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ABSTRACT

We look critically at popular self-supervision techniques for learning deep convo-
lutional neural networks without manual labels. We show that three different and
representative methods, BiGAN, RotNet and DeepCluster, can learn the first few
layers of a convolutional network from a single image as well as using millions of
images and manual labels, provided that strong data augmentation is used. How-
ever, for deeper layers the gap with manual supervision cannot be closed even if
millions of unlabelled images are used for training. We conclude that: (1) the
weights of the early layers of deep networks contain limited information about
the statistics of natural images, that (2) such low-level statistics can be learned
through self-supervision just as well as through strong supervision, and that (3)
the low-level statistics can be captured via synthetic transformations instead of
using a large image dataset.

1 INTRODUCTION

Despite tremendous progress in supervised learning, learning without external supervision remains
difficult. Self-supervision has recently emerged as one of the most promising approaches to address
this limitation. Self-supervision builds on the fact that convolutional neural networks (CNNs) trans-
fer well between tasks (Shin et al., 2016; Oquab et al., 2014; Girshick, 2015; Huh et al., 2016). The
idea then is to pre-train networks via pretext tasks that do not require expensive manual annotations
and can be automatically generated from the data itself. Once pre-trained, networks can be applied
to a target task by using only a modest amount of labelled data.

Early successes in self-supervision have encouraged authors to develop a large variety of pretext
tasks, from colorization to rotation estimation and image autoencoding. Recent papers have shown
performance competitive with supervised learning by learning complex neural networks on very
large image datasets. Nevertheless, for a given model complexity, pre-training by using an off-the-
shelf annotated image datasets such as ImageNet remains much more efficient.

In this paper, we aim to investigate the effectiveness of current self-supervised approaches by char-
acterizing how much information they can extract from a given dataset of images. Since deep net-
works learn a hierarchy of representations, we further break down this investigation on a per-layer
basis. We are motivated by the fact that the first few layers of most networks extract low-level in-
formation (Yosinski et al., 2014), and thus learning them may not require the high-level semantic
information captured by manual labels.

Concretely, in this paper we answer the following simple question: “is self-supervision able to
exploit the information contained in a large number of images in order to learn different parts of a
neural network?”

We contribute two key findings. First, we show that as little as a single image is sufficient, when
combined with self-supervision and data augmentation, to learn the first few layers of standard deep
networks as well as using millions of images and full supervision (Figure 1). Hence, while self-
supervised learning works well for these layers, this may be due more to the limited complexity of
such features than the strength of the supervisory technique. This also confirms the intuition that
early layers in a convolutional network amounts to low-level feature extractors, analogous to early
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Figure 1: Single-image self-supervision. We
show that several self-supervision methods can be
used to train the first few layers of a deep neural
networks using a single training image, such as
this Image A, B or even C (above), provided that
sufficient data augmentation is used.

learned and hand-crafted features for visual recognition (Olshausen & Field, 1997; Lowe, 2004;
Dalal & Triggs, 2005). Finally, it demonstrates the importance of image transformations in learning
such low-level features as opposed to image diversity.1

Our second finding is about the deeper layers of the network. For these, self-supervision remains
inferior to strong supervision even if millions of images are used for training. Our finding is that this
is unlikely to change with the addition of more data. In particular, we show that training these layers
with self-supervision and a single image already achieves as much as two thirds of the performance
that can be achieved by using a million different images.

We show that these conclusions hold true for three different self-supervised methods, BiGAN (Don-
ahue et al., 2017), RotNet (Gidaris et al., 2018) and DeepCluster (Caron et al., 2018), which are
representative of the spectrum of techniques that are currently popular. We find that performance
as a function of the amount of data is dependent on the method, but all three methods can indeed
leverage a single image to learn the first few layers of a deep network almost “perfectly”.

Overall, while our results do not improve self-supervision per-se, they help to characterize the limi-
tations of current methods and to better focus on the important open challenges.

2 RELATED WORK

Our paper relates to three broad areas of research: (a) self-supervised/unsupervised learning, (b)
learning from a single sample, and (c) designing/learning low-level feature extractors. We discuss
closely related work for each.

Self-supervised learning: A wide variety of proxy tasks, requiring no manual annotations, have
been proposed for the self-training of deep convolutional neural networks. These methods use
various cues and tasks namely, in-painting (Pathak et al., 2016), patch context and jigsaw puz-
zles (Doersch et al., 2015; Noroozi & Favaro, 2016; Noroozi et al., 2018; Mundhenk et al., 2017),
clustering (Caron et al., 2018), noise-as-targets (Bojanowski & Joulin, 2017), colorization (Zhang
et al., 2016; Larsson et al., 2017), generation (Jenni & Favaro, 2018; Ren & Lee, 2018; Donahue
et al., 2017), geometry (Dosovitskiy et al., 2016; Gidaris et al., 2018) and counting (Noroozi et al.,
2017). The idea is that the pretext task can be constructed automatically and easily on images alone.
Thus, methods often modify information in the images and require the network to recover them. In-
painting or colorization techniques fall in this category. However these methods have the downside
that the features are learned on modified images which potentially harms the generalization to un-
modified ones. For example, colorization uses a gray scale image as input, thus the network cannot
learn to extract color information, which can be important for other tasks.

