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ABSTRACT

Determinantal Point Processes (DPPs) provide an elegant and versatile way to
sample sets of items that balance the point-wise quality with the set-wise diversity
of selected items. For this reason, they have gained prominence in many machine
learning applications that rely on subset selection. However, sampling from a
DPP over a ground set of size N is a costly operation, requiring in general an
O(N3) preprocessing cost and an O(Nk3) sampling cost for subsets of size k. We
approach this problem by introducing DPPNETs: generative deep models that pro-
duce DPP-like samples for arbitrary ground sets. We develop an inhibitive attention
mechanism based on transformer networks that captures a notion of dissimilarity
between feature vectors. We show theoretically that such an approximation is
sensible as it maintains the guarantees of inhibition or dissimilarity that makes
DPPs so powerful and unique. Empirically, we demonstrate that samples from our
model receive high likelihood under the more expensive DPP alternative.

1 INTRODUCTION

Selecting a representative sample of data from a large pool of available candidates is an essential step
of a large class of machine learning problems: noteworthy examples include automatic summarization,
matrix approximation, and minibatch selection. Such problems require sampling schemes that
calibrate the tradeoff between the point-wise quality – e.g. the relevance of a sentence to a document
summary – of selected elements and the set-wise diversity1 of the sampled set as a whole.

Determinantal Point Processes (DPPs) are probabilistic models over subsets of a ground set that
elegantly model the tradeoff between these often competing notions of quality and diversity. Given
a ground set of size N , DPPs allow for O(N3) sampling over all 2N possible subsets of elements,
assigning to any subset S of a ground set Y of elements the probability2

PL(S) = detLS/det(I +L) (1)

where L ∈ RN×N is the DPP kernel and LS = [Lij ]i,j∈S denotes the principal submatrix of L
indexed by items in S. Intuitively, DPPs measure the volume spanned by the feature embedding of
the items in feature space (Figure 1).

First introduced by Macchi (1975) to model the distribution of possible states of fermions obeying the
Pauli exclusion principle, the properties of DPPs have since then been studied in depth (Hough et al.,
2006; Borodin, 2009, see e.g.). As DPPs capture repulsive forces between similar elements, they arise
in many natural processes, such as the distribution of non-intersecting random walks (Johansson,
2004), spectra of random matrix ensembles (Mehta & Gaudin, 1960; Ginibre, 1965), and zero-
crossings of polynomials with Gaussian coefficients (Hough et al., 2009).

More recently, DPPs have become a prominent tool in machine learning due to their elegance
and tractability: recent applications include video recommendation (Chen et al., 2018), minibatch
selection (Zhang et al., 2017), and kernel approximation (Li et al., 2016b; Mariet et al., 2018).

However, the O(N3) sampling cost makes the practical application of DPPs intractable for large
datasets, requiring additional work such as subsampling from Y , structured kernels (Gartrell et al.,

1Here, we use diversity to mean useful coverage across dissimilar examples in a meaningful feature space,
rather than other definitions diversity that may appear in ML fairness literature.

2We are adopting here the L-Ensemble construction (Borodin & Rains, 2005) of a DPP.
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Figure 1: Geometric intuition for DPPs: let φi,φj be two feature vectors of Φ such that the DPP

kernel verifies L = ΦΦT ; then
√
PL({i, j}) ∝ Vol(φi,φj). Increasing the norm of a vector

(quality) or increasing the angle between the vectors (diversity) increases the volume spanned by the
vectors (Kulesza & Taskar, 2012, Section 2.2.1).

2017; Mariet & Sra, 2016b), or approximate sampling methods (Anari et al., 2016a; Li et al., 2016a;
Affandi et al., 2013). Nonetheless, even such methods require significant pre-processing time, and
scale poorly with the size of the dataset. Furthermore, when dealing with ground sets with variable
components, pre-processing costs cannot be amortized, significantly impeding the application of
DPPs in practice.

