The
enhanced performance is most obvious on TinyTen. This result makes sense since ensembling has
been reported to lead to better performance increase for simpler networks (Ju et al., 2018). This
result is encouraging as ensembles of simple models are common in practice. We also note that
the performance gain from the aligned ensemble is comparable in magnitude to the gains of Fast
Geometric Ensembling in (Garipov et al., 2018) over Snapshot Ensembling (Huang et al., 2017).

Table 3: Accuracy of model ensembles constructed from the curve connecting trained models on the
CIFAR100 dataset. Standard deviation is reported as well. All ensembles function by averaging the
predictions of their component models. The curve ensembles are constructed by sampling the curve
at the values of t listed. The independent ensemble consists of three independently trained models.

Curve Ensembles (%) Independent
Ensembles
(%)

curve parameter t {0.0, 1.0} {0.0, 0.5, 1.0}
Unaligned Aligned

TinySix 41.80± 0.15 42.66± 0.48 43.82± 0.78 42.05± 0.26
TinyTen 61.23± 0.36 61.39± 0.25 62.40± 0.30 61.76± 0.01

ResNet32 71.35± 0.30 72.13± 0.12 72.33± 0.12 72.03± 0.08
VGG16 74.00± 0.17 74.69± 0.22 74.91± 0.10 74.88± 0.06

6 DISCUSSION AND FUTURE WORK

We generalize the curve finding problem by removing the weight symmetry ambiguity associated
with the endpoint models. The optimal permutation of these weights can be approximated using
neuron alignment. We find empirically that this approximation performs comparably to a proximal
alternating scheme with the same initialization which learns a locally optimal permutation. Addi-
tionally, we prove that this PAM scheme has some convergence guarantees. Empirically, we show
that neuron alignment can be used to successfully and efficiently learn optimal connections between
neural nets. Addressing the ambiguity of weight symmetry is critical for learning planar curves
on the loss surface along which accuracy is mostly constant. Our results hold true over a range
of datasets and network architectures. With neuron alignment, these curves can be trained in less
epochs and to higher accuracy. We also see a modest to notable increase in the performance of
ensembling.

10
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Future work will include gaining a deeper theoretical understanding of how neuron alignment affects
curve finding dynamics. We plan to further explore how similar feature representations between
models are smoothly interpolated by these learned curves, and how this relates to network training.
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Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran. Proximal alternating mini-
mization and projection methods for nonconvex problems: An approach based on the kurdyka-
łojasiewicz inequality. Mathematics of Operations Research, 35(2):438–457, 2010.

Johanni Brea, Berfin Simsek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry in deep
networks gives rise to permutation saddles, connected by equal-loss valleys across the loss land-
scape. arXiv preprint arXiv:1907.02911, 2019.

Rainer E Burkard and Eranda Cela. Linear assignment problems and extensions. In Handbook of
combinatorial optimization, pp. 75–149. Springer, 1999.

An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. On the geometry of feedforward neural
network error surfaces. Neural computation, 5(6):910–927, 1993.

Minhyung Cho and Jaehyung Lee. Riemannian approach to batch normalization. In Advances in
Neural Information Processing Systems, pp. 5225–5235, 2017.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks, 2014.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pp. 215–223, 2011.

Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization, 2014.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
in neural network energy landscape. In International Conference on Machine Learning, pp. 1308–
1317, 2018.

C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimization.
arXiv preprint arXiv:1611.01540, 2016.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. In Advances in Neural Information
Processing Systems, pp. 8789–8798, 2018.

Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe. Qualitatively characterizing neural network
optimization problems, 2014.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. Using mode con-
nectivity for loss landscape analysis. arXiv preprint arXiv:1806.06977, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.
Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109, 2017.
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Supplementary Material for Optimizing Loss Landscape Connectivity via Neuron Alignment

A ADDITIONAL FIGURES

A.1 PLANES CONTAINING LINEAR INITIALIZATIONS

(a) CIFAR100

(b) CIFAR10

(c) STL10

Figure 6: Test loss on plane containing θ1, θ2, and Palθ2.

