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ABSTRACT
Formal verification of neural networks is essential for their deployment in safety-
critical areas. Many available formal verification methods have been shown to be
instances of a unified Branch and Bound (BaB) formulation. We propose a novel
framework for designing an effective branching strategy for BaB. Specifically, we
learn a graph neural network (GNN) to imitate the strong branching heuristic be-
haviour. Our framework differs from previous methods for learning to branch in
two main aspects. Firstly, our framework directly treats the neural network we
want to verify as a graph input for the GNN. Secondly, we develop an intuitive
forward and backward embedding update schedule. Empirically, our framework
achieves roughly 50% reduction in both the number of branches and the time re-
quired for verification on various convolutional networks when compared to the
best available hand-designed branching strategy. In addition, we show that our
GNN model enjoys both horizontal and vertical transferability. Horizontally, the
model trained on easy properties performs well on properties of increased diffi-
culty levels. Vertically, the model trained on small neural networks achieves simi-
lar performance on large neural networks. Code for all experiments is available at
https://github.com/oval-group/GNN_branching.

1 INTRODUCTION
Despite their outstanding performances on various tasks, neural networks are found to be vulner-
able to adversarial examples (Goodfellow et al., 2015; Szegedy et al., 2013). The brittleness of
neural networks can have costly consequences in areas such as autonomous driving, finance and
healthcare. When one requires robustness to adversarial examples, traditional model evaluation ap-
proaches, which test the trained model on a hold-out set, do not suffice. Instead, formal verification
of properties such as adversarial robustness becomes necessary. For instance, to ensure self-driving
cars make consistent correct decisions even when the input image is slightly perturbed, the required
property to verify is that the underlying neural network outputs the same correct prediction for all
points within a norm ball whose radius is determined by the maximum perturbation allowed.

Several methods have been proposed for verifying properties on neural networks (NN). Bunel et al.
(2018) showed that many of the available methods can be viewed as instances of a unified BaB
framework. A BaB algorithm consists of two key components: branching strategies and bounding
methods. Branching strategies decide how the search space is recursively split into smaller spaces.
Bounding methods compute bounds of each subspace to tighten the bounds of the final objective
function over the whole search space. In this work, we focus on improving the branching strategies.
By directly working with a general framework, our identified algorithmic improvements can be
combined with any bounding method, leading to potential performance improvement for BaB based
verification algorithms.

Branching strategies have significant impacts on the overall problem-solving process, as it directly
decides the total number of steps, and consequently the total time, required to solve the problem at
hand. The quality of a branching strategy is even more important when NN verification problems
are considered, which generally have a very large search space. Each input dimension or each
activation unit can be a potential branching option and neural networks of interest often have high
dimensional inputs and thousands of hidden activation units. With such a large search space, an
effective branching strategy could mean a large reduction of the total number of branches required,
and consequently of the time required to solve a problem. Developing an effective strategy is thus
of significant importance to the success of BaB based NN verification.

So far, to the best of our knowledge, branching rules adopted by BaB based verification methods are
either random selection (Katz et al., 2017; Ehlers, 2017) or hand-designed heuristics (Wang et al.,
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2018b; Bunel et al., 2018; Royo et al., 2019; Bunel et al., 2019). Random selection is generally in-
efficient as the distribution of the best branching decision is rarely uniform. In practice, this strategy
often results in exhaustive search to make a verification decision. On the other hand, hand designed
heuristics often involve a trade-off between effectiveness and computational cost. For instance,
strong branching is generally one of the best performing heuristics for BaB methods in terms of the
number of branches, but it is computationally prohibitive as each branching decision requires an ex-
pensive exhaustive search over all possible options. The heuristics that are currently used in practice
are either inspired by the corresponding dual problem when verification is formulated as an opti-
mization problem (Bunel et al., 2018; Royo et al., 2019) or incorporating the gradient information
of the neural network (Wang et al., 2018b). These heuristics normally have better computational effi-
ciency. However, given the complex nature of the search space, it is unlikely that any hand-designed
heuristic is able to fully exploit the structure of the problem and the data distribution encountered
in practice. As mentioned earlier, for large size NN verification problems, a slight reduction in the
quality of the branching strategy could lead to substantial increase in the total number of branches
required to solve the problem. A computationally cheap but high quality branching strategy is thus
much needed.

In order to exploit the inherent structure of the problem and the data, we propose a novel machine
learning framework for designing a branching strategy. Our framework is both computationally
efficient and effective, giving branching decisions that are of a similar quality to that of strong
branching. Specifically, we make the following contributions:

• We use a graph neural network (GNN) to exploit the structure of the neural network we want
to verify. The embedding vectors of the GNN are updated by a novel schedule, which is both
computationally cheap and memory efficient. In detail, we mimic the forward and backward
passes of the neural network to update the embedding vectors. In addition, the proposed GNN
allows a customised schedule to update embedding vectors via shared parameters. That means,
once training is done, the trained GNN model is applicable to various verification properties on
different neural network structures.

• We train GNNs via supervised learning. We provide ways to generate training data cheaply but
inclusive enough to represent branching problems at different stages of a BaB process for various
verification properties. With the ability to exploit the neural network structure and a comprehen-
sive training data set, our GNN is easy to train and converges fast.

• Our learned GNN also enjoys transferability both horizontally and vertically. Horizontally, al-
though trained with easy properties, the learned GNN gives similar performance on medium and
difficult level properties. More importantly, vertically, given that all other parts of BaB algorithms
remain the same, the GNN trained on small networks performs well on large networks. Since the
network size determines the total cost for generating training data and is positively correlated with
the difficulty of learning, this vertical transferability allows our framework to be readily applicable
to large scale problems.

• We further enhance our framework via online learning. For a learned branching strategy, it is
expected that the strategy can fail to output satisfactory branching decisions from time to time. To
deal with this issue, we provide an online scheme for fine-tuning the GNN along the BaB process
in order to best accommodate the verification property at hand.

• Finally, we supply a dataset on convolutional NN verification problems, covering problems at
different difficulty levels over neural networks of different sizes. We hope that by providing a
large problem dataset it could allow easy comparisons among existing methods and additionally
encourage the development of better methods.

Since most verification methods available work on ReLU-based deep neural networks, we focus on
neural networks with ReLU activation units in this paper. However, we point out that our framework
is applicable to any neural network architecture.

2 RELATED WORKS

Learning has already been used in solving combinatorial optimization problems (Bello et al., 2016;
Dai et al., 2017) and mixed integer linear programs (MILP) (Khalil et al., 2016; Alvarez et al.,
2017; Hansknecht et al., 2018; Gasse et al., 2019). In these areas, instances of the same underlying
structure are solved multiple times with different data values, which opens the door for learning.
Among them, Khalil et al. (2016), Alvarez et al. (2017), Hansknecht et al. (2018), and Gasse et al.
(2019) proposed learned branching strategies for solving MILP with BaB algorithms. These meth-
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ods imitate the strong branching strategy. Specifically, Khalil et al. (2016) and Hansknecht et al.
(2018) learn a ranking function to rank potential branching decisions while Alvarez et al. (2017)
uses regression to assign a branching score to each potential branching choice. Apart from imita-
tion, Anderson et al. (2019) proposed utilizing Bayesian optimization to learn verification policies.
There are two main issues with these methods. Firstly, they rely heavily on hand-designed features
or priors and secondly, they use a generic learning structure which is unable to exploit the neural
network architecture.

The approach most relevant to ours is the concurrent work by Gasse et al. (2019). They managed
to reduce feature reliance by exploiting the bipartite structure of an MILP through a GNN. The
bipartite graph is capable of capturing the network architecture, but cannot exploit it effectively.
Specifically, it treats all the constraints the same and updates them simultaneously using the same
set of parameters. This limited expressiveness can result in a difficulty in learning and hence in
a high generalization error for NN verification problems. Our proposed framework is specifically
designed for NN verification problems. By exploiting the neural network structure, and designing a
customized schedule for embedding updates, our framework is able to scale elegantly both in terms
of computation and memory. Finally, we mention that the recently proposed verification methods
(Katz et al., 2019; Singh et al., 2018; Anderson et al., 2019) are not explicitly formulated as BaBs.
Since our focus is on branching, we mainly use the methods in Bunel et al. (2019) for comparison.

3 BACKGROUND

Formal verification of neural networks refers to the problem of proving or disproving a property
over a bounded input domain. Properties are functions of neural network outputs. When a property
can be expressed as a Boolean expression over linear forms, we can modify the neural network in
a suitable way so that the property can be simplified to checking the sign of the neural network
output (Bunel et al., 2018). Note that all the properties studied in previous works satisfy this form,
thereby allowing us to use the aforementioned simplification. Mathematically, given the modified
neural network f , a bounded input domain C, formal verification examines the truthfulness of the
following statement:

∀x ∈ C, f(x) ≥ 0. (1)
If the above statement is true, the property holds. Otherwise, the property does not hold.