These setbacks motivate us to investigate the use of more scalable models to generate high-quality,
diverse samples from datasets to obtain highly-scalable methods with flexibility to adapt to constantly
changing datasets. Specifically, we use generative deep models to approximate the DPP distribution
over a ground set of items with both fixed and variable feature representations. We show that a
simple, carefully constructed neural network, DPPNET, can generate DPP-like samples with very
little overhead, while maintaining fundamental theoretical properties of DPP measures. Furthermore,
we show that DPPNETs can be trivially employed to sample from a conditional DPP (i.e. sampling S
such that A ⊆ S is predefined) and for greedy mode approximation.

Contributions.

• We introduce DPPNET, a deep network trained to generate DPP-like samples based on static and
variable ground sets of possible items.

• We derive theoretical conditions under which the DPPNETs inherit the DPP’s log-submodularity.

• We show empirically that DPPNETs provide an accurate approximation to DPPs and drastically
speed up DPP sampling.

2 RELATED WORK

DPPs belong to the class of Strongly Rayleigh (SR) measures; these measures benefit from the
strongest characterization of negative association between similar items; as such, SR measures have
benefited from significant interest in the mathematics community (Pemantle, 2000; Borcea et al.,
2009; Borcea & Brändén, 2008; Marcus et al., 2015) and more recently in machine learning (Anari
et al., 2016b; Li et al., 2016a; Mariet et al., 2018). This, combined with their tractability, makes
DPPs a particularly attractive tool for subset selection in machine learning, and is one of the key
motivations for our work.

The application of DPPs to machine learning problems spans fields from document and video
summarization (Gong et al., 2014; Chao et al., 2015), recommender systems (Zhou et al., 2010; Chen
et al., 2018) and object retrieval (Affandi et al., 2014) to kernel approximation (Li et al., 2016b),
neural network pruning (Mariet & Sra, 2016a), and minibatch selection (Zhang et al., 2017). Zou &
Adams (2012) developed DPP priors for encouraging diversity in generative models and Snoek et al.
(2013) showed that DPPs accurately model inhibition in neural spiking data.

In the general case, sampling exactly from a DPP requires an initial eigendecomposition of the kernel
matrix L, incurring a O(N3) cost. In order to avoid this time-consuming step, several approximate
sampling methods have been derived; Affandi et al. (2013) approximate the DPP kernel during
sampling; more recently, results by Anari et al. (2016a) followed by Li et al. (2016a) showed that
DPPs are amenable to efficient MCMC-based sampling methods.
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Algorithm 1 Sampling and greedy mode
estimation from a DPPNET

1: function SAMPLE(k, A)
2: S ← A
3: while |S| < k do
4: v ← DPPNET (S)
5: if sampling then
6: i ∼Multinomial(v/‖v‖)
7: else if greedy mode then
8: i← argmax v

9: S ← S ∪ {i}
10: return S

Exact methods that significantly speed up sam-
pling by leveraging specific structure in the DPP
kernel have also been developed (Mariet & Sra,
2016b; Gartrell et al., 2017). Of particular in-
terest is the dual sampling method introduced
in Kulesza & Taskar (2012): if the DPP ker-
nel can be composed as an inner product over
a finite basis, i.e. there exists a feature matrix
Φ ∈ RN×D such that the DPP kernel is given
by L = ΦΦ>, exact sampling can be done in
O(ND2 +NDk2 +D2k3).

However, MCMC sampling requires variable
amounts of sampling rounds, which is unfavor-
able for parallelization; dual DPP sampling re-
quires an explicit feature matrix Φ. Motivated by recent work on modeling set functions with neural
networks (Zaheer et al., 2017; Cotter et al., 2018), we propose instead to generate approximate sam-
ples via a generative network; this allows for simple parallelization while simultaneously benefiting
from recent improvements in specialized architectures for neural network models (e.g. parallelized
matrix multiplications). We furthermore show that, extending the abilities of dual DPP sampling,
neural networks may take as input variable feature matrices Φ and sample from non-linear kernels L.