Slightly less related are methods that use additional information to learn features. Here, often
temporal information is used in the form of videos. Typical pretext tasks are based on temporal-
context (Misra et al., 2016; Wei et al., 2018; Lee et al., 2017; Sermanet et al., 2018), spatio-temporal

1Example applications that only rely on low-level feature extractors include template matching (Kat et al.,
2018; Talmi et al., 2017) and style transfer (Gatys et al., 2016; Johnson et al., 2016), which currently rely on
pre-training with millions of images.
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cues (Isola et al., 2015; Gao et al., 2016; Wang et al., 2017), foreground-background segmentation
via video segmentation (Pathak et al., 2017), optical-flow (Gan et al., 2018; Mahendran et al., 2018),
future-frame synthesis (Srivastava et al., 2015), audio prediction from video (de Sa, 1994; Owens
et al., 2016), audio-video alignment (Arandjelović & Zisserman, 2017), ego-motion estimation (Ja-
yaraman & Grauman, 2015), slow feature analysis with higher order temporal coherence (Jayara-
man & Grauman, 2016), transformation between frames (Agrawal et al., 2015) and patch tracking
in videos (Wang & Gupta, 2015). Since we are interested in learning features from as little data as
one image, we cannot make use of methods that rely on video input.

Our contribution inspects three unsupervised feature learning methods that use very different means
of extracting information from the data: BiGAN (Donahue et al., 2017) utilizes a generative adver-
sarial task, RotNet (Gidaris et al., 2018) exploits the photographic bias in the dataset and DeepClus-
ter (Caron et al., 2018) learns stable feature representations under a number of image transformations
by proxy labels obtained from clustering. These are described in more detail in the Methods section.

Learning from a single sample: In some applications of computer vision, the bold idea of learn-
ing from a single sample comes out of necessity. For general object tracking, methods such as
max margin correlation filters (Rodriguez et al., 2013) learn robust tracking templates from a single
sample of the patch. A single image can also be used to learn and interpolate multi-scale textures
with a GAN framework (Rott Shaham et al., 2019). Single sample learning was pursued by the
semi-parametric exemplar SVM model (Malisiewicz et al., 2011). They learn one SVM per positive
sample separating it from all negative patches mined from the background. While only one sam-
ple is used for the positive set, the negative set consists of thousands of images and is a necessary
component of their method. The negative space was approximated by a multi-dimensional Gaussian
by the Exemplar LDA (Hariharan et al., 2012). These SVMs, one per positive sample, are pooled
together using a max aggregation. We differ from both of these approaches in that we do not use a
large collection of negative images to train our model. Instead we restrict ourselves to a single or a
few images with a systematic augmentation strategy.

Classical learned and hand-crafted low-level feature extractors: Learning and hand-crafting
features pre-dates modern deep learning approaches and self-supervision techniques. For example
the classical work of (Olshausen & Field, 1997) shows that edge-like filters can be learned via
sparse coding of just 10 natural scene images. SIFT (Lowe, 2004) and HOG (Dalal & Triggs, 2005)
have been used extensively before the advent of convolutional neural networks and, in many ways,
they resemble the first layers of these networks. The scatter transform of Bruna & Mallat (2013);
Oyallon et al. (2017) is an handcrafted design that aims at replacing at least the first few layers of
a deep network. While these results show that effective low-level features can be handcrafted, this
is insufficient to clarify the power and limitation of self-supervision in deep networks. For instance,
it is not obvious whether deep networks can learn better low level features than these, how many
images may be required to learn them, and how effective self-supervision may be in doing so. For
instance, as we also show in the experiments, replacing low-level layers in a convolutional networks
with handcrafted features such as Oyallon et al. (2017) may still decrease the overall performance
of the model. Furthermore, this says little about deeper layers, which we also investigate.

In this work we show that current deep learning methods learn slightly better low-level representa-
tions than hand crafted features such as the scattering transform. Additionally, these representations
can be learned from one single image with augmentations and without supervision. The results
show how current self-supervised learning approaches that use one million images yield only rel-
atively small gains when compared to what can be achieved from one image and augmentations,
and motivates a renewed focus on augmentations and incorporating prior knowledge into feature
extractors.

3 METHODS

We discuss first our data and data augmentation strategy (section 3.1) and then we summarize the
three different methods for unsupervised feature learning used in the experiments (section 3.2).
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3.1 DATA

Our goal is to understand the performance of representation learning methods as a function of the
image data used to train them. To make comparisons as fair as possible, we develop a protocol where
only the nature of the training data is changed, but all other parameters remain fixed.