3.1 BRANCH AND BOUND

Verification tasks are often treated as a global optimization problem. We want to find the minimum
of f(x) over C in order to compare it with the threshold 0. Specifically, we consider an L layer feed-
forward neural network, f : R|x| → R, with ReLU activation units such that for any x0 ∈ C ⊂ R|x|,
f(x0) = x̂L ∈ R where

x̂i+1 =W i+1xi + b
i+1, for i = 0, . . . , L− 1, (2a)

xi = max(x̂i, 0), for i = 1, . . . , L− 1. (2b)

The termsW i and bi refer to the weights and biases of the i-th layer of the neural network f. Domain
C can be an `p norm ball with radius ε. Finding the minimum of f is a challenging task, as the
optimization problem is generally NP hard (Katz et al., 2017). To deal with the inherent difficulty
of the optimization problem itself, BaB (Bunel et al., 2018) is generally adopted. In detail, BaB
based methods divide C into sub-domains, each of which defines a new sub-problem (branching).
They then compute a relaxed lower bound of the minimum on each sub-problem (bounding). The
minimum of the lower bounds of all the generated sub-domains constitutes a valid global lower
bound of the global minimum over C. As a recursive process, BaB keeps partitioning the sub-
domains to tighten the global lower bound. The process terminates when the computed global lower
bound is above zero (property is true) or when an input with a negative output is found (property
is false). A detailed description of the BaB is provided in the appendices. In what follows, we
provide a brief description of the two components, bounding methods and branching strategies, that
is necessary for the understanding of our novel learning framework.

3.2 BOUNDING

For NN verification problems, bounding consists of finding upper and lower bounds for the final
output, the minimum of f(x) over C. An effective technique to compute a lower bound is to trans-
form the original optimization problem into a linear program (LP) by introducing convex relaxations
over ReLU activation units. As we can see in Eq. (2b), ReLU activation units do not define a convex
feasible set, and hence, relaxations are needed. Denote the j-th element of the vector xi as xi[j].
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Possible convex relaxations for a hidden node xi[j] that have been introduced so far are shown in
Figure 1. We replace ReLU with the shaded green area. The tighter the convex relaxation intro-
duced, the more computational expensive it is to compute a bound but the tighter the bound is going
to be. From Figure 1, we note that in order to introduce a convex relaxation, we need intermediate
bounds li[j] and ui[j]. Thus intermediate bounds are required for building the LP for the final out-
put lower bound. Given their purpose and the large number of intermediate bound computations,
rough estimations are mainly used. On the other hand, the final output lower bound is directly used
in making the pruning decision and hence a tighter lower bound is preferred as it avoids further
unnecessary splits on the sub-problem.

li[j] ui[j]
x̂i[j]

xi[j]

(a) Naive relaxation

li[j] ui[j]
x̂i[j]

xi[j]

(b) Linear bounds relaxation

li[j] ui[j]
x̂i[j]

xi[j]

(c) Planet relaxation (Ehlers, 2017)

Figure 1: Different convex relaxations introduced. For each plot, the black line shows the output of a ReLU
activation unit for any input value between li[j] and ui[j] and the green shaded area shows the convex relax-
ation introduced. Naive relaxation (a) is the loosest relaxation. Linear bounds relaxation (b) is tighter and is
introduced in Weng et al. (2018). Finally, Planet relaxation (c) is the tightest linear relaxation among the three
considered (Ehlers, 2017). Among them, (a) and (b) have closed form solutions which allow fast computations
while (c) requires an iterative procedure to obtain an optimal solution.

3.3 BRANCHING

Branching is of equal importance as bounding in the BaB framework. Especially for large scale
networks f , each branching step has a large number of putative choices. In these cases, the effec-
tiveness of a branching strategy directly determines the possibility of verifying properties over these
networks within a given time limit. On neural networks, two types of branching decisions are used:
input domain split and hidden activation unit split.

Assume we want to split a parent domain D. Input domain split selects an input dimension and
then makes a cut on the selected dimension while the rest of the dimensions remain the same. The
common choice is to cut the selected dimension in half and the dimension to cut is decided by the
branching strategy used. Available input domain split strategies are Bunel et al. (2018) and Royo
et al. (2019). Royo et al. (2019)’s is based on sensitivity test of the LP onD while Bunel et al. (2018)
use the formula provided in Wong & Kolter (2018) to estimate final output bounds for sub-domains
after splitting on each input dimension and selects the dimension that results in the highest output
lower bound estimates.

In our setting, we refer to a ReLU activation unit xi[j] = max(x̂i[j], 0) as ambiguous over D
if the upper bound ui[j] and the lower bound li[j] for x̂i[j] have different signs. Activation unit
split chooses among ambiguous activation units and then divides the original problem into cases
of different activation phase of the chosen activation unit. If a branching decision is made on
xi[j], we divide the ambiguous case into two determinable cases: {xi[j] = 0, li[j] ≤ x̂i[j] ≤ 0} and
{xi[j] = x̂i[j], 0 ≤ x̂i[j] ≤ ui[j]}. After the split, the originally introduced convex relaxation is re-
moved, since the above sets are themselves convex. We expect large improvements on the output
lower bounds of the newly generated sub-problems if a good branching decision is made. Apart from
random selection, employed in Ehlers (2017) and Katz et al. (2017), available ReLU split heuris-
tics are Wang et al. (2018a) and Bunel et al. (2019). Wang et al. (2018a) compute scores based on
gradient information to prioritise ambiguous ReLU nodes. Similarly, Bunel et al. (2019) use scores
to rank ReLU nodes but scores are computed with a formula developed on the estimation equations
in Wong & Kolter (2018). We note that for both branching strategies, after the split, intermediate
bounds are updated accordingly on each new sub-problem. For NN verification problems, either
domain split or ReLU split can be used at each branching step. When compared with each other,
ReLU split is a more effective choice for large scale networks, as shown in Bunel et al. (2019).

All the aforementioned existing branching strategies use hand-designed heuristics. In contrast, we
propose a new framework for branching strategies by utilizing a GNN to learn to imitate strong
branching heuristics. This allows us to harness the effectiveness of strong branching strategies while
retaining the efficiency of GPU computing power.
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4 GNN FRAMEWORK

Overview We begin with a brief overview of our overall framework, followed by a detailed de-
scription of each of its components. A graph neural network G is represented by two components:
a set of nodes V and a set of edges E, such that G = (V,E). Each node and each edge has its set
of features. A GNN uses the graph structure and node and edge features to learn a representation
vector (embedding vector) for each node v ∈ V . The GNN is a key component of our framework,
in which we treat the neural network f as a graph Gf . A GNN takes Gf as an input and initializes
an embedding vector for each node in V . The GNN updates each node’s embedding vector by ag-
gregating its own node features and all its neighbours’ embedding vectors. After several rounds of
updates, we obtain a learned representation (an updated embedding vector) of each node. To make
a branching decision, we treat the updated embedding vectors as inputs to a score function, which
assigns a score for each node that constitutes a potential branching option. A branching decision
is made based on the scores of potential branching decision nodes. Our framework is visualised in
Figure 2. We now describe each component in detail.

ŏ

Forward  Update

Backward  Update

Neural Network Graph Neural Network

Embedding Vectors

Final
Branching 
Decision

Input Nodes

Output Node

Activation Nodes

Node Features

Zero Embeddings

Embeddings
to be updated

Update Function 
Inputs

Invalid Embeddings

Figure 2: Illustration of our proposed GNN framework. An all zeros embedding network mimicking the
neural network is initialised. Embedding vectors are updated via several rounds of forward backward passes
using updating Eqs. (3)-(7). We obtain the final branching decision by calling a score function gs over all
embedding vectors of the potential branching decision nodes.

Nodes Given a neural network f , V consists of all input nodes v0[j], all hidden activation nodes
vi[j] and an output node vL. In our framework, we combine every pre-activation variable and its
associated post-activation variable and treat them as a single node. Pre- and post-activation nodes
together contain the information about the amount of convex relaxation introduced at this particular
activation unit, so dealing with the combined node simplifies the learning process. In terms of the
Eq. (2), let x′i[j] denote the combined node of x̂i[j] and xi[j]. The nodes v0[j], vi[j] and vL are thus
in one-to-one correspondence with x0[j], x′i[j] and xL. We note that V is larger than the set of all
potential branching decisions as it includes unambiguous activation nodes and output nodes.

Node features Different types of nodes have different sets of features. In particular, input node
features contain the corresponding domain lower and upper bounds and the primal solution. For
activation nodes, the node features consist of associated intermediate lower and upper bounds, the
layer bias, primal and dual solutions and new terms computed using previous features. Finally, the
output node has features including the associated output lower and upper bounds, the layer bias and
the primal solution. Other types of features could be used and some features could be excluded if
they are expensive to compute. We denote input node features as z0[j], activation node features as
zi[j] and output node features as zL. Our framework uses simple node features and does not rely on
extensive feature engineering. Nonetheless, by relying on the powerful GNN framework, it provides
highly accurate branching decisions.