3 GENERATING DPP SAMPLES WITH DEEP MODELS

In this section, we build up a framework that allows the O(N3) computational cost associated with
DPP sampling to be addressed via approximate sampling with a neural network.

Given a positive semi-definite matrix L ∈ RN×N , we take PL to represent the distribution modeled
by a DPP with kernel L over the power set of [N ] := {1, . . . , N}. Given A ⊆ [N ], we write
Ā = [N ] \A and LA = [Lij ]i,j∈A the |A| × |A| submatrix of L indexed by items in A.

3.1 MOTIVATING THE MODEL CHOICE

Although the elegant quality/diversity tradeoff modeled by DPPs is a key reason for their recent
success in many different applications, they benefit from other properties that make them particularly
well-suited to machine learning problems. We now focus on how these properties can be maintained
with a deep generative model with the right architecture.

Closure under conditioning. DPPs are closed under conditioning: given A ⊆ Y , the conditional
distribution over Y \A given by PL(S = A ∪B | A ⊆ S) (for B ∩A = ∅) is also DPP with kernel
LA = ([(L+ IĀ)−1]Ā)−1− I (Borodin & Rains, 2005). Although conditioning comes at the cost of
an expensive matrix inversion, this property make DPPs well-suited to applications requiring diversity
in conditioned sets, such as basket completion for recommender systems.

Standard deep generative models such as (Variational) Auto-Encoders (Kingma & Welling, 2014)
(VAEs) and Generative Adversarial Networks (Goodfellow et al., 2014) (GANs) would not enable
simple conditioning operations during sampling. Instead, we develop a model that given an input set
S, returns a prediction vector v ∈ RN such that vi = Pr(S ∪ {i} ⊆ Y | S ⊆ Y ) where Y ∼ PL: in
other words, vi is the marginal probability of item i being included in the final set, given that S is a
subset of the final set. Mathematically, we can compute vi as

vi = 1− [(L+ IS̄)−1]ii (2)

for i 6∈ S (Kulesza & Taskar, 2012); for i ∈ S, we simply set vi = 0.

With this architecture, we sample a set via Algorithm 1, which allows for trivial basket-completion
type conditioning operations. Furthermore, Algorithm 1 can be modified to implement a greedy
sampling algorithm without any additional cost.

Log-submodularity. As mentioned above, DPPs are included in the larger class of Strongly
Rayleigh (SR) measures over subsets. Although being SR is a delicate property, which is maintained
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by only few operations (Borcea et al., 2009), log-submodularity3 (which is implied by SR-ness) is
more robust, as well as a fundamental property in discrete optimization (Zagoruyko & Komodakis,
2016; Buchbinder et al., 2012; Grötschel et al., 1981) and machine learning (Iyer & Bilmes, 2015;
Wei et al., 2015). Crucially, we show in the following that (log)-submodularity can be inherited by a
generative model trained on a log-submodular distribution:
THEOREM 1. Let P be a strictly submodular function over subsets of Y , and Q be a function over
the same space such that

DTV(P,Q) ≤ min
S,T 6=∅,Y

1

4
[P(S) + P(T )− P(S ∪ T )− P(S ∩ T ))] (3)

where DTV indicates the total variational distance. Then Q is also submodular.
COROLLARY 1.1. Let PL be a strictly log-submodular DPP over Y and DPPNET be a network
trained on the DPP probabilities p(S), with a loss function of the form ‖p− q‖ where ‖ · ‖ is a norm
and p ∈ R2N

(resp. q) is the probability vector assigned by the DPP (resp. the DPPNET) to each
subset of Y . Let α = max‖x‖∞=1

1
‖x‖ . If DPPNET converges to a loss smaller than

min
S,T 6=∅,Y

1

4α
[P(S) + P(T )− P(S ∪ T )− P(S ∩ T ))] ,

its generative distribution is log-submodular.

The result follows directly from Thm. 3 and the equivalence of norms in finite dimensional spaces.
REMARK 1. Cor. 1.1 is generalizable to the KL divergence loss DKL(P‖Q) via Pinsker’s inequality.