In order to do so, given a baseline method trained on d source images, we replace those with another
set of d images. Of these, now onlyN�d are source images (i.e. i.i.d. samples), while the remaining
d−N are augmentations of the source ones. Thus, the amount of information in the training data is
controlled by N and we can generate a continuum of datasets that vary from one extreme, utilizing
a single source image N =1, to the other extreme, using all N =d original training set images. For
example, if the baseline method is trained on ImageNet, then d=1,281,167. When N=1, it means
that we train the method using a single source image and generate the remaining 1,281,166 images
via augmentation. Other baselines use CIFAR-10/100 images, so in those cases d=50,000 instead.

The data augmentation protocol, is an extreme version of augmentations already employed by most
deep learning protocols. Each method we test, in fact, already performs some data augmentation
internally. Thus, when the method is applied on our augmented data, this can be equivalently thought
of as incrementing these “native” augmentations by concatenating them with our own.

Choice of augmentations. Next, we describe how theN source images are expanded to additional
d−N images so that the models can be trained on exactly d images, independent from the choice of
N . The idea is to use an aggressive form of data augmentation involving cropping, scaling, rotation,
contrast changes, and adding noise. These transformations are representative of invariances that one
may wish to incorporate in the features. Augmentation can be seen as imposing a prior on how we
expect the manifold of natural images to look like. When training with very few images, these priors
become more important since the model cannot extract them directly from data.

Given a source image of size sizeH×W , we first extract a certain number of random patches of size
(w, h), where w ≤ W and h ≤ H satisfy the additional constraints β ≤ wh

WH and γ ≤ h
w ≤ γ−1.

Thus, the smallest size of the crops is limited to be at least βWH and at most the whole image.
Additionally, changes to the aspect ratio are limited by γ. In practice we use β = 10−3 and γ = 3

4 .

Second, good features should not change much by small image rotations, so images are rotated
(before cropping to avoid border artifacts) by α ∈ (−35, 35) degrees. Due to symmetry in image
statistics, images are also flipped left-to-right with 50% probability.

Illumination changes are common in natural images, we thus expect image features to be robust to
color and contrast changes. Thus, we employ a set of linear transformations in RGB space to model
this variability in real data. Additionally, the color/intensity of single pixels should not affect the
feature representation, as this does not change the contents of the image. To this end, color jitter
with additive brightness, contrast and saturation are sampled from three uniform distributions in
(0.6, 1.4) and hue noise from (−0.1, 0.1) is applied to the image patches. Finally, the cropped and
transformed patches are scaled to the color range (−1, 1) and then rescaled to full S × S resolution
to be supplied to each representation learning method, using bilinear interpolation. This formulation
ensures that the patches are created in the target resolution S, independent from the size and aspect
ratio W,H of the source image.

Real samples. The images used for the N=1 and N=10 experiments are shown in Figure 1 and
the appendix respectively (this is all the training data used in such experiments). For the special case
of using a single training image, i.e. N=1, we have chosen one photographic (2560×1920) and one
drawn image (600×225), which we call Image A and Image B, respectively. The two images were
manually selected as they contain rich texture and are diverse, but their choice was not optimized
for performance. We test only two images due to the cost of running a full set of experiments (each
image is expanded up to 1.2M times for training some of the models, as explained above). However,
this is sufficient to prove our main points. We also test another (1165×585) Image C to ablate the
“crowdedness” of an image, as this latter contains large areas covering no objects. While resolution
matters to some extent as a bigger image contains more pixels, the information within is still far
more correlated, and thus more redundant than sampling several smaller images. In particular, the
resolution difference in Image A and B appears to be negligible in our experiments. For CIFAR-10,
where S=32 we only use Image B due to the resolution difference. In direct comparison, Image B

4



Published as a conference paper at ICLR 2020

is the size of about 132 CIFAR images which is still much less than d = 50,000. For N > 1, we
select the source images randomly from each method’s training set.

3.2 REPRESENTATION LEARNING METHODS

Generative models. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) learn to
generate images using an adversarial objective: a generator network maps noise samples to image
samples, approximating a target image distribution and a discriminator network is tasked with dis-
tinguishing generated and real samples. Generator and discriminator are pitched one against the
other and learned together; when an equilibrium is reached, the generator produces images indistin-
guishable (at least from the viewpoint of the discriminator) from real ones.

Bidirectional Generative Adversarial Networks (BiGAN) (Donahue et al., 2017; Dumoulin et al.,
2016) are an extension of GANs designed to learn a useful image representation as an approximate
inverse of the generator through joint inference on an encoding and the image. This method’s na-
tive augmentation uses random crops and random horizontal flips to learn features from S = 128
sized images. As opposed to the other two methods discussed below it employs leaky ReLU non-
linearities as is typical in GAN discriminators.