Edges E consists of all edges connecting nodes in V , which are exactly the connecting edges in
f . Edges are characterized by the weight matrices that define the parameters of the network f such
that for an edge eijk connecting x′i[j] and x′i+1[k], we assign eijk =W i

jk.

Embeddings We associate a p-dimensional embedding vector µv for each node v ∈ V . All
embedding vectors are initialised as zero vectors.
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Forward and Backward embedding updates In general, a graph neural network learns signals
from a graph by acting as a function of two inputs: a feature matrix X ∈ R|V |×p, where each row
is the embedding vector µv for a node v ∈ V , and an adjacency matrix A representing the graph
structure. Under this formulation, all node embedding vectors are updated at the same time and
there is no particular order between nodes. In this work, instead, we propose an update scheme
where only the nodes corresponding to the same layer of the network f are updated at the same
time, so embedding vector updates are carried out in a layer-by-layer forward-backward way.

We argue that the forward-backward updating scheme is a natural fit for our problem. In more detail,
for a given problem D, each branching decision (an input node or an ambiguous activation node)
will generate two sub-problems s1 and s2, with each sub-domain having an output lower bound
lLs1 and lLs2 respectively, equal to or higher than lLD the lower bound that of D. Strong branching
heuristic uses a predetermined function to measure the combined improvement of lLs1 and lLs2 over
lLD and makes the final branching decision by selecting the node that gives the largest improvement.
Thus, to maximise the performance of a graph neural network, we want a node embedding vector to
maximally capture all information related to the computation of lLs1 and lLs2 . For estimating lLs1 , lLs2
of splitting on a potential branching decision node v, we note that these values are closely related to
two factors. The first factor is the amount of convex relaxations introduced at a branching decision
node v, when v corresponds to an ambiguous activation node. The second factor considers that the
impact that splitting node v will have on the convex relaxations introduced to nodes on layers after
that of v. Recall that, if there are no ambiguous activation nodes, the neural network f is simply a
linear operator, whose minimum value can be easily obtained. When ambiguous activation nodes
are present, the total amount of relaxation introduced determines the tightness of the lower bound to
f . We thus treat embedding vectors as a measure of local convex relaxation and its contribution to
other nodes’ convex relaxation.

As shown in Figure 1, at each ambiguous activation node x′i[j], the area of convex relaxation intro-
duced is determined by the lower and upper bounds of the pre-activate node x̂i[j]. We observe that
intermediate lower and upper bounds of a node x̂i[j] are significantly affected by the layers prior to it
and have to be computed in a layer-by-layer fashion. Based on the observation, we utilise a forward
layer-by-layer update on node embedding vectors. This should allow these embedding vectors to
capture the local relaxation information. In terms of the impact of local relaxation change to that
of other nodes, we note that by splitting an ambiguous node into two fixed cases, all intermediate
bounds of nodes on later layers will be affected, leading to relaxation changes at those nodes. We
thus employ a backward layer-by-layer update to account for the impact the local change has over
other nodes. Theoretically, by fixing an ambiguous ReLU node, intermediate bounds of nodes at
previous layers and on the same layer might change as well. For a naturally trained neural network,
the changes for these nodes should be relatively small compared to nodes on the later layers. To
account for these changes, we rely on multiple rounds of forward-and-backward updates.

In summary, during the forward update, for i = 1, . . . , L− 1, we have, for all possible j,

µ0[j] ←− Finp(z0[j];θ0), if µ0[j] = 0, (3)

µi[j] ←− Fact(zi[j],µi−1, e
i;θ1), (4) µL ←− Fout(zL,µL−1, e

L;θ2). (5)

During the backward update, for i = L− 1, . . . , 1, we have

µi[j] ←− Bact(zi[j],µi+1, e
i+1;θ3), (6) µ0[j] ←− Binp(z0[j],µ1, e

1;θ4). (7)

Update functions F andB take the form of multi-layered fully-connected networks with ReLU acti-
vation functions or composites of these simple update networks. The terms θi denote the parameters
of the networks. A detailed description of update functions is provided in the appendices.

We point out that our forward-backward update scheme does not depend on the underlying neural
network structure and thus should be generalizable to network architectures that differ from the one
we use for training. However, it does rely on the information used to compute convex relaxations,
so underlying data distribution, features and bounding methods are assumed to be the same when
the trained model is applied to different networks. Furthermore, our forward-backward update is
memory efficient, as we are dealing with one layer at a time and only the updated embedding vectors
of the layer are used to update the embedding vectors in the next (forward-pass) and the previous
(backward-pass) layer. This makes it readily applicable to large networks.
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Scores At the end of the forward-backward updates, embedding vectors for potential branching
decision nodes (all input nodes and ambiguous activation nodes) are gathered and treated as inputs
of a score function gs(·;θ5) : Rp → R, which takes the form of a fully-connected network with
parameters θ5. It assigns a scalar score for each input embedding vector. The final branching
decision is determined by picking the node with the largest score.

5 PARAMETER ESTIMATION

Training We train a GNN via supervised learning. To estimate Θ := (θ0,θ1,θ2,θ3,θ4,θ5), we
propose a new hinge rank loss function that is specifically designed for our framework. Before we
give details of the loss, we introduce a relative improvement measure m first. Given a domain D,
for each branching decision node v, the two generated sub-problems have output lower bounds lLs1
and lLs2 . We measure the relative improvement of splitting at the node v over the output lower bound
lLD as follows

mv := (min(lLs1 , 0) + min(lLs2 , 0)− 2 · lLD)/(−2 · lLD). (8)
Intuitively, m (0 ≤ m ≤ 1) measures the average relative sub-problem lower bound improvement
to the maximum improvement possible, that is −lLD. Any potential branching decision node v can
be compared and ranked via its relative improvement value mv . Since we are only interested in
branching nodes with large improvement measures, ranking loss is a natural choice. A direct pair-
wise rank loss might be difficult to learn for NN verification problems, given the large number of
branching decision nodes on each domain D. In addition, many branching decisions may give sim-
ilar performance, so it is redundant and potentially harmful to the learning process if we learn a
ranking among these similar nodes. To deal with these issues, we develop our loss by first dividing
all potential branching nodes into M classes (M is much smaller than the total number of branching
decision nodes) through the improvement value mv of a node. We denote the class label as Yv for
a node v. Labels are assigned in an ascending order such that Yv >= Yv′ if mv > mv′ . We then
compute the pairwise hinge-rank loss on these newly assigned labels as

lossD(Θ) =
1

K

N∑
i=1

( N∑
j=1

φ(gs(µj ;Θ)− gs(µi;Θ)) · 1Yj>Yi

)
, (9)

where φ(z) = (1 − z)+ is the hinge function, N is the total number of branching decision nodes
and K is the total number of pairs where Yj > Yi for any branching decision nodes vi, vj . The
loss measures the average hinge loss on score difference (gs(µj ;Θ) − gs(µi;Θ)) for all pairs of
branching decision nodes vi, vj such that Yj > Yi. Finally, we evaluate Θ by solving the following
optimization problem:

Θ = argmin
Θ

λ

2
‖Θ‖2 + 1

n

n∑
i

lossDi
(Θ), (10)

where the lossDi
is the one introduced in Eq. (9) and n is the number of training samples.

Fail-safe Strategy We introduce a fail-safe strategy employed by our framework to ensure that
consistent high-quality branching decisions are made throughout a BaB process. The proposed
framework uses a GNN to imitate the behavior of the strong branching heuristic. Although com-
putationally cheap, in some cases, the output decision by the learned graph neural network might
be suboptimal. When this happens, it could lead to considerably deteriorated performance for two
reasons. Firstly, we observed that for certain problems, which requires multiple splits to reach a
conclusion on this problem, if a few low-quality branching decisions are made at the beginning or
the middle stage of the branching process, the total number of splits required might increase substan-
tially. The total BaB path is thus, to some extent, sensitive to the quality of each branching decision
apart from those made near the end of the BaB process. Secondly, once a low-quality decision is
made on a given problem, a decision of similar quality is likely to be made on the two newly gen-
erated sub-problems, leading to exponential decrease in performance. Features for newly generated
sub-problems are normally similar to those of the parent problem, especially in the cases where the
branching decision of the parent problem is made on the later layers and loose intermediate bounds
are used. Thus, it is reasonable to expect the GNN fails again on the resulting sub-problems.

To deal with this issue, we keep track of the output lower bound improvement for each branch-
ing decision, as introduced in Eq. (8). We then set a pre-determined threshold parameter. If the
improvement is below the threshold, a computationally cheap heuristic is called to make a branch-
ing decision. Generally, the back-up heuristic is able to give an above-threshold improvement and
generate sub-problems sufficiently different from the parent problem to allow the learned GNN to
recover from the next step onwards.