For this reason, we train our models by minimizing the distance between the predicted and target
probabilities, rather than optimizing the log-likelihood of generative samples under the true DPP.

Leveraging the sampling path. When drawing samples from a DPP, the standard DPP sampling
algorithm (Kulesza & Taskar, 2012, Alg. 1) generates the sample as a sequence, adding items one
after the other until reaching a pre-determined size4, similarly to Alg. 1. We take advantage of this by
recording all intermediary subsets generated by the DPP when sampling training data: in practice,
instead of training on n subsets of size k, we train on kn subsets of size 0, . . . , k − 1. Thus, our
model is very much like an unrolled recurrent neural network.

3.2 SAMPLING OVER FIXED AND VARYING GROUND SETS

In the simplest setting, we may wish to draw many samples over a ground set with a fixed feature
embedding. In this case, we wish to model a DPP with a fixed kernel via a generative neural network.
Specifically, we consider a fixed DPP with kernel L and wish to obtain a generative model such that
its distribution G : 2Y → [0, 1] is close (under a chosen metric) to the DPP distribution PL.

More generally, in many cases we may care about sampling from a DPP over a ground set of items
that varies: this may be the case for example with a pool of products that are available for sale at
a given time, or social media posts with a relevance that varies based on context. To leverage the
speed-up provided by dual DPP sampling, we can only sample from the DPP with kernel given by
L = ΦΦ>; for more complex kernels, we once again incur the O(N3) cost. Furthermore, training a
static neural network for each new feature embedding may be too costly.

Instead, we augment the static DPPNET to include the feature matrix Φ representing the ground
set of all items as input to the network. Specifically, we draw inspiration for the dot-product
attention introduced in (Vaswani et al., 2017). In the original paper, the attention mechanism
takes as input 3 matrices: the keys K, the values V , and the query Q. Attention is computed as
A = softmax(QK>/

√
d) where d is the dimension of each query/key: the inner product acts as a

proxy to the similarity between each query and each key. Finally, the reweighted value matrix AV is
fed to the trainable neural network.

3Recall that a function f over subsets is log-submodular if and only if for any sets S, T , we have log f(S) +
log f(T )− log f(S ∪ T )− log f(S ∩ T ) ≥ 0.

4When not fixed by the user as in k-DPPs (Kulesza & Taskar, 2011), the expected sampled set size under a
DPP depends on the eigenspectrum of the kernel L.
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Figure 2: Transformer network architecture for sampling from a variable ground set.

Here, the feature representation of items in the input set S acts as the queryQ ∈ Rk×d; the feature
representation Φ ∈ RN×d of our ground set is both the keys and the values. In order for the attention
mechanism to make sense in the framework of DPP modeling, we make two modifications to the
attention in (Vaswani et al., 2017):

• We want our network to attend to items that are dissimilar to the query (input subset): for each
item i in the input subset S, we compute its pairwise dissimilarity to each item in Y as the vector
di = 1− softmax(QiΦ

>/
√
d).

• Instead of returning this k ×N matrixD of dissimilarities di, we return a vector a ∈ RN in the
probability simplex such that aj ∝

∏
i∈SDij . This allows us to have a fixed-size input to the

neural network, and simultaneously enforces the desirable property that similarity to a single item
is enough to disqualify an element from the ground set. Note that we could also returnD in the
form of a N ×N matrix, but this would be counterproductive to speeding up DPP sampling.

Putting everything together, our attention vector a is computed via the inhibitive attention mechanism

a′ = �
i∈S

(
1− softmax(QΦ>/

√
d)
)
, a = a′/‖a′‖1 (4)

where � represents the row-wise multiplication operator; this vector can be computed in O(kDN)
time. The attention component of the neural network finally feeds the element-wise multiplication of
each row of V with a to the feed-forward component.

Given Φ and a subset S, the network is trained as in the static case to learn the marginal probabilities
of adding any item in Y to S under a DPP with a kernel L dependent on Φ. In practice, we set L to
be an exponentiated quadratic kernel Lij = exp(−β‖φi − φj‖2) constructed with the features φi.