Rotation. Most image datasets contain pictures that are ‘upright’ as this is how humans prefer to
take and look at them. This photographer bias can be understood as a form of implicit data labelling.
RotNet (Gidaris et al., 2018) exploits this by tasking a network with predicting the upright direction
of a picture after applying to it a random rotation multiple of 90 degrees (in practice this is formulated
as a 4-way classification problem). The authors reason that the concept of ‘upright’ requires learning
high level concepts in the image and hence this method is not vulnerable to exploiting low-level
visual information, encouraging the network to learn more abstract features. In our experiments,
we test this hypothesis by learning from impoverished datasets that may lack the photographer bias.
The native augmentations that RotNet uses on the S=256 inputs only comprise horizontal flips and
non-scaled random crops to 224× 224.

Clustering. DeepCluster (Caron et al., 2018) is a recent state-of-the-art unsupervised represen-
tation learning method. This approach alternates k-means clustering to produce pseudo-labels for
the data and feature learning to fit the representation to these labels. The authors attribute the suc-
cess of the method to the prior knowledge ingrained in the structure of the convolutional neural
network (Ulyanov et al., 2018).

The method alternatives between a clustering step, in which k-means is applied on the PCA-reduced
features with k = 104, and a learning step, in which the network is trained to predict the cluster
ID for each image under a set of augmentations (random resized crops with β = 0.08, γ = 3

4 and
horizontal flips) that constitute its native augmentations used on top of the S=256 input images.

4 EXPERIMENTS

We evaluate the representation learning methods on ImageNet and CIFAR-10/100 using linear
probes (Section 4.1). After ablating various choices of transformations in our augmentation pro-
tocol (Section 4.2), we move to the core question of the paper: whether a large dataset is beneficial
to unsupervised learning, especially for learning early convolutional features (Section 4.3).

4.1 LINEAR PROBES AND BASELINE ARCHITECTURE

In order to quantify if a neural network has learned useful feature representations, we follow the
standard approach of using linear probes (Zhang et al., 2017). This amounts to solving a difficult
task such as ImageNet classification by training a linear classifier on top of pre-trained feature rep-
resentations, which are kept fixed. Linear classifiers heavily rely on the quality of the representation
since their discriminative power is low.

We apply linear probes to all intermediate convolutional layers of networks and train on the Ima-
geNet LSVRC-12 (Deng et al., 2009) and CIFAR-10/100 (Krizhevsky, 2009) datasets, which are
the standard benchmarks for evaluation in self-supervised learning. Our base encoder architecture is
AlexNet (Krizhevsky et al., 2012) with BatchNorm, since this is a good representative model and is
most often used in other unsupervised learning work for the purpose of benchmarking. This model
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CIFAR-10
conv1 conv2 conv3 conv4

(a) Fully sup. 66.5 70.1 72.4 75.9
(b) Random feat. 57.8 55.5 54.2 47.3

(c) No aug. 57.9 56.2 54.2 47.8

(d) Jitter 58.9 58.0 57.0 49.8
(e) Rotation 61.4 58.8 56.1 47.5
(f) Scale 67.9 69.3 67.9 59.1

(g) Rot. & jitter 64.9 63.6 61.0 53.4
(h) Rot. & scale 67.6 69.9 68.0 60.7
(i) Jitter & scale 68.1 71.3 69.5 62.4

(j) All 68.1 72.3 70.8 63.5

Table 1: Ablating data augmentation using
MonoGAN (left). Training a linear classifier
on the features extracted at different depths
of the network for CIFAR-10.

Table 2: ImageNet LSVRC-12 linear prob-
ing evaluation (below). A linear classifier is
trained on the (downsampled) activations of
each layer in the pretrained model. We re-
port classification accuracy averaged over 10
crops. The ‡ indicated that numbers are taken
from (Zhang et al., 2017).

ILSVRC-12
Method, Reference #images conv1 conv2 conv3 conv4 conv5

(a) Full-supervision‡ 1,281,167 19.3 36.3 44.2 48.3 50.5
(b) (Oyallon et al., 2017): Scattering 0 - 18.9 - - -
(c) Random‡ 0 11.6 17.1 16.9 16.3 14.1
(d) (Krähenbühl et al., 2016):k-means‡ ≈160 17.5 23.0 24.5 23.2 20.6

(e) (Donahue et al., 2017): BiGAN‡ 1,281,167 17.7 24.5 31.0 29.9 28.0
(f) mono, Image A 1 20.4 30.9 33.4 28.4 16.0
(g) mono, Image B 1 20.5 30.4 31.6 27.0 16.8
(h) deka 10 16.2 16.5 16.5 13.1 7.5
(i) kilo 1,000 16.1 17.7 18.3 17.6 13.5

(j) (Gidaris et al., 2018): RotNet 1,281,167 18.8 31.7 38.7 38.2 36.5
(k) mono, Image A 1 19.9 30.2 30.6 27.6 21.9
(l) mono, Image B 1 17.8 27.6 27.9 25.4 20.2