7



Online Learning Online learning is a strategy to fine-tune the network for a particular property
after we have learnt Θ. It can be seen as an extension of the fail-safe strategy employed. Every
time a heuristic branching decision node vh is used instead of the node vgnn chosen by the GNN,
we can use vh and vgnn to update the GNN accordingly. Since a correct GNN model should output
an embedding vector µh resulting in a higher score gs(µh;Θ) for the heuristic decision, a loss can
be developed based on the two scores gs(µh;Θ) and gs(µgnn;Θ) to generate optimization signals
for correcting the GNN behaviour. For example, the loss used in our experimental setting is:

lossonline(Θ) = gs(µgnn;Θ)− gs(µh;Θ) + γ · ((mh −mgnn) > t). (11)

The last term is used to amplify (γ > 0) the loss if the relative improvement made by the heuristic
decision is more than t percent higher than that by the GNN. We update Θ of the GNN by taking
one gradient step with a small learning rate of the following minimization problem.

Θ = argmin
Θ

λ

2
‖Θ‖2 + lossonline(Θ). (12)

Online learning is property specific: it uses the decisions made by heuristics to fine tune the GNN
model so it can best accommodate the property at hand. As will be shown in our experiments, a
small but significant improvement in performance is achieved when online learning is used.

6 EXPERIMENTS

We now validate the effectiveness of our proposed framework through comparative experiments
against other available NN verification methods. A comprehensive study of NN verification methods
has been done in Bunel et al. (2019). We thus design our experiments based on the results presented
in Bunel et al. (2019).

6.1 SETUP

We are interested in verifying properties on large network architectures with convolutional layers.
In Bunel et al. (2019), existing NN methods are compared on a robustly trained convolutional net-
work on MNIST. We adopt a similar network structure but using a more challenging dataset, namely
CIFAR-10, for an increased difficulty level. We compare against the following two methods: (i)
MIPplanet, a mixed integer solver backed by the commercial solver Gurobi; and (ii) BaBSR, a BaB
based method utilising a ReLU-split heuristic. Our choice is motivated by their superior performance
over other methods for MNIST verification problems in the previous work (Bunel et al., 2019).

We provide the detailed experimental setup through four perspectives: bounding methods, branching
strategies, network structures, and verification properties tested. (Bounding methods) We compute
intermediate bounds using linear bounds relaxations (Figure 1(b)). For the output lower bound, we
use Planet relaxation (Figure 1(c)) and solve the corresponding LP with Gurobi. For the output upper
bound, we compute it by directly evaluating the network value at the input provided by the LP so-
lution. (Branching strategy) We focus on ReLU split only in our experiments. As shown in Bunel
et al. (2019), domain split only outperforms ReLU split on low input dimensional and small scale
networks. Also, since one of the Baseline method BaBSR employs a ReLU-split heuristic, we con-
sider ReLU split only for a fair comparison. However, we emphasize that our framework is readily
applicable to work with a combined domain and ReLU split strategy. (Network structures) Three
neural network structures will be studied. The base one is of the similar structure and size to the
one used in Bunel et al. (2019). It has two convolutional layers, followed by two fully connected
layers and is trained robustly using the method provided in Wong & Kolter (2018). This particular
choice of network size is made because the time required for solving each LP increases substan-
tially with the size of the network. To best evaluate the performance of the branching strategy, we
have to work with a medium sized network so that within the given timeout, a sufficient amount of
branching decisions can be made to allow effective comparisons. When testing the transferability of
the framework, two larger networks will be tested but their sizes are still restricted by the LP bottle-
neck. A detailed description of the network architecture is provided in the appendices. (Verification
properties) Finally, we consider the following verification properties. Given an image x for which
the model correctly predicted the label yc, we randomly choose a label yc′ such that for a given ε,
we want to prove (e(c) − e(c′))T f ′(x′) > 0, ∀x′ s.t ‖x−x′‖∞ ≤ ε. Here, f ′ is the original neural
network, e(c) and e(c

′) are one-hot encoding vectors for labels yc and yc′ . We want to verify that for
a given ε, the trained network will not make a mistake by labelling the image as yc′ . Since BaBSR
is claimed to be the best performing method on convolutional networks, we use it to determine the
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ε values, which govern the difficulty level of verification properties. Small ε values mean that most
ReLU activation units are fixed so their associated verification properties are easy to prove while
large ε values could lead to easy detection of counter-examples. The most challenging ε values are
those at which a large number of activation units are ambiguous. We use binary search with BaBSR
method to find suitable ε values. We only consider ε values that result in true properties and timed
out properties. Binary search process is simplified by our choice of robustly trained models. Since
these models are trained to be robust over a δ ball, the predetermined value δ can be used as a starting
value for binary search.

6.2 TRAINING DATASET

In order to generate training data, we firstly pick 565 random images and for each image, we ran-
domly select an incorrect class. For each property, the ε value is determined by running binary
search with BaBSR and 800 seconds timeout, so the final set of properties consists of mainly easily
solvable properties and a limited number of timed out properties.

We collect training data along a BaB process for solving a verification property. At each given
domain, given the large number of potential branching decisions, we perform the strong branching
heuristic on a selected subset of all potential branching decisions. The subset consists of branching
decisions that are estimated to be of high quality by the BaBSR heuristic and randomly selected
ones, which ensure a minimum 5% coverage on each layer.

To construct a training dataset that is representative enough of the whole problem space, we need
to cover a large number of properties. In addition, within a BaB framework, it is important to
include training data at different stages of a BaB process. However, running a complete BaB process
with the strong branching heuristic for hundreds of properties is computationally expensive and
considerably time consuming. We thus propose the following procedure for generating a training
dataset to guarantee a wide coverage both in terms of the verification properties and BaB stages.
For generated verification properties, we randomly select 25% of non-timeout property to conduct
a complete BaB process with the strong branching heuristic. For the rest of the properties, we
try to generate at least B = 20 training data for each verification property. Given the maximum
number of branches q = 10 and an effective and computationally cheap heuristic, we first generate
a random integer k from [0, q]. Then, we run a BaB process with the selected cheap heuristic for k
steps. Finally, we call the strong branching heuristic to generate a training sample. We repeat the
process until B training samples are generated or the BaB process terminated. A detailed algorithm
is provided in the appendices.

6.3 BASE MODEL

We test our learned model on the same model structure but on properties of three different difficulty
levels. Testing verification properties are generated by binary search with BaBSR and 3600s timeout.
We categorise verification properties solved within 800s as easy, which is consistent with training
data generated, between 800s and 2400s as medium and more than 2400s as hard. In total, we
generated 467 easy properties, 773 medium properties and 426 hard properties.

Results are given in the Table 1. Methods are compared in three perspectives: the average time over
all properties, average number of branches required over the properties that are solved by all methods
(we exclude timed out properties) and also the ratio of timed out properties. Since the properties
are generated based on BaBSR, the timed out ratios of BaBSR on easy and medium properties are
not comparable with that of other methods. All other numbers should give a fair evaluation of the
effectiveness of our branching strategy. BaBSR, GNN and GNN-online only differ in the branching
strategy used.

On all three sets of properties, we see that our learned branching strategy has led to a more than
50% reduction in the total average number of branches required for a property. As a direct re-
sult, the average time required achieves at least a 50% reduction as well. Our framework is thus
an effective scheme and enjoys horizontal transferability. A further performance improvement is
obtained through instance-specific online learning. Among all 1666 tested verification properties,
GNN with online-learning solves 61.52% of properties with fewer number of branches and 60.20%
of properties in less time when compared to the standard GNN.

We also provide a time cactus plot (Figure 3a) for all properties on the Base model. Time cactus
plots for each category of properties can be found in the appendices. All these time cactus plots look
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Table 1: Methods’ Performance on the Base model. For easy, medium and difficult level verification properties,
we compare methods’ average solving time, average number of branches required and the percentage of timed
out properties. GNN-Online outperforms other methods in all aspects.

Easy Medium Hard
Method time(s) branches %Timeout time(s) branches %Timeout time(s) branches %Timeout
BABSR 545.457 578.828 0.0 1370.395 1405.301 0.0 3127.995 2493.870 0.413

MIPPLANET 1499.375 0.165 2240.980 0.430 2250.623 0.462
GNN 272.695 285.682 0.002 592.118 583.210 0.004 1577.156 995.437 0.216

GNN-ONLINE 208.821 252.807 0.002 556.163 501.595 0.001 1369.326 813.502 0.183

Table 2: Methods’ Performance on Large Models. For verification properties on Wide large model and Deep
large model, we compare methods’ average solving time, average number of branches required and the per-
centage of timed out properties. GNN-Online outperforms other methods in all aspects.

Wide Deep
Method time branches %Timeout time branches %Timeout
BABSR 4137.467 843.476 0.0 4016.336 416.824 0.0

MIPPLANET 5855.059 0.743 5426.160 0.608
GNN 2367.693 387.403 0.127 2308.612 208.760 0.048

GNN-ONLINE 2179.306 353.879 0.095 2220.351 199.032 0.040

similar. Although BaBSR performs better than the commercial solver encoded method MIPplanet
overall, MIPplanet wins on a subset of properties. The learned model GNN, however, is capable of
giving consistent high quality performance over all properties tested.