REMARK 2. Dual sampling for DPPs as introduced in (Kulesza & Taskar, 2012) is efficient only
when sampling from a DPP with kernel L = ΦΦ>; for non-linear kernels, a low-rank decomposition
of L(Φ) must first be obtained, which in the worst case requires O(N3) operations. In comparison,
the dynamic DPPNET can be trained on any DPP kernel, while only requiring Φ as input.
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Table 1: NLL under PL for sets of size k = 20 sampled over the unit square. DPPNET achieves
comparable performance to the DPP, outperforming the other baselines.

UNIFORM k-MEDOIDS DPPNET DPP
180.53± 9.56 169.37± 6.41 153.44± 2.07 154.95± 2.93

4 EXPERIMENTAL RESULTS

To evaluate DPPNET, we look at its performance both as a proxy for a static DPP (Section 4.1) and as
a tool for generating diverse subsets of varying ground sets (Section 4.2). Our models are trained
with TensorFlow, using the Adam optimizer. Hyperparameters are tuned to maximize the normalized
log-likelihood of generated subsets.

We compare DPPNET to DPP performance as well as two additional baselines:

• UNIF: Uniform sampling over the ground set.

• k-MEDOIDS: The k-medoids clustering algorithm (Hastie et al., 2001, 14.3.10), applied to items
in the ground set, with distance between points computed as the same distance metric used by the
DPP. Conversely to k-means, k-MED uses data points as centers for each cluster.

We use the negative log-likelihood (NLL) of a subset under a DPP constructed over the ground
set to evaluate the subsets obtained by all methods. This choice is motivated by the following
considerations: DPPs have become a standard way of measuring and enforcing diversity over subsets
of data in machine learning, and b) to the extent of our knowledge, there is no other standard method
to benchmark the diversity of a selected subset that depends on specific dataset encodings.

4.1 SAMPLING OVER THE UNIT SQUARE

We begin by analyzing the performance of a DPPNET trained on a DPP with fixed kernel over the
unit square. This is motivated by the need for diverse sampling methods on the unit hypercube,
motivated by e.g. quasi-Monte Carlo methods, latin hypercube sampling (McKay et al., 1979) and
low discrepancy sequences.

The ground set consists of the 100 points lying at the intersections of the 10× 10 grid on the unit
square. The DPP is defined by setting its kernel L to Lij = exp(−‖xi− xj‖22/2). As the DPP kernel
is fixed, these experiments exclude the inhibitive attention mechanism.

We report the performance of the different sampling methods in Figure 3. Visually (Figure 3a)
and quantitively (Figure 3b), DPPNET improves significantly over all other baselines. The NLL of
DPPNET samples is almost identical to that of true DPP samples. Furthermore, greedily sampling the
mode from the DPPNET achieves a better NLL than DPP samples themselves. Numerical results are
reported in Table 1.

4.2 SAMPLING OVER VARIABLE GROUND SETS

We evaluate the performance of DPPNETs on varying ground set sizes through the MNIST (LeCun
& Cortes, 2010), CelebA (Liu et al., 2015), and MovieLens (Harper & Konstan, 2015) datasets.
For MNIST and CelebA, we generate feature representations of length 32 by training a Variational
Auto-Encoder (Kingma & Welling, 2014) on the dataset5; for MovieLens, we obtain a feature vector
for each movie by applying nonnegative matrix factorization the rating matrix, obtaining features of
length 10. Experimental results presented below were obtained using feature representations obtained
via the test instances of each dataset.

The DPPNET is trained based on samples from DPPs with a linear kernel for MovieLens and with
an exponentiated quadratic kernel for the image datasets. Bandwidths were set to β = 0.0025 for
MNIST and β = 0.1 for CelebA in order to obtain a DPP average sample size ≈ 20: recall that for a
DPP with kernel L, the expected sample size is given by the formula

ES∼PL
[|S|] = Tr[L(L+ I)−1].