(m) deka 10 19.6 30.7 32.6 28.9 22.6
(n) kilo 1,000 21.0 33.5 36.5 34.0 29.4

(o) (Caron et al., 2018): DeepCluster 1,281,167 18.0 32.5 39.2 37.2 30.6
(p) mono, Image A 1 20.7 31.5 32.5 28.5 21.0
(q) mono, Image B 1 19.7 30.1 31.6 28.5 20.4
(r) mono, Image C 1 18.9 29.2 31.5 28.9 23.5
(s) deka 10 18.5 29.0 31.1 28.2 21.9
(t) kilo 1,000 19.5 29.8 33.0 31.7 26.8

Table 3: CIFAR-10/100. Accuracy of linear classifiers on different network layers.
Dataset CIFAR-10 CIFAR-100

Model conv1 conv2 conv3 conv4 conv1 conv2 conv3 conv4

Fully supervised 66.5 70.1 72.4 75.9 38.7 43.6 44.4 46.5
Random 57.8 55.5 54.2 47.3 30.9 29.8 28.6 24.1

RotNet 64.4 65.6 65.6 59.1 36.0 35.9 34.2 25.8
GAN (CIFAR-10) 67.7 73.0 72.5 69.2 39.6 46.0 45.1 39.9
GAN (CIFAR-100) - - - - 38.1 42.2 44.0 46.6
MonoGAN 68.1 72.3 70.8 63.5 39.9 46.9 44.5 38.8

has five convolutional blocks (each comprising a linear convolution later followed by ReLU and
optionally max pooling). We insert the probes right after the ReLU layer in each block, and denote
these entry points conv1 to conv5. Applying the linear probes at each convolutional layer allows
studying the quality of the representation learned at different depths of the network.

Details. While linear probes are conceptually straightforward, there are several technical details
that affect the final accuracy by a few percentage points. Unfortunately, prior work has used several
slightly different setups, so that comparing results of different publications must be done with cau-
tion. To make matters more difficult, not all papers released evaluation source code. We prove this
standardized testing code here2.

2https://github.com/yukimasano/linear-probes
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In our implementation, we follow the original proposal (Zhang et al., 2017) in pooling each rep-
resentation to a vector with 9600, 9216, 9600, 9600, 9216 dimensions for conv1-5 using adaptive
max-pooling, and absorb the batch normalization weights into the preceding convolutions. For eval-
uation on ImageNet we follow RotNet to train linear probes: images are resized such that the shorter
edge has a length of 256 pixels, random crops of 224×224 are computed and flipped horizontally
with 50% probability. Learning lasts for 36 epochs and the learning rate schedule starts from 0.01
and is divided by five at epochs 5, 15 and 25. The top-1 accuracy of the linear classifier is then
measured on the ImageNet validation subset. This uses DeepCluster’s protocol, extracting 10 crops
for each validation image (four at the corners and one at the center along with their horizontal flips)
and averaging the prediction scores before the accuracy is computed. For CIFAR-10/100 data, we
follow the same learning rate schedule and for both training and evaluation we do not reduce the
dimensionality of the representations and keep the images’ original size of 32×32.

4.2 EFFECT OF AUGMENTATIONS

In order to better understand which image transformations are important to learn a good feature
representations, we analyze the impact of augmentation settings. For speed, these experiments are
conducted using the CIFAR-10 images (d = 50, 000 in the training set) and with the smaller source
Image B and a GAN using the Wasserstein GAN formulation with gradient penalty (Gulrajani et al.,
2017). The encoder is a smaller AlexNet-like CNN consisting of four convolutional layers (kernel
sizes: 7, 5, 3, 3; strides: 3, 2, 2, 1) followed by a single fully connected layer as the discriminator.
Given that the GAN is trained on a single image (w/ augmentations), we call this setting MonoGAN.

Table 1 reports all 23 combinations of the three main augmentations (scale, rotation, and jitter) and
a randomly initialized network baseline (see Table 1 (b)) using the linear probes protocol discussed
above. Without data augmentation the model only achieves marginally better performance than the
random network (which also achieves a non-negligible level of performance (Ulyanov et al., 2017;
Caron et al., 2018)). This is understandable since the dataset literally consists of a single training
image cloned d times. Color jitter and rotation slightly improve the performance of all probes by 1-
2% points, but random rescaling adds at least ten points at every depth (see Table 1 (f,h,i)) and is the
most important single augmentation. A similar conclusion can be drawn when two augmentations
are combined, although there are diminishing returns as more augmentations are combined. Overall,
we find all three types of augmentations are of importance when training in the ultra-low data setting.

4.3 BENCHMARK EVALUATION

We analyze how performance varies as a function N , the number of actual samples that are used to
generated the augmented datasets, and compare it to the gold-standard setup (in terms of choice of
training data) defined in the papers that introduced each method. The evaluation is again based on
linear probes (Section 4.1).