6.4 TRANSFERABILITY: LARGER MODELS

We also robustly trained two larger networks. One has the same layer structure as the Base model
but has more hidden units on each layer, which we refer to as the Wide model. The other has a
similar number of hidden units on each layer but more layers. We refer to it as the Deep model.
The detailed network architecture is provided in the appendices. Apart from the network structure,
everything else is kept the same as for the Base model experiments. We use BaBSR and a timeout
of 7200s to generate 300 properties for the Wide model and 250 properties for the Deep model.
For these two models, each LP called for solving a sub-problem output lower bound is much more
time consuming, especially for the Deep model. This is reason that the average number of branches
considered is much fewer that those of the Base model within the given time limit.

The model learned on the Base network is tested on verification properties of large networks. Exper-
imental results are given in the Table 2 and time cactus plots (Figures 3b, 3c) are also provided. All
results are similar to what we observed on the Base model, which show that our framework enjoys
vertical transferability.
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(b) Wide large model
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(c) Deep large model
Figure 3: Cactus plots for the Base model (left), Wide large model (middle) and Deep large model (right).
For each model, we plot the percentage of properties solved in terms of time for each method. Consistent
performances are observed on all three models. BaBSR beats MIPplanet on the majority of properties. GNN
consistently outperforms BaBSR and MIPplanet. Further small improvements can be achieved through online-
learning.

7 DISCUSSION

The key observation of our work is that the neural network we wish to verify can be used to design a
GNN to improve branching strategies. This observation can be used in enhancing the performances
of other aspects of BaB. Possible future works include employing GNNs to find fast-converging
starting values for solving LPs on a neural network and utilising GNNs to develop a lazy verifier,
that only solves the corresponding LP on a domain when it could lead to pruning.
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APPENDIX A. BRANCH AND BOUND ALGORITHM

The following generic Branch and Bound Algorithm is provided in Bunel et al. (2019). Given
a neural network net and a verification property problem we wish to verify, the BaB procedure
examines the truthfulness of the property through an iterative procedure. During each step of BaB,
we first use the pick out function (line 6) to choose a problem prob to branch on. The split function
(line 7) determines the branching strategy and splits the chosen problem prob into sub-problems.
We compute output upper and lower bounds on each sub-problem with functions compute UB and
compute LB respectively. Newly computed output upper bounds are used to tighten the global upper
bound, which allows more sub-problems to be pruned. We prune a sub-problem if its output lower
bound is greater than or equal to the global upper bound, so the smaller the global upper bound the
better it is. Newly calculated output lower bounds are used to tighten the global lower bound, which
is defined as the minimum of the output lower bounds of all remained sub-problems after pruning.
We consider the BaB procedure converges when the difference between the global upper bound and
the global lower bound is smaller than ε.

In our case, our interested verification problem Eq. (1) is a satisfiability problem. We thus can
simplify the BaB procedure by initialising the global upper bound global ub as 0. As a result, we
prune all sub-problems whose output lower bounds are above 0. In addition, the BaB procedure is
terminated early when a below 0 output upper bound of a sub-problem is obtained, which means a
counterexample exits.

Algorithm 1 Branch and Bound
1: function BAB(net, problem, ε)
2: global lb← compute LB(net, problem)
3: global ub← compute UB(net, problem)
4: probs← [(global lb, problem)]
5: while global ub− global lb > ε do
6: ( , prob)← pick out(probs)
7: [subprob 1, . . . , subprob s]← split(prob)
8: for i = 1 . . . s do
9: sub lb← compute LB(net, subprob i)

10: sub ub← compute UB(net, subprob i)
11: if sub ub < global ub then
12: global ub← sub ub
13: prune probs(probs, global ub)
14: end if
15: if sub lb < global ub then
16: probs.append((sub lb, subprob i))
17: end if
18: end for
19: global lb← min{lb | (lb, prob) ∈ probs}
20: end while
21: return global ub
22: end function
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APPENDIX B. IMPLEMENTATION OF FORWARD AND BACKWARD PASSES

We give implementation details of forward and backward updates for embedding vectors for the
model used in the experiments section. Choices of forward and backward update functions are
based on the bounding methods used. In our experiments, we used linear bound relaxations for
computing intermediate bounds and Planet relaxation for computing the final output lower bound.
We start with a graph neural network mimicking the structure of the network we want to verify.
We denote domain lower and upper bounds as l0 and u0 respectively. Similarly, we denote the
intermediate bounds (pre-activation) for layers i = 1, . . . , L − 1 as li and ui. Since an LP solver
is called for the final output lower bound, we have primal values for all nodes of V and dual values
for all ambiguous nodes of V . Finally, let W 1, . . . ,WL be the layer weights and b1, . . . , bL be the
layer biases of the network f , which we wish to verify.

B.1 FORWARD PASS

Unless otherwise stated, all functions F∗ are 2-layer fully connected network with ReLU activation
units.

B.1.1 INPUT NODES

We update the embedding vectors of input nodes only during the first round of forward pass. That is
we update µ0[j] when it is zero for all j. After that, input nodes embedding vectors are updated only
in backward pass. For each input node, we form the feature vector z0[j] as a vector of l0[j], u0[j] and
its associated primal solution. The input node embedding vectors are computed as

µ0[j] = Finp(z0[j];θ0). (13)

B.1.2 ACTIVATION NODES

The update function Fact can be broken down into three parts: 1) compute information from local
features 2) compute information from neighbourhood embedding vectors and 3) combine informa-
tion from 1) and 2) to update current layer’s embedding vectors.

Information from local features Since we compute the final lower bound with the Planet re-
laxation (Figure 1(c)), we introduce a new feature related to the relaxation: the intercept of the
relaxation triangle, shown in Figure 4. We denote an intercept as β and compute it as

βi[j] =
−li[j] · ui[j]
ui[j] − li[j]

. (14)

The intercept of a relaxation triangle can be used as a measure of the amount of relaxation introduced
at the current ambiguous node.

Therefore, the local feature vector zi[j] of an ambiguous node x′i[j] consists of li[j], ui[j], βi[j], its
associated layer bias value, primal values (one for pre-activation variable and one for post-activation
variable) and dual values. We obtain information from local features via

Ri[j] =

{
Fact−lf (zi[j];θ

0
1) if x′i[j] is ambiguous,

0 otherwise.
(15)

where Ri[j] ∈ Rp.

Information from neighbourhood embedding vectors During the forward pass, we focus on
embedding vectors of the previous layer only. To update an embedding vector on layer i, we first
combine embedding vectors of the previous layer with edge weights via

Ei[j] =
∑
k

W i
kj · µi−1[k]. (16)

To compute the information from neighbourhood embedding vectors to an arbitrary activation node
x′i[j], we consider each activation unit as a gate. We observe that the amount of the information
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Figure 4: Red line represents the intercept of the convex relaxation. It is treated as a measure of the shaded
green area.
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(a) Ambiguous Node
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Figure 5: Depending on the value of li[j] and ui[j], relaxed activation function can take three forms. The left
figure shows the case where li[j] and ui[j] are of different signs. In this case, for any input value between li[j]
and ui[j], the maximum output achievable is indicated by the red line. The middle figure shows the case where
both li[j] and ui[j] are no greater than zero. In this case, the activation function completely blocks all input
information by outputting zero for any input value. The right figure shows the case where li[j] and ui[j] are
greater or equal to zero. In this case, the activation function allows complete information passing by outputting
a value equal to the input value.

from neighbourhood embedding vectors that remains after passing through a gate is dependent on
the its lower bound li[j] and upper bound ui[j]. When li[j] and ui[j] are of different signs, x′i[j] is an
ambiguous node. With relaxation, for any input value between li[j] and ui[j], the maximum output
achievable after passing an activation unit is shown by the red slope in Figure 5(a). The red slope
si[j] is computed as

si[j](x̂i[j]) =
ui[j]

ui[j] − li[j]
· x̂i[j] + βi[j]. (17)

Thus, the amount of information from neighbourhood embedding vectors that remains after passing
through an ambiguous gate is related to the ratio α :=

ui[j]

ui[j]−li[j]
. When ui[j] is no greater than zero,

the activation node x′i[j] completely blocks all information. For any input value, the output value is
zero after passing the activation unit, as shown by the red line in Figure 5(b). We have α = 0 in
this case. Finally, when li[j] is no less than 0, the activation node x′i[j] allows a complete passing of
information and α = 1. It is shown by the red line in Figure 5(c). We incorporate these observations
into our evaluations and compute the information from neighbourhood embedding vectors as

Ni[j] = fact−nb([α · Ei[j], α
′ · Ei[j]];θ

1
1), (18)

where α′ = 1−α when 0 < α < 1 and α′ = α otherwise. Here, we use [a, b] to denote the concate-
nation of two vectors a, b ∈ Rp into a vector of R2p. We introduce α′ to be more informative. We
do not consider the information that relate to the intercept βi[j] in the ambiguous case for the sake of
simplicity. Improved performance could be expected if the βi[j] related information is incorporated
as well.