5Details on the encoders are provided in Appendix B.
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(a) Sampling subsets of size 20 over the unit square.
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(b) Normalized log-likelihood of samples drawn from
all methods as a function of the sampled set size.

Figure 3: Sampling on the unit square with a DPPNET (1 hidden layer with 841 neurons) trained on a
single DPP kernel. Visually, DPPNET gives similar results to the full DPP (left). As evaluated by DPP
NLL, the DPPNET’s mode achieves superior performance to the full DPP, and DPPNET sampling
overlaps completely with DPP sampling (right).

Unif
NLL=32.80

DppNet
NLL=30.20

DppNet mode
NLL=28.55

Dpp
NLL=30.88

Figure 4: Digits sampled from a DPPNET (3 layer of 365 neurons) trained on MNIST encodings.

For MNIST, Figure 4 shows images selected by the baselines and the DPPNET, chosen among 100
digits with either random labels or all identical labels; visually, DPPNET and DPP samples provide a
wider coverage of writing styles. However, the NLL of samples from DPPNET decay significantly,
whereas the DPPNET mode continues to maintain competitive performance with DPP samples.

Numerical results for MNIST are reported in Table 2; additionally to the previous baselines, we also
consider two further ways of generating subsets. INHIBATTN samples items from the multinomial
distribution generated by the inhibitive attention mechanism only (without the subsequent neural
network). NOATTN is a pure feed-forward neural network without attention; after hyper-parameter
tuning, we found that the best architecture for this model consisted in 6 layers of 585 neurons each.

Table 2 reveals that both the attention mechanism and the subsequent neural network are crucial to
modeling DPP samples. Strikingly, DPPNET performs significantly better than other baselines even
on feature matrices drawn from a single class of digits (Table 2), despite the training distribution
over feature matrices being much less specialized. This implies that DPPNET sampling for dataset
summarization may be leveraged to focus on sub-areas of datasets that are identified as areas of
interest. Numerical results for CelebA and MovieLens are reported in Table 3, confirming the
modeling ability of DPPNETs.

Finally, we verify that DPPNET allows for significantly faster sampling by running DPP and DPPNET
sampling for subsets of size 20 drawn from a ground set of size 100 with both a standard DPP
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Table 2: NLL (mean ± standard error) under the true DPP of samples drawn uniformly, according
to the mode of the DPPNET, and from the DPP itself. We sample subsets of size 20; for each class
of digits we build 25 feature matrices Φ from encodings of those digits, and for each feature matrix
we draw 25 different samples. Bolded numbers indicate the best-performing (non-DPP) sampling
method.

All 0 1 2 3 4 5 6 7 8 9
DPP 49.2 ± 0.1 52.2 ± 0.1 60.5 ± 0.1 49.8 ± 0.0 50.7 ± 0.1 51.0 ± 0.1 50.4 ± 0.1 51.6 ± 0.1 51.5 ± 0.1 50.9 ± 0.1 52.7 ± 0.1
UNIF 51.6 ± 0.1 54.9 ± 0.1 65.1 ± 0.1 51.5 ± 0.1 52.9 ± 0.1 53.3 ± 0.1 52.4 ± 0.1 54.6 ± 0.1 55.1 ± 0.1 53.3 ± 0.1 56.2 ± 0.1

MEDOIDS 51.0 ± 0.1 55.1 ± 0.1 65.0 ± 0.1 51.5 ± 0.0 52.9 ± 0.1 53.1 ± 0.1 52.4 ± 0.0 54.4 ± 0.1 55.1 ± 0.1 53.2 ± 0.1 56.1 ± 0.1
INHIBATTN 51.3 ± 0.1 54.7 ± 0.1 65.0 ± 0.1 51.4 ± 0.1 52.8 ± 0.1 53.0 ± 0.1 52.1 ± 0.1 54.5 ± 0.1 54.9 ± 0.1 53.2 ± 0.1 55.9 ± 0.1