Mono is enough. From Table 2 we make the following observations. Training with just a single
source image (f,g,k,l,p,q) is much better than random initialization (c) for all layers. Notably, these
models also outperform Gabor-like filters from Scattering networks (Bruna & Mallat, 2013), which
are hand crafted image features, replacing the first two convolutional layers as in (Oyallon et al.,
2017). Using the same protocol as in the paper, this only achieves an accuracy of 18.9% compared
to (p)’s conv2 > 30%.

More importantly, when comparing within pretext task, even with one image we are able to improve
the quality of conv1–conv3 features compared to full (unsupervised) ImageNet training for GAN
based self-supervision (e-i). For the other methods (j-n, o-s) we reach and also surpass the perfor-
mance for the first layer and are within 1.5% points for the second. Given that the best unsupervised
performance for conv2 is 32.5, our method using a single source Image A (Table 2, p) is remarkably
close with 31.5.

Image contents. While we surpass the GAN based approach of (Donahue et al., 2017) for both
single source images, we find more nuanced results for the other two methods: For RotNet, as ex-
pected, the photographic bias cannot be extracted from a single image. Thus its performance is
low with little training data and increases together with the number of images (Table 2, j-n). When
comparing Image A and B trained networks for RotNet, we find that the photograph yields better
performance than the hand drawn animal image. This indicates that the method can extract rotation

7



Published as a conference paper at ICLR 2020

Method, Image A Method, Image B

BiGAN RotNet DeepCluster BiGAN RotNet DeepCluster

20.4 19.9 20.7 20.5 17.8 19.7
Figure 2: conv1 filters trained using a single image. The 96 learned (3×11×11) filters for the
first layer of AlexNet are shown for each single training image and method along with their linear
classifier performance. For visualization, each filter is normalized to be in the range of (−1, 1).

information from low level image features such as patches which is at first counter intuitive. Con-
sidering that the hand-drawn image does not work well, we can assume that lighting and shadows
even in small patches can indeed give important cues on the up direction which can be learned even
from a single (real) image. DeepCluster shows poor performance in conv1 which we can improve
upon in the single image setting (Table 2, o-r). Naturally, the image content matters: a trivial image
without any image gradient (e.g. picture of a white wall) would not provide enough signal for any
method. To better understand this issue, we also train DeepCluster on the much less cluttered Im-
age C to analyze how much the image influences our claims. We find that even though this image
contains large parts of sky and sea, the performance is only slightly lower than that of Image A.
This finding indicates that the augmentations can even compensate for large untextured areas and
the exact choice of image is not critical.

More than one image. While BiGAN fails to converge for N ∈{10, 1000}, most likely due to is-
sues in learning from a distribution which is neither whole images nor only patches, we find that both
RotNet and DeepCluster improve their performance in deeper layers when increasing the number
of training images. However, for conv1 and conv2, a single image is enough. In deeper layers,
DeepCluster seems to require large amounts of source images to yield the reported results as the
deka- and kilo- variants start improving over the single image case (Table 2, o-t). This need for data
also explains the gap between the two input images which have different resolutions. Summarizing
Table 2, we can conclude that learning conv1, conv2 and for the most part conv3 (33.4 vs. 39.4)
on over 1M images does not yield a significant performance increase over using one single training
image — a highly unexpected result.

Generalization. In Table 3, we show the results of training linear classifiers for the CIFAR-10
dataset and compare against various baselines. We find that the GAN trained on the smaller Image B
outperforms all other methods including the fully-supervised trained one for the first convolutional
layer. We also outperform the same architecture trained on the full CIFAR-10 training set using
RotNet, which might be due to the fact that either CIFAR images do not contain much information
about the orientation of the picture or because they do not contain as many objects as in ImageNet.
While the GAN trained on the whole dataset outperforms the MonoGAN on the deeper layers, the
gap stays very small until the last layer. These findings are also reflected in the experiments on the
CIFAR-100 dataset shown in Table 3. We find that our method obtains the best performance for the
first two layers, even against the fully supervised version. The gap between our mono variant and the
other methods increases again with deeper layers, hinting to the fact that we cannot learn very high
level concepts in deeper layers from just one single image. These results corroborate the finding that
our method allows learning very generalizable early features that are not domain dependent.

4.4 QUALITATIVE ANALYSIS

Visual comparison of weights. In Figure 2, we compare the learned filters of all first-layer con-
volutions of an AlexNet trained with the different methods and a single image. First, we find that
the filters closely resemble those obtained via supervised training: Gabor-like edge detectors and
various color blobs. Second, we find that the look is not easily predictive of its performance, e.g.
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while generatively learned filters (BiGAN) show many edge detectors, its linear probes performance
is about the same as that of DeepCluster which seems to learn many somewhat redundant point fea-
tures. However, we also find that some edge detectors are required, as we can confirm from RotNet
and DeepCluster trained on Image B, which yield less crisp filters and worse performances.

Table 4: Finetuning experiments The pre-
trained model’s first two convolutions are left
frozen (or replaced by the Scattering trans-
form) and the nework is retrained using Ima-
geNet LSVRC-12 training set.