Combine previous information Finally, we combine the information from local features and the
information from neighbourhood embedding vectors to update the embedding vectors of activation
nodes. Specifically,

µi[j] = Fact−com([Ri[j], Ni[j]];θ
2
1). (19)
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B.1.3 OUTPUT NODE

Embedding vectors of output nodes are updated in a similar fashion to that of activation nodes. We
first compute information from local features.

RLj = Fout−lf (zLj ;θ
0
2) (20)

For output nodes, the vector of local features zL consists of output lower bound, output upper
bound, primal solution and layer bias. Fout−lf is a one-layer fully-connected network with ReLU
activation units. We then compute information from neighbourhood embedding vectors. Since the
output node does not have an activation unit associated with it, we directly compute the information
of neighbourhood embedding vectors as

EL[j] =
∑
k

WL
kj · µL−1[k]. (21)

Finally, we update the embedding vector of the output node as
µLj = Fout−com([RL[j], EL[j]];θ

1
2). (22)

B.2 BACKWARD PASS

During backward message passing, for i = L−1, . . . , 1, we update embedding vectors for activation
nodes and input node. Again, all functions B∗ are 2-layer fully-connected networks unless specified
otherwise.

B.2.1 ACTIVATION NODES

Similar to updates of embedding vectors carried out for activation nodes in a forward pass, we
update embedding vectors of activation nodes using the same three steps in the backward pass, but
with minor modifications.

Information from local features We use the same feature zi[j] as the one used in the forward pass
and compute the information from local features as

Rb
i[j] =

{
Bact−lf1(zi[j];θ

0
3) if x′i[j] is ambiguous,

0 otherwise.
(23)

We recall that a dual value indicates how the final objective function is affected if its associated
constraint is relaxed by a unit. To better measure the importance of each relaxation to the final
objective function, we further update the information from local features by

Rb′

i[j] =

{
Bact−lf2([di[j] �Rb

i[j], R
b
i[j]];θ

1
3) if Rb

i[j] 6= 0

0 otherwise.
(24)

Here, di[j] is the vector of dual values corresponding to the activation node x′i[j]. We use � to mean
that we multiply Rb

i[j] by each element value of di[j] and concatenate them as a singe vector.

Information from neighbourhood embedding vectors During the backward pass, we focus on
embedding vectors of the next layer only. In order to update an embedding vector on layer i, we
compute the neighbourhood embedding vectors as

Eb
i[j] =

∑
k

W i+1
jk · µi+1[k]. (25)

We point out that there might be an issue with computing Ei[j] if the layer i + 1 is a convolutional
layer in the backward pass. For a convolutional layer, depending on the padding number, stride
number and dilation number, each node x′i[j] may connect to a different number of nodes on the layer
i + 1. Thus, to obtain a consistent measure of Ei[j], we divide Ei[j] by the number of connecting
node on the layer i+ 1, denoted as Eb′

i[j] and use the averaged Eb′

i[j] instead. Let

Eb∗
i[j] =

{
Eb′

i[j] if layer i+1 convolutional,
Eb

i[j] otherwise.
(26)
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The following steps are the same as the forward pass. We first evaluate

N b
i[j] = Bact−nb([α · Eb∗

i[j], α
′ · Eb∗

i[j]];θ
2
3), (27)

and the update embedding vectors as

µi[j] = Bact−com([Rb′

i[j], N
b
i[j]];θ

3
3). (28)

B.2.2 INPUT NODES

Finally, we update the input nodes. We use the feature vector zb0, which consists of domain upper
bound and domain lower bound. Information from local features is evaluated as

R0j = Binp−lf (z
b
0[j];θ

0
4). (29)

We compute the information from neighbourhood embedding vectors in the same manner as we do
for activation nodes in the backward pass, shown in Eq (26). Denote the computed information as
Eb∗

0[j]. The embedding vectors of input nodes are updated by

µ0[j] = Binp−com([Rb′

0[j], E
b∗
0[j]];θ

1
4). (30)

APPENDIX C. ALGORITHM FOR GENERATING TRAINING DATASET

Algorithm 2 outlines the procedure for generating the training dataset. The algorithm ensures the
generated training date have a wide coverage both in terms of the verification properties and BaB
stages while at the same time is computationally efficient. Specifically, we randomly pick 25% of
all properties that do not time out and run a complete BaB procedure on each of them with the
strong branching heuristic to generate training samples (line 3-5). For the remaining properties, we
attempt to generate B training samples for each of them. To cover different stages of a BaB process
of a property, we use a computationally cheap heuristic together with the strong branching heuristic.
Given a property, we first use the cheap heuristic for k steps (line 10-15) to reach a new stage of the
BaB procedure and then call the strong branching heuristic to generate a training sample (line 16).
We repeat the process until B training samples are generated or the BaB processs terminates.

Algorithm 2 Generating Training Dataset

1: Provided: total P properties; minimum B training data for each property; a maximum q
branches between strong branching decisions

2: for p = 1, . . . , P do:
3: α←− random number from [0, 1]
4: if p is not a timed out property and α ≤ 0.25 then
5: Running a complete BaB process with the Strong Branching Heuristic
6: else
7: b = 0
8: while b ≤ B do
9: k ←− random integer from[0, q]

10: while k > 0 do
11: Call a computationally cheap heuristic
12: if BaB process terminates then return
13: end if
14: k = k − 1
15: end while
16: Call the strong branching heuristic and generate a training sample
17: if BaB process terminates then return
18: end if
19: b = b+ 1
20: end while
21: end if
22: end for
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APPENDIX D. EXPERIMENT DETAILS

All the hyper-parameters used in the experiments are determined by testing a small set of numbers
over the validation set. Due to the limited number of tests, we believe better sets of hyper-parameters
could be found.

D.1 TRAINING DETAILS

Training dataset To generate a training dataset, 565 random images are selected. Binary serach
with BaBSR and 800 seconds timeout are used to determine ε on the Base model. Among 565
verification properties determined, we use 430 properties to generate 17958 training samples and
the rest of properties to generate 5923 validation samples. Training samples and validation samples
are generated using Algorithm 2 with B = 20 and q = 10.

For a typical epsilon value, each sub-domain generally contains 1300 ambiguous ReLU nodes.
Among them, approximately 140 ReLU nodes are chosen for strong branching heuristics, which
leads to roughly 200 seconds for generating a training sample. We point out that the total amount
of time required for generating a training sample equals the 2*(per LP solve time)*(number of am-
biguous ReLU nodes chosen). Although both the second and the third terms increase with the size
of the model used for generating training dataset, the vertical transferability of our GNN enables
us to efficiently generate training dataset by working with a small substitute of the model we are
interested in. In our case, we trained on the Base model and generalised to Wide and Deep model.

Training We initialise a GNN by assigning each node a 64-dimensional zero embedding vector.
GNN updates embedding vectors through two rounds of forward and backward updates. To train
the GNN, we use hinge rank loss (Eq. (9)) with M = 10. Parameters Θ are computed and updated
through Adam optimizer with weight decay rate λ = 1e−4 and learning rate 1e−4. If the validation
loss does not decrease for 10 consecutive epochs, we decrease the learning rate by a factor of 5. If
the validation loss does not decrease for 20 consecutive epochs, we terminate the learning procedure.
The batch size is set to 2. In our experiments, each training epoch took less than 400 seconds and
the GNN converges within 60 epochs.

In terms of the training accuracy, we first evaluate each branching decision using the metric defined
by Eq. (8) 1. Since there are several branching choices that give similar performance at each subdo-
main, we considered all branching choices that have mv above 0.9 as correct decisions. Under this
assumption, our trained GNN achieves 85.8% accuracy on the training dataset and 83.1% accuracy
on the validation dataset.

D.2 VERIFICATION EXPERIMENT DETAILS

We ran all verification experiments in parallel on 16 CPU cores, with one property being verified
on one CPU core. We observed that although we specifically set the thread number to be one
for MIPplanet (backed by the commercial solver Gurobi), the time required for solving a property
depends on the total number of CPUs used. For a machine with 20 cpu cores, MIPplanet requires
much less time on average for proving the same set of properties on fewer (say 4) CPU cores in
parallel than on many (say 16) CPU cores in parallel (the rest of CPU cores remain idle). Since
BaBSR, GNN and GNN-online all use Gurobi for the bounding problems, similar time variations,
depending on the number of CPU cores used, are observed. We ran each method in the same setting
and on 16 CPUs in parallel, so our reported results and time are comparable. However, we remind
readers to take the time variation into consideration when replicating our experiments or using our
results for comparison.