NOATTN 51.4 ± 0.1 54.9 ± 0.1 65.4 ± 0.1 51.5 ± 0.1 52.9 ± 0.1 53.3 ± 0.1 52.2 ± 0.1 54.6 ± 0.1 55.2 ± 0.1 53.3 ± 0.1 56.1 ± 0.1
DPPNET MODE 48.6 ± 0.2 53.6 ± 0.3 63.6 ± 0.4 50.8 ± 0.2 51.4 ± 0.3 51.6 ± 0.4 51.8 ± 0.3 52.8 ± 0.3 52.7 ± 0.4 50.9 ± 0.3 55.0 ± 0.4

Table 3: NLLs on CelebA and MovieLens (mean ± standard error); 20 samples of size 20 were
drawn across 20 different feature matrices each for a total of 100 samples per method; DPPNET is the
non-DPP model achieves the best NLLs.

DATASET KERNEL DPP GOAL UNIFORM k-MEDOIDS DPPNET Mode
CelebA Exp. quadratic 49.04 ± 2.03 50.84 ± 1.53 51.18 ± 1.34 49.28 ± 1.57

MovieLens Linear 84.29 ± 0.20 92.04 ± 0.17 88.90 ± 0.16 80.21 ± 0.33
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Figure 5: Results for the Nyström approximation experiments, comparing DPPNET to the fast MCMC
sampling method of Li et al. (2016c) according to root mean squared error (RMSE) and wallclock
time. We observe that subsets selected by DPPNET achieve comparable and lower RMSE than a DPP
and the MCMC method respectively while being significantly faster.

and DPPNET (using the MNIST architecture). Both methods were implemented in graph-mode
TensorFlow. Sampling batches of size 32, standard DPP sampling costs 2.74± 0.02 seconds; DPPNET
sampling takes 0.10 ± 0.001 seconds, amounting to an almost 30-fold speed improvement.

4.3 DPPNET FOR KERNEL RECONSTRUCTION

As a final experiment, we evaluate DPPNET’s performance on a downstream task for which DPPs
have been shown to be useful: kernel reconstruction using the Nyström method (Nyström, 1930;
Williams & Seeger, 2001). Given a positive semidefinite matrix K ∈ RN×N , the Nyström method
approximates K by K̂ = K·,SK†S,SKS,· where K† denotes the pseudoinverse of K and K·,S (resp.
KS,·) is the submatrix of K formed by its rows (resp. columns) indexed by S. The Nyström method
is a popular method to scale up kernel methods and has found many applications in machine learning
(see e.g. (Bac; She; Fow; Tal)). Importantly, the approximation quality directly depends on the choice
of subset S. Recently, DPPs have been shown to be a competitive approach for selecting S (Mariet
et al., 2018; Li et al., 2016b). Following the approach of Li et al. (2016b), we evaluate the quality
of the kernel reconstruction by learning a regression kernel K on a training set, and reporting the
prediction error on the test set using the Nyström reconstructed kernel K̂. Additionally to the full
DPP, we also compare DPPNET to the MCMC sampling method with quadrature acceleration (Li
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et al., 2016b;c) Figure 5 reports our results on the Ailerons dataset6 also used in Li et al. (2016b).
We start with a ground set size of 1000 and compute the resulting root mean squared error (RMSE)
of the regression using various sized subsets selected by sampling from a DPP, the MCMC method
of Li et al. (2016c), using the full ground set and DPPNET. Figure 5b reports the runtimes for each
method. We note that while all methods were run on CPU, DPPNet is more amenable to acceleration
using GPUs.

5 CONCLUSION AND DISCUSSION

We introduced DPPNETs, generative networks trained on DPPs over static and varying ground sets
which enable fast and modular sampling in a wide variety of scenarios. We showed experimentally
on several datasets and standard DPP applications that DPPNETs obtain competitive performance as
evaluated in terms of NLLs, while being amenable to the extensive recent advances in speeding up
computation for neural network architectures.