Top-1

Full sup. 59.4

Random 42.6
Scattering 49.2

BiGAN, A 51.4
RotNet, A 49.5
DeepCluster A 52.5

Figure 3: Style transfer with single-image pre-
training. We show two style transfer results us-
ing the Image A trained BiGAN and the ImageNet
pretrained AlexNet.

Fine-tuning instead of freezing. In Tab. 4, we show the results of retraining a network with the
first two convolutional filters, or the scattering transform from (Oyallon et al., 2017), left frozen.
We observe that our single image trained DeepCluster and BiGAN models achieve performances
closes to the supervised benchmark. Notably, the scattering transform as a replacement for conv1-2
performs slightly worse than the analyzed single image methods. We also show in the appendix
the results of retraining a network initialized with the first two convolutional layers obtained from
a single image and subsequently linearly probing the model. The results are shown in Appendix
Tab. 5 and we find that we can recover the performance of fully-supervised networks, i.e. the first
two convolutional filters trained from just a single image generalize well and do not get stuck in an
image specific minimum.

Neural style transfer. Lastly, we show how our features trained on only a single image can be
used for other applications. In Figure 3 we show two basic style transfers using the method of
(Gatys et al., 2016) from an official PyTorch tutorial3. Image content and style are separated and
the style is transferred from the source to target image using all CNN features, not just the shallow
layers. We visually compare the results of using our features and from full ImageNet supervision.
We find almost no visual differences in the stylized images and can conclude that our early features
are equally powerful as fully supervised ones for this task.

5 CONCLUSIONS

We have made the surprising observation that we can learn good and generalizable features through
self-supervision from one single source image, provided that sufficient data augmentation is used.
Our results complement recent works (Mahajan et al., 2018; Goyal et al., 2019) that have investigated
self-supervision in the very large data regime. Our main conclusion is that these methods succeed
perfectly in capturing the simplest image statistics, but that for deeper layers a gap exist with strong
supervision which is compensated only in limited manner by using large datasets. This novel finding
motivates a renewed focus on the role of augmentations in self-supervised learning and critical
rethinking of how to better leverage the available data.
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Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE transactions on pattern
analysis and machine intelligence, 35(8):1872–1886, 2013. 3, 7

M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning of visual
features. In Proc. ECCV, 2018. 2, 3, 5, 6, 7, 13

N. Dalal and B Triggs. Histogram of Oriented Gradients for Human Detection. In Proc. CVPR, volume 2, pp.
886–893, 2005. 2, 3

Virginia R de Sa. Learning classification with unlabeled data. In NIPS, pp. 112–119, 1994. 3

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Proc. CVPR, 2009. 5

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by context
prediction. In Proc. ICCV, pp. 1422–1430, 2015. 2

Jeff Donahue, Philipp Krhenbhl, and Trevor Darrell. Adversarial feature learning. Proc. ICLR, 2017. 2, 3, 5,
6, 7

A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and T. Brox. Discriminative unsupervised feature
learning with exemplar convolutional neural networks. IEEE PAMI, 38(9):1734–1747, Sept 2016. ISSN
0162-8828. doi: 10.1109/TPAMI.2015.2496141. 2

V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville. Adversarially
learned inference. arXiv preprint arXiv:1606.00704, 2016. 5

D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-layer features of a deep network. Tech-
nical Report 1341, University of Montreal, Jun 2009. 13

Chuang Gan, Boqing Gong, Kun Liu, Hao Su, and Leonidas J Guibas. Geometry guided convolutional neural
networks for self-supervised video representation learning. In Proc. CVPR, 2018. 3

Rouhan Gao, Dinesh Jayaraman, and Kristen Grauman. Object-centric representation learning from unlabeled
videos. In Proc. ACCV, 2016. 3

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional neural
networks. In Proc. CVPR, pp. 2414–2423, 2016. 2, 9

R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel. Imagenet-trained CNNs are
biased towards texture; increasing shape bias improves accuracy and robustness. In International Conference
on Learning Representations, 2019. 14

Spyros Gidaris, Praveen Singh, and Nikos Komodakis. Unsupervised representation learning by predicting
image rotations. In Proc. ICLR, 2018. 2, 3, 5, 6

R. B. Girshick. Fast R-CNN. In Proc. ICCV, 2015. 1

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, pp. 2672–2680, 2014. 5

Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling and benchmarking self-supervised
visual representation learning. arXiv preprint arXiv:1905.01235, 2019. 9

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved train-
ing of wasserstein gans. In NIPS, pp. 5767–5777, 2017. 7

B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for clustering and classification. In Proc.
ECCV, 2012. 3

10



Published as a conference paper at ICLR 2020

M. Huh, P. Agrawal, and A. A. Efros. What makes imagenet good for transfer learning? arXiv preprint
arXiv:1608.08614, 2016. 1

Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H Adelson. Learning visual groups from co-
occurrences in space and time. In Proc. ICLR, 2015. 3