(a) CIFAR10

(b) STL10

Figure 7: Test accuracy on plane containing θ1, θ2, and Palθ2.
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A.2 TRAINING

(a) Training loss (b) Training accuracy

Figure 8: CIFAR10

(a) Training loss (b) Training accuracy

Figure 9: STL10

Figure 10: Log loss over a run of the proximal alternating minimization scheme on TinyTen for CI-
FAR100. The scheme consists of 20 epochs of projected SGD to solve the permutation subproblem,
followed by 40 epochs of SGD to solve the curve parameter subproblem. Vertical lines denote the
change in different subproblem iterations. This shows that neuron alignment provides a much better
intialization for PAM, and this permutation initialization is close to being locally optimal.
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Figure 11: Fourier transform of CIFAR100 loss curve. Notice that the absolute value of the trans-
form is lower for the aligned case at higher modes/wavenumbers. In spectral terms, this shows that
the average aligned curve is less oscillatory than the unaligned curve. This is a rigorous way to
measure the smoothness of a curve.
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A.3 PLANES CONTAINING LEARNED BEZIER CURVES

(a) CIFAR100

(b) CIFAR10

(c) STL10

Figure 12: Test loss on plane containing learned curve, rφ(t).
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(a) CIFAR10

(b) STL10

Figure 13: Test accuracy on plane containing learned curve, rφ(t).

B ADDITIONAL RESULTS

Table 4: The minimum accuracy along the curve with standard deviation is reported for each com-
bination of dataset, network architecture, and curve class.

Model Endpoints CIFAR10 CIFAR100 STL10

TinySix
Unaligned 71.6± 0.6 35.9± 2.3 62.6± 0.6
PAM Unaligned 74.8± 0.5 39.8± 0.2 63.4± 0.4
PAM Aligned 75.7± 0.4 39.9± 0.3 64.8± 0.1
Aligned 75.6± 0.5 39.9± 0.2 64.8± 0.1

TinyTen
Unaligned 85.0± 1.2 53.2± 1.1 72.3± 0.6
PAM Unaligned 87.2± 0.3 56.1± 0.1 72.6± 0.5
PAM Aligned 88.0± 0.1 57.7± 0.3 73.5± 0.3
Aligned 88.6± 0.1 57.7± 0.4 73.4± 0.3

ResNet32 Unaligned 91.2± 0.7 64.7± 0.4 75.7± 0.3
PAM Unaligned 91.7± 0.3 65.1± 1.0 76.0± 0.4
PAM Aligned 91.8± 0.2 65.3± 0.6 76.1± 0.3
Aligned 92.6± 0.2 66.6± 0.1 76.0± 0.2

VGG16 Unaligned 92.6± 0.1 69.6± 0.4 71.3± 1.8
Aligned 93.0± 0.1 70.8± 0.1 71.3± 1.8
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Table 5: The training loss with standard deviation is reported for each combination of dataset, net-
work architecture, and curve class.

Model Endpoints CIFAR10 CIFAR100 STL10

TinySix
Unaligned 0.896± 0.008 2.636± 0.008 0.931± 0.014
PAM Unaligned 0.826± 0.006 2.501± 0.015 0.914± 0.010
PAM Aligned 0.813± 0.008 2.489± 0.018 0.863± 0.005
Aligned 0.817± 0.006 2.490± 0.018 0.864± 0.004

TinyTen
Unaligned 0.460± 0.004 1.839± 0.010 0.479± 0.018
PAM Unaligned 0.419± 0.005 1.733± 0.013 0.469± 0.000
PAM Aligned 0.387± 0.003 1.662± 0.007 0.393± 0.007
Aligned 0.392± 0.003 1.693± 0.008 0.389± 0.007

ResNet32 Unaligned 0.212± 0.005 1.124± 0.005 0.292± 0.007
PAM Unaligned 0.191± 0.002 1.093± 0.011 0.283± 0.001
PAM Aligned 0.192± 0.002 1.086± 0.011 0.283± 0.001
Aligned 0.180± 0.002 1.011± 0.002 0.256± 0.002

VGG16 Unaligned 0.212± 0.002 0.710± 0.004 0.372± 0.029
Aligned 0.198± 0.001 0.676± 0.005 0.366± 0.015

C ALGORITHMS

This section contains algorithms described in Section 2.

Data: Two trained models, θ1 and θ2

Result: A parameterized curve, rφ, connecting θ1 and θ2 along which loss is flat
Initialize rφ(t) as θ1 + t(θ2 − θ1);
while not converged do

for batch in dataset do
sample point t0 in [0, 1];
compute loss L(rφ(t0)) ;
optimization step on network rφ(t0) to update φ ;

end
end

Algorithm 2: Curve Finding (Garipov et al., 2018)

In this algorithm, the optimization step can correspond to a variety of techniques. In this paper, we
use traditional stochastic gradient descent to update the curve parameters φ. Notice that stochasticity
is introduced by the sampling of t as well as the training data.