Fail-safe strategy Since, to the best of our knowledge, the branching heurisitc of BaBSR is the
best performing one on convolutional neural networks so far, we choose it for our fail-safe strategy.
The threshold is set to be 0.2. Every time when the relative improvementmgnn of a GNN branching
decision vgnn is less than 0.2, we call the heuristic to make a new branching decision vh. We solve

1we have tried various other metrics, including picking the minimum of the two subdomain lower bounds
and the maximum of the two lower bounds. Among these metrics, metric defined by Eq. (8) performs the best.
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the corresponding LPs for the new branching decision and compute its relative improvement mh.
The node with higher relative improvement is chosen to be the final branching decision.

Online learning We take a conservative approach in terms of online learning. We refer to a GNN
decision as a failed decision if the relative improvement offered by heuristic branching is better than
the one offered by the GNN. We record all GNN failed decisions and only update the GNN model
online when the same failed decision is made at least twice. To update the GNN model, we use
Adam optimizer with weight decay rate λ = 1e−4 and learning rate 1e−4. The GNN model is
updated with one gradient step only with respect to the optimization problem Eq. (12), where γ = 1
and t = 0.1 in the loss function lossonline, defined in Eq. (11).

D.3 BASELINES

We decided our baselines based on the experiment results of Bunel et al. (2019). In Bunel et al.
(2019), methods including MIPplanet, BaBSR, planet (Ehlers, 2017), reluBaB and reluplex (Katz
et al., 2017) are compared on a small convolutional MNIST network. Among them, BaBSR and
MIPplanet significantly outperform other methods. We thus evaluate our methods against these two
methods only in the experiments section. In order to strengthen our baseline, we compare against
two additional methods here.

Neurify (Wang et al., 2018a) Similar to BaBSR, Neurify splits on ReLU activation nodes. It
makes a branching decision by computing gradient scores to prioritise ReLU nodes. Since the
updated version of Neurify’s released code supports verification, we conducted a comparison exper-
iment between between Neurify and BaBSR for inclusiveness.

Neurify does not support CIFAR dataset. To evaluate the performance of Neurify, we obtained
the trained ROBUST MNIST model and corresponding verification properties from Bunel et al.
(2019). We ranked all verification properties in terms of the BaBSR solving time and selected the
first 200 properties, which are solved by BaBSR within one minute, as our test properties. For a
fair comparison, we have restricted Neurify to use one CPU core only and set the timeout limit to
be two minutes. Among all test properties, Neurify timed out on 183 out of 200 properties. BaBSR
thus outperforms Neurify significantly. Combining with the results of Bunel et al. (2019), BaBSR is
indeed a fairly strong baseline to be compared against.

MIP based algorithm (Tjeng et al., 2019) We also compared our MIPplanet baseline against a
new MIP based algorithm (Tjeng et al., 2019), published in ICLR 2019. To test these two methods,
we randomly selected 100 verification properties from the CIFAR Base experiment with timeout
3600s. In terms of solving time, MIPplanet requires 1732.18 seconds on average while the new MIP
algorithm requires 2736.60 seconds. Specifically, MIPplanet outperforms the new MIP algorithm
on 78 out of 100 properties. MIPplanet is therefore a strong baseline for comparison.

As a caveat, we mention that the main difference between MIPplanet and the algorithm of (Tjeng
et al., 2019) is the intermediate bound computation, which is complementary to our focus. If bet-
ter intermediate bounds are shown to help verification, we can still use our approach to get better
branching decisions corresponding to those bounds.

D.4 MODEL ARCHITECTURE

We provide the architecture detail of the neural networks verified in the experiments in the following
table.
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Network Name No. of Properties Network Architecture

BASE
Model

Easy: 467
Medium: 773

Hard: 426

Conv2d(3,8,4, stride=2, padding=1)
Conv2d(8,16,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 3172)

WIDE 300

Conv2d(3,16,4, stride=2, padding=1)
Conv2d(16,32,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 6244)

DEEP 250

Conv2d(3,8,4, stride=2, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 6756)

Table 3: For each CIFAR experiment, the network architecture used and the number of verification
properties tested.

APPENDIX E. ADDITIONAL EXPERIMENT RESULTS

E.1 FAIL-SAFE HEURISTIC DEPENDENCE

In all our experiments, we have compared against BaBSR, which employs only the fail-safe heuristic
for branching. In other words, removing the GNN and using only the fail-safe heuristic is equivalent
to BaBSR. The fact that GNN significantly outperforms BaBSR demonstrates that GNN is doing
most of the job. To better evaluate the GNN’s reliance on a fail-safe heuristic, we study the ratio of
times that a GNN branching decision is used for each verification property of a given model. Results
are listed in Table 4. On all three models, GNN accounts for more than 90% of branching decisions
employed on average, ensuring the effectiveness of our GNN framework.

Table 4: Evaluating GNN’s dependence on the fail-safe strategy. Given a CIFAR model, we collected the
percentage of times GNN branching decision is used and the percentage of times the fail-safe heuristic (BaBSR
in our case) is employed for each verification property. We report the average ratio of all verification properties
of the same model. To account for extreme cases, we also list the minimum and maximum usage ratios of the
fail-safe heuristic for each model.

Model GNN(avg) BaBSR(avg) BaBSR(min) BaBSR(max)
BASE 0.934 0.066 0.0 0.653
WIDE 0.950 0.050 0.0 0.274
DEEP 0.964 0.036 0.0 0.290

E.2 GNN FEATURE ANALYSIS

We evaluate the importance of different features used in GNN. We note that two types of features
are used in GNN. The first type (including intermediates bounds, network weights and biases) can
be collected at negligible costs. The other type is LP features (primal and dual values) that are
acquired by solving a strong LP relaxation, which are expensive to compute but potentially highly
informative. To evaluate their effect, we trained a new GNN with LP features removed and tested
the new GNN on 260 randomly selected verification properties on the Base model. Among the
selected properties, 140 are categorised as easy, 70 as medium and 50 as hard. We denote the model
trained on all features as GNN and the newly trained model as GNN-R (we use R to indicate reduced
features).
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Table 5: Measuring the importance of features used by GNN. For easy, medium and difficult level verification
properties, we compare methods’ average solving time, average number of branches required and the percentage
of timed out properties.

Easy Medium Hard
Method time(s) branches %Timeout time(s) branches %Timeout time(s) branches %Timeout
BABSR 429.589 641.300 0.0 1622.669 1504.366 0.0 2466.712 1931.098 0.0

GNN 268.592 319.386 0.0 724.883 529.070 0.0 1025.826 772.667 0.0
GNN-R 348.482 441.043 0.0 898.011 720.958 0.0 1340.559 967.804 0.0

From Table 5, we observe that removing primal and dual information deteriorates the GNN perfor-
mance, but GNN-R still outperforms the baseline heuristic BaBSR. We believe cheap features are
the most important. Depending on the cost of LP, potential users can either remove expensive LP
features or train a GNN with a smaller architecture.

E.3 MIPPLANET BRANCHING NUMBER

MIPplanet is implemented with the commercial solver Gurobi. Since Gurobi outputs internal branch
number, we recorded MIPplanet branch number for a subset of verification properties for each
model. In detail, we randomly selected 120 properties of various difficulty levels for the Base model
and 27 properties each for the Wide and Deep model. Results are summarised in Table 6.

One key observation we made is that Gurobi branch number is not positively related to the solving
time. For instance, on timed out properties of the Wide model, MIPplanet branch number varies be-
tween 1 and 7479. We suspect Gurobi performs cutting before branching, so time spent on branching
varies between properties, leading to inconsistent branch number and solving time. As the result,
the MIPplanet branch number is not comparable with that of BaBSR, GNN and GNN-online. This
is also the reason that we did not include MIPplant branch number in Table 1 and Table 2.

Table 6: Methods’ performance on randomly selected properties. We show methods’ average solving time,
average number of branches required and the percentage of timed out properties. We emphasize that MIPplanet
branch number is not comparable with those of other methods.

Base Wide Deep
Method time(s) branches %Timeout time(s) branches %Timeout time(s) branches %Timeout
BABSR 1472.508 1420.839 0.067 2985.199 918.167 0.111 3811.712 482.167 0.111

MIPPLANET 1783.800 3780.408∗ 0.258 5254.134 2949.625∗ 0.556 4566.080 4332.375∗ 0.407
GNN 714.224 817.017 0.017 996.811 268.333 0.074 1893.081 201.500 0.0

GNN-ONLINE 582.738 642.387 0.008 949.694 257.667 0.033 1776.278 192.167 0.0

E.4 LP SOLVING TIME AND GNN COMPUTING TIME

We mention that LP solving time is the main bottleneck for branch-and-bound based verification
methods. Although both GNN evaluation time and LP solving time increase with the size of network,
LP solving time grows at a significantly faster speed. For instance, in CIFAR experiments, GNN
requires on average 0.02, 0.03, 0.08 seconds to make a branching decision on Base, Wide and Deep
model respectively but the corresponding one LP solving time on average are roughly 1.1, 4.9, 9.6
seconds. GNN evaluation is almost negligible for large neural networks when compared to LP
solving time.