Dinesh Jayaraman and Kristen Grauman. Learning image representations tied to ego-motion. In Proc. ICCV,
2015. 3

Dinesh Jayaraman and Kristen Grauman. Slow and steady feature analysis: higher order temporal coherence
in video. In Proc. CVPR, 2016. 3

Simon Jenni and Paolo Favaro. Self-supervised feature learning by learning to spot artifacts. In Proc. CVPR,
2018. 2

J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In Proc.
ECCV, pp. 694–711, 2016. 2

R. Kat, R. Jevnisek, and S. Avidan. Matching pixels using co-occurrence statistics. In Proc. ICCV, pp. 1751–
1759, 2018. 2
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A APPENDIX

A.1 IMAGENET TRAINING IMAGES

Figure 4: ImageNet images for the N=10 experiments.

The images used for the N=10 experiments are shown in fig. 4.

A.2 VISUAL COMPARISON OF FILTERS

Figure 5: Filter visualization. We show activation maximization (left) and retrieval of top 9 ac-
tivated images from the training set of ImageNet (right) for four random non-cherrypicked target
filters. From top to bottom: conv1-5 of the BiGAN trained on a single image A. The filter visual-
ization is obtained by learning a (regularized) input image that maximizes the response to the target
filter using the library Lucid (Olah et al., 2018).

In order to understand what deeper neurons are responding to in our model, we visualize random
neurons via activation maximization (Erhan et al., 2009; Zeiler & Fergus, 2014) in each layer. Ad-
ditionally, we retrieve the top-9 images in the ImageNet training set that activate each neuron most
in Figure 5. Since the mono networks are not trained on the ImageNet dataset, it can be used here
for visualization. From the first convolutional layer we find typical neurons strongly reacting to
oriented edges. In layers 2-4 we find patterns such as grids (conv2:3), and textures such as leop-
ard skin (conv2:2) and round grid cover (conv4:4). Confirming our hypothesis that the neural
network is only extracting patterns and not semantic information, we do not find any neurons partic-
ularly specialized to certain objects even in higher levels as for example dog faces or similar which
can be fund in supervised networks. This finding aligns with the observations of other unsuper-
vised methods (Caron et al., 2018; Zhang et al., 2017). As most neurons extract simple patterns and
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Table 5: Finetuning experiments Models are initialized using conv1 and conv2 from various sin-
gle image trained models and the whole network is fine-tuned using ImageNet LSVRC-12 training
set. Accuracy is averaged over 10 crops.

c1 c2 c3 c4 c5

Full sup. 19.3 36.3 44.2 48.3 50.5

BiGAN, A 22.5 37.6 44.2 47.6 48.3
RotNet, A 22.0 38.2 44.8 49.2 51.8
DeepCluster, A 21.8 35.9 43.6 48.8 50.4

textures, the surprising effectiveness of training a network using a single image can be explained
by the recent finding that even CNNs trained on ImageNet rely on texture (as opposed to shape)
information to classify (Geirhos et al., 2019).

A.3 RETRAINING FROM SINGLE IMAGE INITIALIZATION

In Table 5, we initialize AlexNet models using the first two convolutional filters learned from a
single image and retrain them using ImageNet. We find that the networks recover their performance
fully and the first filters do not make the network stuck in a bad local minimum despite having been
trained on a single image from a different distribution. The difference from the BiGAN to the full
supervision model is likely due to it using a smaller input resolution (112 instead of 224), as the
BiGAN’s output resolution is limited.

A.4 LINEAR PROBES ON IMAGENET

We show two plots of the ImageNet linear probes results (Table 2 of the paper) in fig. 6. On the left
we plot performance per layer in absolute scale. Naturally the performance of the supervised model
improves with depth, while all unsupervised models degrade after conv3. From the relative plot
on the right, it becomes clear that with our training scheme, we can even slightly surpass supervised
performance on conv1 presumably since our model is trained with sometimes very small patches,
thus receiving an emphasis on learning good low level filters. The gap between all self-supervised
methods and the supervised baseline increases with depth, due to the fact that the supervised model is
trained for this specific task, whereas the self-supervised models learn from a surrogate task without
labels.
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Figure 6: Linear Classifiers on ImageNet. Classification accuracies of linear classifiers trained on
the representations from Table 2 are shown in absolute scale.

A.5 EXAMPLE AUGMENTED TRAINING DATA

In figs. 7 to 10 we show example patches generated by our augmentation strategy for the datasets
with different N. Even though the images and patches are very different in color and shape distribu-
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tion, our model learns weights that perform similarly in the linear probes benchmark (see Table 2 in
the paper).

Figure 7: Example crops of Image A (N = 1) dataset.
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Figure 8: Example crops of Image B (N = 1) dataset. 50 samples were selected randomly.

Figure 9: Example crops of deka (N = 10) dataset. 50 samples were selected randomly.

Figure 10: Example crops of kilo (N = 1000) dataset. 50 samples were selected randomly.
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