For the purpose of computing validation loss and test loss for rφ, important care must be given for
networks that contain batch normalization layers. This is because batch normalization aggregates
running statistics of the network output that are used when evaluating the model. Though, rφ(t0)
gives the weights for the model at point t0, the running statistics need to be aggregated for each
normalization layer. In practice, this can be done by training the model for one epoch, while freezing
all learnable parameters of the model. Since batch statistics would need to be computed for each
point sampled along the curve, it happens that computing the validation or test loss of the curve rφ
is more expensive than an epoch of training.

D PROOFS

For the following proofs, we first establish and more rigorously define some terminology. We first
discuss an important abuse of notation. For clarity the parameterized curve connecting networks
under some permutation P that has been written as rφ(t) will now sometimes be referred to as
r(t;φ,P ).
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Feed-forward neural networks In this section, we will be analyzing feed-forward neural net-
works. We let X0 ∈ Rm0×d be the input to the neural network, d samples of dimension m0. Then
we let Wi ∈ Rmi×mi−1 denote the network weights mapping from layer l − 1 to layer l. Addition-
ally, σ denotes the pointwise activation function. Then we can express the output of a feed-forward
neural network, Y , as:

Y := WLσ ◦WL−1σ ◦WL−2...σ ◦W1X0 (9)

To include biases, {bi}Li=1, we simply convert to homogeneous coordinates,

X̂0 =

[
X0

1

]
, Ŵi =

[
Wi bi
0 1

]
, Ŷ =

[
Y
1

]
(10)

In all proofs, these terms are interchangeable.

Huberized ReLU The commonly used ReLU function is defined as σ(t) := max(0, t). However,
this function is not in C1 and hence not locally Lipschitz differentiable. This makes conducting
analysis with this function difficult. Thus, we will approach studying it through the lens of the
huberized ReLU function, defined as:

σδ(t) :=


0 for t ≤ 0
1
2δ t

2 for 0 ≤ t ≤ δ
t− δ

2 for δ ≤ t
(11)

It is clear that σδ is a C1 approximation of σ such that ||σ − σδ||∞ = δ
2 . Using huberized forms of

loss functions for analysis is a fairly common technique such as in (Xu et al., 2016) which studies
huberized support vector machines.

Kurdyka-Lojasiewicz property The function f is said to have the Kurdyka-Lojasiewics (KL)
property at x̄ if there exist ν ∈ (0,+∞], a neighborhood U of x̄ and a continuous concave function
ψ : [0, ν)→ R+ such that:

• ψ(0) = 0

• ψ is C1 on (0, ν)

• ∀s ∈ (0, ν), ψ′(s) > 0

• ∀x ∈ U ∩ [f(x̄) < f < f(x̄) + ν], the Kurdyka-Lojasiewics inequality holds

ψ′(f(x)− f(x̄))dist(0, ∂f(x)) ≥ 1. (12)

Here ∂f denotes the subdifferential of f . Informally, a function that satisfies this inequality is one
whose range can be reparameterized such that a kink occurs at its minimum. More intuitively, if ψ
has the form, s1−θ, and f is differentiable on (0, ν), then the inequality reduces to

1

(1− θ)
|f(x)|θ ≤ ||∇f(x)|| (13)

Semialgebraic function A subset of Rn is semialgebraic if it can be written as a finite union of
sets of the form

{x ∈ Rn : pi(x) = 0, qi(x) < 0, i = {1, 2, ..., p}}

where pi and qi are real polynomial functions. A function f : Rn → R ∪ {+∞} is said to be
semialgebraic if its graph is a semialgebraic subset of Rn+1.

Subanalytic function Globally subanalytic sets are sets of the form {(x, t) ∈ [−1, 1]n × R :
f(x) = t} where f : [−1, 1]n → R is an analytic function that can be extended analytically on a
neighborhood of the interval [−1, 1]n. A function is subanalytic if its graph is a globally subanalytic
set.
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D.1 PROOF OF THEOREM 3.1

To prove this, we need that our problem meets the conditions required for local convergence of
proximal alternating minimization (PAM) described in (Attouch et al., 2010). This requires the
following:

1. Each term in the objective function containing only one primal variable is bounded below
and lower semicontinuous.

2. Each term in the objective function which contains both variables is in C1 and is locally
Lipschitz differentiable.

3. The objective function satisfies the Kurdyka-Lojasiewicz (KL) property.

First we reformulate the problem so that it becomes unconstrained. Let χ denote the indicator
function, where:

χC(t) :=

{
0, for t ∈ C
+∞, otherwise

(14)

This problem contains two hard constraints. First, each permutation matrix, Pl, must clearly be
restricted to the set of permutation matrices of size |Kl|, Π|Kl|. Additionally, it is assumed that
the norm of the weights are bounded above. Without loss of generality, let KW denote an upper
bound valid for all the weights. We denote the set of weights that satisfy the norm constraint as
{A : ||A||22 ≤ KW }. Then equation 5 with added regularization is equivalent to:

φ∗,P ∗ = arg min
φ,P

Q(φ,P ) +R(φ) +

L−1∑
l=1

χΠ|Kl|
(Pl) +

L∑
l=1

χ{A:||A||22<KW }(Wl) (15)

We now address each requirement for local convergence.

1. By the theorem, R is assumed to be bounded below and lower semicontinuous. It is easy
to see from equation 14 that the sum of indicator functions are bounded below and lower
semicontinuous.

2. Now we consider the form of the function, Q(φ,P ). It has been defined as∫ 1

t=0

L(r(t;φ,P ))dt

We know that r(t;φ,P ) corresponds to a feed-forward neural network. Then Q can be
expressed as:∫ 1

t=0

L (WL(t;φ,P )σ ◦WL−1(t;φ,P )...σ ◦W1(t;φ,P )X0) dt (16)

with weight matrices Wi and activation function σ. It becomes clear that for Q(φ,P ) to be
in C1 and locally Lipschitz differentiable, the same must be true for L, σ, and {Wi}Li=1.
The first two are true as they are assumptions of the theorem. Since, rφ is in C1 and locally
Lipschitz differentiable in the primal variables, then this is also true for all Wi. Thus,
Q(φ,P ) is in C1 and locally Lipschitz differentiable.

3. To satisfy the KL property, the objective function must be a tame function (Attouch et al.,
2010). Rigorously, this means that the graph of the function belongs to an o-minimal
structure, a concept from algebraic geometry. We refer curious readers to (van den Dries
& Speissegger, 2002) for further reference.

First, we note that Q(φ,P ) is piece-wise analytic. This is because Q is a composition
of piece-wise analytic functions, L, σ, and rφ. Additionally, because the input data is
bounded and the norm of the weight matrices are bounded, it follows that the domain
of Q is bounded. Since, Q is a piece-wise analytic function with bounded domain, it
follows that Q is a subanalytic function. The boundedness of the domain is an important
detail here. This is because analytic functions are not necessarilly subanalytic unless their
domain is bounded; a popular example of such a function is the exponential function.

20



Under review as a conference paper at ICLR 2020

The regularization function, R, is assumed to be a piece-wise analytic function. It follows
from the previous reasoning thatR has bounded domain. Thus,R is a subanalytic function.

We now consider the constraints associated with this problem, which have been re-
expressed as indicator functions in the objective. The set of permutation matrices, Π|Kl|,
is finite and thus it is clearly a semi-algebraic set. Notice that the set of weight matrices
satisfying the norm bound is equivalent to {A : ||A||22 − KW < 0}. The function that
defines this set is a polynomial, so it is a semi-algebraic set. Indicator functions on
semi-algebraic sets are semi-algebraic functions. Thus, the indicator functions in the
objective are semi-algebraic.

The graphs of semi-algebraic functions and subanalytic functions both belong to the
logarithmic-exponential structure, an o-minimal structure. A basic algebraic property of
o-minimal structures is that the graphs of addition and multiplication are also elements of
the structure (van den Dries & Speissegger, 2002). Since our objective function is a linear
combination of semi-algebraic functions and subanalytic functions, it follows that the graph
of our objective function is an element of the logarithmic-exponential structure. Therefore,
our objective function is a tame function and it satisfies the KL property.

D.2 CONSIDERING RECTIFIED NETWORKS

Theorem 3.1 does not extend to the class of rectified networks. However, we are still interested in
contructing a sequence of iterates {φk,P k} such that the objective value, Et∼U [L(r(t;φk,P k))],
is monotonic decreasing. The following theorem will introduce a technique for constructing such a
sequence.

Lemma D.1 (L restricted to possible network outputs is Lipschitz continuous). For a feed-forward
neural network, assume that L is continuous and that the neural network input, X0, is bounded.
Additionally, assume that the spectral norm of all weights, {Wi}Li=1, is bounded above by KW , and
the activation function, σ, is continous with ||σ|| ≤ 1. Let SY denote the set of Y where

Y = WLσ ◦WL−1σ ◦WL−2...σ ◦W1X0 (17)
such that ||Wi||2 ≤ KW ∀i ∈ {1, 2, ..., L}

Then L restricted to the set SY is Lipschitz continuous with some Lipschitz constant K.