Although we trained our models on DPPs on exponentiated quadratic and linear kernels; we can train
on any kernel type built from a feature representations of the dataset. This is not the case for dual
DPP exact sampling, which requires that the DPP kernel be L = ΦΦ> for faster sampling.

DPPNETs are not exchangeable: that is, two sequences i1, . . . , ik and σ(i1), . . . , σ(ik) where σ
is a permutation of [k], which represent the same set of items, will not in general have the same
probability under a DPPNET. Exchangeability can be enforced by leveraging previous work (Zaheer
et al., 2017); however, non-exchangeability can be an asset when sampling a ranking of items.

Our models are trained to take as input a fixed-size subset representation; we aim to investigate the
ability to take a variable-length encoding as input as future work. The scaling of the DPPNET’s
complexity with the ground set size also remains an open question. However, standard tricks to
enforce fixed-size ground sets such as sub-sampling from the dataset may be applied to DPPNETs.
Similarly, if further speedups are necessary, sub-sampling from the ground set – a standard approach
for DPP sampling over very large set sizes – can be combined with DPPNET sampling.

In light of our results on dataset sampling, the question of whether encoders can be trained to
produce encodings conducive to dataset summarization via DPPNETs seems of particular interest.
Assuming knowledge of the (encoding-independent) relative diversity of a large quantity of subsets,
an end-to-end training of the encoder and the DPPNET simultaneously may yield interesting results.

Finally, although Corollary 1.1 shows the log-submodularity of the DPP can be transferred to a gener-
ative model, understanding which additional properties of training distributions may be conserved
through careful training remains an open question which we believe to be of high significance to the
machine learning community in general.
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A MAINTAINING LOG-SUBMODULARITY IN THE GENERATIVE MODEL

THEOREM 2. Let p be a strictly submodular distribution over subsets of a ground set Y , and q be a
distribution over the same space such that

DTV (p, q) ≤ min
S,T 6=∅,Y

1

4
[p(S) + p(T )− p(S ∪ T )− p(S ∩ T ))] . (5)

Then q is also submodular.

Proof. In all the following, we assume that S, T are subsets of a ground set Y such that S 6= T and
S, T 6∈ {∅,Y} (the inequalities being immediate in these corner cases).

Let
ε := min

S,T
p(S) + p(T )− p(S ∪ T )− p(S ∩ T ))

By the strict submodularity hypothesis, we know ε > 0.

Let S, T ⊆ Y such that S 6= T and S, T 6= ∅,Y . To show the log-submodularity of q, it suffices to
show that

q(S) + q(T ) ≥ q(S ∪ T ) + q(S ∩ T ).

By definition of ε,
p(S) + p(T )− p(S ∪ T )− p(S ∩ T )) ≥ ε

From equation 5, we know that
max
S⊆Y
|p(S)− q(S)| ≤ ε/4.

It follows that

q(S) + q(T )− q(S ∪ T ) + q(S ∩ T ) ≥ p(S) + p(T )− p(S ∪ T )− p(S ∩ T )− ε
≥ 0

which proves the submodularity of q.

B ENCODER DETAILS

For the MNIST encodings, the VAE encoder consists of a 2d-convolutional layer with 64 filters of
height and width 4 and strides of 2, followed by a 2d convolution layer with 128 filters (same height,
width and strides), then by a dense layer of 1024 neurons. The encodings are of length 32.

Figure 6: Digits and VAE reconstructions from the MNIST training set

CelebA encodings were generated by a VAE using a Wide Residual Network (Zagoruyko & Ko-
modakis, 2016) encoder with 10 layers and filter-multiplier k = 4, a latent space of 32 full-covariance
Gaussians, and a deconvolutional decoder trained end-to-end using an ELBO loss. In detail, the
decoder architecture consists of a 16K dense layer followed by a sequence of 4× 4 convolutions with
[512, 256, 128, 64] filters interleaved with 2× upsampling layers and a final 6× 6 convolution with 3
output channels for each of 5 components in a mixture of quantized logistic distributions representing
the decoded image.
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