E.5 GEOMETRIC MEAN

For all our experiments, we based our analyses on the statistics of average solving time and branch-
ing number. To ensure the reported numbers are not biased by potential outliers, we measure meth-
ods’ performance with the geometric mean as well and summarize results in Table 7 and Table 8.
Statistics of geometric mean are consistent with that of arithmetic mean, validating the analyses of
the main paper.
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Table 7: Methods’ Performance on the Base model. For easy, medium and difficult level verification properties,
we compare methods’ geometric average solving time, geometric average number of branches required and the
percentage of timed out properties. GNN-Online outperforms other methods in all aspects.

Easy Medium Hard
Method time(s) branches %Timeout time(s) branches %Timeout time(s) branches %Timeout
BABSR 471.547 468.117 0.0 1304.032 1236.398 0.0 3094.794 2271.796 0.413

MIPPLANET 836.049 0.165 1401.273 0.430 1374.794 0.462
GNN 180.638 191.514 0.002 412.880 417.970 0.004 985.142 691.599 0.216

GNN-ONLINE 143.968 180.575 0.002 399.786 380.463 0.001 833.343 605.443 0.183

Table 8: Methods’ Performance on Large Models. For verification properties on Wide large model and Deep
large model, we compare methods’ geometric average solving time, geometric average number of branches
required and the percentage of timed out properties. GNN-Online outperforms other methods in all aspects.

Wide Deep
Method time branches %Timeout time branches %Timeout
BABSR 3510.960 699.826 0.0 3580.469 359.464 0.0

MIPPLANET 4430.098 0.743 4014.469 0.608
GNN 1403.841 296.821 0.127 1529.542 158.498 0.048

GNN-ONLINE 1316.455 279.298 0.095 1502.349 155.523 0.040

E.6 ADDITIONAL PLOTS

We provide cactus plots for the Base model on easy, medium and hard difficulty level properties
respectively.
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(c) Hard properties

Figure 6: Cactus plots for easy properties (left), medium properties (middle) and hard properties (right) on the
Base model. For each category, we plot the percentage of properties solved in terms of time for each method.
BaBSR beats MIPplanet on easy and medium properties overall. On hard properties, although BaBSR manages
to solve more properties, its average performance is worse than MIPplanet in terms of time. GNN consistently
outperforms BaBSR and MIPplanet on all three levels of properties, demonstrating the horizontal transferability
of our framework. Again, further small improvements can be achieved through online-learning.

APPENDIX F. MNIST DATASET

We replicate the CIFAR experiments on the MNIST dataset to test the generalization ability of our
GNN framework.

F.1 MODEL ARCHITECTURE AND VERIFICATION PROPERTIES

We trained three different networks on MNIST with the method provided in Wong & Kolter (2018).
The base model is mainly used for generating the training dataset and testing the horizontal gener-
alization ability of the trained GNN. The Wide and Deep models are used for evaluating the vertical
generalization. Verification properties are found via binary search with BaBSR. We set the binary
search time limit to be 1800 seconds for the Base model and 3600 seconds for the other two models.
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Network Name No. of Properties Network Architecture

BASE 100

Conv2d(1,4,4, stride=2, padding=1)
Conv2d(4,8,4, stride=2, padding=1)

linear layer of 50 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 1226)

WIDE 100

Conv2d(1,16,4, stride=2, padding=1)
Conv2d(16,32,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 4804)

DEEP 100

Conv2d(1,8,4, stride=2, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 5196)

Table 9: For each MNIST experiment, the network architecture used and the number of verification
properties tested.

F.2 TRAINING DETAILS

Training dataset Training dataset is generated on the Base model. We point out that we explicitly
choose a Base model of small network size for efficient and fast training data generation.

To generate a training dataset, 538 random MNIST images are selected. Binary serach with BaBSR
and 600 seconds timeout are used to determine ε on the Base model. Among 538 verification proper-
ties determined, we use 403 properties to generate 18231 training samples and the rest of properties
to generate 5921 validation samples. Training samples and validation samples are generated using
Algorithm 2 with B = 20 and q = 10. For a typical epsilon value, each sub-domain generally
contains 480 ambiguous ReLU nodes. Among them, approximately 80 ReLU nodes are chosen for
strong branching heuristics, which leads to roughly 45 seconds for generating a training sample.

Training The same set of parameters and training procedure are used for training a GNN for
MNIST dataset. The GNN converges in 70 epochs with each epoch took less than 400 seconds. The
trained GNN reached 86.5% accuracy on the training dataset and 83.1% accuracy on the validation
dataset.

F.3 EXPERIMENT RESULTS

We first note that we use verification properties with timeout 1800 seconds on the Base model to
allow for an integrated evaluation of GNN on both its performance and its horizontal transferability.
Vertical transferability is tested on the Wide and Deep model.

We observe that MIPplanet outperforms all BaB based methods on verification properties of the Base
model. Given that the network size of the Base model is particularly small (1226 hidden units only),
we believe that MIP algorithms backed by commercial solvers could be the most effective tool on
verification problems of small size. Our conjecture is further confirmed by the fact that MIPplanet
timed out on almost all properties of both the Wide and Deep models. On all three models, GNN
consistently outperforms BaBSR, demonstrating the transferability of our framework. Finally, when
online learning is considered, we found it is effective in fine-tuning the trained GNN and enabling
further performance improvements, especially on the Wide model.

22



Table 10: Methods’ Performance on different models. For the Base, Wide and Deep model, we compare
methods’ average solving time, average number of branches required and the percentage of timed out properties
respectively. MIPplanet performs the best on the Base model while GNN-Online outperforms other methods
on the Wide and the Deep model.

Base Wide Deep
Method time(s) branches %Timeout time(s) branches %Timeout time(s) branches %Timeout
BABSR 878.226 2659.276 0.0 1888.084 399.571 0.0 1895.032 211.644 0.0

MIPPLANET 411.167 0.0 3567.109 0.990 3437.918 0.833
GNN 623.291 1549.867 0.019 1526.381 322.510 0.040 1189.271 144.238 0.010

GNN-ONLINE 547.102 1363.057 0.009 1133.429 283.673 0.010 1121.066 139.980 0.0
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(b) Wide large model
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(c) Deep large model

Figure 7: Cactus plots for the Base model (left), Wide large model (middle) and Deep large model (right).
For each model, we plot the percentage of properties solved in terms of time for each method. MIPplanet
outperforms all BaB based method on the Base model. However, once model size get larger, MIPplanet’s
performance deteriorates quickly. ON the Wide and Deep model, MIPplanet timed out on most properties
and is outperformed by BaBSR. GNN consistently outperforms BaBSR on all three models, demonstrating the
transferability of our framework. Again, further small improvements can be achieved through online-learning.

F.4 FAIL-SAFE HEURISTIC DEPENDENCE

Results of Table 11 ensure that the trained GNN is indeed account for the most branching decisions.

Table 11: Evaluating GNN’s dependence on the fail-safe strategy. Given a MNIST model, we collected the
percentage of times GNN branching decision is used and the percentage of times the fail-safe heuristic (BaBSR
in our case) is employed for each verification property. We report the average ratio of all verification properties
of the same model. To account for extreme cases, we also list the minimum and maximum usage ratios of the
fail-safe heuristic for each model.

Model GNN(avg) BaBSR(avg) BaBSR(min) BaBSR(max)
BASE 0.962 0.038 0.0 0.204
WIDE 0.884 0.116 0.0 0.376
DEEP 0.938 0.062 0.0 0.407

F.5 GEOMETRIC MEAN

The consistency between the results of Table 12 and Table 10 confirm that our analyses based on
arithmetic mean are not biased by outliers.

Table 12: Methods’ Performance on different models. For the Base, Wide and Deep model, we compare
methods’ geometric average solving time, geometric average number of branches required and the percent-
age of timed out properties respectively. MIPplanet performs the best on the Base model while GNN-Online
outperforms other methods on the Wide and the Deep model.

Base Wide Deep
Method time(s) branches %Timeout time(s) branches %Timeout time(s) branches %Timeout
BABSR 740.740 2210.248 0.0 1683.816 362.171 0.0 1694.555 187.723 0.0

MIPPLANET 330.455 0.0 3506.400 0.990 3356.780 0.833
GNN 501.966 1268.780 0.019 1267.736 284.452 0.040 1022.466 131.171 0.010

GNN-ONLINE 450.033 1123.867 0.009 973.015 254.641 0.0 991.552 128.115 0.0

23



F.6 TRANSFERABILITY BETWEEN DATASETS

To evaluate whether our framework can generalize further to support transferring between datasets,
we tested CIFAR trained GNN on MNIST verification properties. In detail, we have tested the
GNN on 20 randomly picked verification properties of MNIST Base model. We found that BABSR
outperforms CIFAR trained GNN on all properties, so the CIFAR trained GNN model does not
transfer to MNIST dataset. This is expected as MNIST and CIFAR images differ significantly from
each other.
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