Proof. Since X0 is bounded, it follows that there exists some constant KX such that ||X0|| ≤ KX .
Since, the spectral norm of W1 is bounded above by KW , it is easy to see that ||W1X0|| ≤ KWKX .
Now since the pointwise activation function is a non-expansive map, it immediately follows that
||σ ◦W1X0|| ≤ KWKX . Following this process inductively, we see that the network output, Y , is
bounded and that:

||Y || ≤ KL
WKX (18)

Since Y is arbitrary, it follows that this is a bound for SY . Then we can restrict L to the ball in
RmL×d of radius KL

WKX . This ball is compact and L is continuous, so it follows that L restricted
to this ball is Lipschitz continuous. Thus, there exists some Lipschitz constant K. Clearly, SY is
contained in this ball. Therefore, L is Lipschitz continuous on the set of all possible network outputs
with Lipschitz constant K.

Let θ1 and θ2 be feed-forward neural networks with ReLU activation function. Assume that L
and rφ are piece-wise analytic functions in C1 and locally Lipschitz differentiable. Assume that
R is piece-wise analytic, lower semi-continuous, and bounded below. Assume that the maximum
network width at any layer isM units. Additionally, assume that the network weights have a spectral
norm bounded above by KW , and that this is a hard constraint when training the networks. Finally,
any point on rφ must be equivalent to an affine combination of neural networks (Bezier curves,
polygonal chains, etc.) satisfying the previously stated spectral norm bound.

Create the parameterized curve rδ(t;φ,P ) by substituting the huberized ReLU function, σδ , into
all ReLU functions in r(t;φ,P ). We refer to the objective values associated with these curves as
Qδ(φ,P ) and Q(φ,P ) respectively.
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Theorem D.2 (Monotonic Decreasing Sequence for Rectified Networks). For a feed-forward net-
work, assume the above assumptions have been met. Additionally, assume that X0 is bounded, so
thatL restricted to the set of possible network outputs is Lipschitz continuous with Lipschitz constant
KL by Lemma D.1. Now generate the sequence {φk,P k} by solving equation 6 for rδ(t;φ,P ). On
this sequence impose the additional stopping criteria that

1

2νφ
||φk+1 − φk||22 +

1

2νP
||P k+1 − P k||22 ≥ KL

√
M
δ

2

L−1∑
i=1

Ki
W ∀k ≥ 0. (19)

Then, the sequence of curves r(t;φk,P k) connecting rectified networks has monotonic decreasing
objective value.

Proof. First we consider the approximation error from replacing σ with σδ . It is straightforward to
see that

max
t
|σ(t)− σδ(t)| ≤

δ

2
. (20)

Then it follows that for any input x,

||σ ◦W1x− σδ ◦W1x||2 ≤
√
M
δ

2
.

Since the spectral norm of Wi are bounded above by KW , then we see that

||W2σ ◦W1x−W2σδ ◦W1x||2 ≤ KW

√
M
δ

2
.

Now notice that

||σ ◦W2σ ◦W1x− σδ ◦W2σδ ◦W1x|| ≤ ||σ ◦W2σ ◦W1x− σ ◦W2σδ ◦W1x|| (21)
+ ||σ ◦W2σδ ◦W1x− σδ ◦W2σδ ◦W1x||.

Since the ReLU function is a non-expansive map, it must be that the first term is bounded above
by the previous error, KW

√
M δ

2 . The second term corresponds once again to the error associated
with the huberized form of the ReLU function,

√
M δ

2 . Thus the total error can be bounded by
(KW + 1)

√
M δ

2 .

Following this inductively, it can be seen that the this error grows geometrically with the number of
layers. Additionally, the loss function is Lipschitz continuous when restricted to the set of possible
network outputs. So we find the following bounds:

||Y − Yδ|| ≤
√
M
δ

2

L−1∑
i=1

Ki
W

||L(Y )− L(Yδ)|| ≤ KL

√
M
δ

2

L−1∑
i=1

Ki
W (22)

Since any point on the curve is an affine combination of networks with theKW bound on the spectral
norm of their weights, it immediately follows this spectral norm bound also holds for the weights
for any point on the curve. Then ||Q(φ,P ) − Qδ(φ,P )|| is also bounded above by the bound in
equation 22.

Then let {φk,P k} be the sequence generated by solving equation 6 using the curve rδ . σδ is a piece-
wise analytic function in C1 and is locally Lipschitz differentiable. Additionally, the spectral norm
constraint on the weights is semi-algebraic and bounded below, so Theorem 3.1 can be applied. It
then follows that

Q(φk+1,P k+1) +R(φk+1) +
1

2νφ
||φk+1 − φk||22 +

1

2νP
||P k+1 − P k||22 (23)

≤ Q(φk,P k) +R(φk) +KL

√
M
δ

2

L−1∑
i=1

Ki
W , ∀k ≥ 0
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Thus, r(t;φk,P k) is a sequence of curves, connecting rectified networks, with monotonic decreas-
ing objective value as long as

1

2νφ
||φk+1 − φk||22 +

1

2νP
||P k+1 − P k||22 ≥ KL

√
M
δ

2

L−1∑
i=1

Ki
W ∀k ≥ 0

Since the above equation is a stopping criterion introduced in the theorem statement, it follows that
we have constructed a sequence of curves, connecting rectified networks, with monotonic decreasing
objective value.

E RESIDUAL NETWORK ALIGNMENT

Algorithm 1 applies to networks with a typical feed-forward structure. In this section, we discuss
how we compute alignments for the ResNet32 architecture as it is more complicated. It is important
to align networks such that the network structure is preserved and network activations are not altered.
In the context of residual networks, special consideration must be given to skip connections.

Consider the formulation of a basic skip connection,

Xk+1 = σ ◦ (Wk+1Xk) +Xk−1 (24)

In this equation, we can see that Xk+1 and Xk−1 share the same indexing of their units. This
becomes clear when you consider permuting the hidden units inXk−1 without permuting the hidden
units ofXk+1. It is impossible to do so without breaking the structure of the equation above, where
there is essentially the use of an identity mapping fromXk−1 toXk+1.

We consider a traditional residual network that is decomposed into residual blocks. In each block
the even layers have skip connections while the odd layers do not. So, we compute the alignment
as usual for odd layers. For all even layers within a given residual block, we determine a shared
alignment. We do this by solving the assignment problem for the average of the cross-correlation
matrix over the even layers in that residual block.

F ALIGNMENT ALONG CURVES

Clearly, alignment is a useful method for learning better flat loss curves between models. An inter-
esting question is how curve finding itself relates to alignment. Until now, we have only considered
the alignment between the endpoint models, r(0) and r(1). Now, we consider how points along the
curve, r(t), align to the endpoints. To study this numerically, we will use the curve midpoint r(0.5).
From Figure 4, we see that this is the point on the quadratic Bezier curve that is roughly linearly
connected to both endpoints.

F.1 CORRELATION SIGNATURE

First, we consider how the correlation signature changes along the curve. Figure 14 displays the
correlation signature between the curve midpoint and each endpoint in blue. To gain a better un-
derstanding of this signature, we require some context. Thus, the correlation signature between
the linear midpoint and each endpoint is displayed in green. This allows us to understand how
the correlation signature changes over the curve finding optimization. Additionally, we display the
correlation signature between the curve midpoint and each endpoint, where the midpoint has been
aligned to the given endpoint, in yellow. This essentially gives us context on how highly the mid-
point is aligned to each endpoint. This is because the yellow curve acts as an upper bound for the
blue curve.

There are several observations to be made about Figure 14. The correlation signature between the
endpoint and the curve midpoint is fairly high. For unaligned endpoints, the correlation is only
slightly lower than the signature computed when the curve midpoint is aligned to the endpoint. In
the case where the endpoints are aligned, the signatures are seen to coincide. This suggests that the
curve finding algorithm is finding the quadratic curve along which similar feature representations
are being interpolated.
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Figure 14: The mean cross-correlation between units in the curve midpoint model and each endpoint
model. For context, the mean cross-correlation between the linear midpoint and each endpoint is
displayed. Additionally, the mean cross-correlation between the curve midpoint and each endpoint
after being aligned to the respective endpoint is displayed.

Concerning the linear midpoint, the correlation at the linear midpoint decays to 0 when endpoints
are unaligned as the network goes deeper. When endpoints are aligned, the correlation signature at
the linear midpoint is similar to the correlation signature at the curve midpoint. Since these linear
connections between the endpoints are the initializations for the curve finding algorithm, this gives
some intuition on how alignment works to give a better initialization.
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