
Under review as a conference paper at ICLR 2019

WHAT WOULD π∗ DO?: IMITATION LEARNING
VIA OFF-POLICY REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning to imitate expert actions given demonstrations containing image obser-
vations is a difficult problem in robotic control. The key challenge is generalizing
behavior to out-of-distribution states that differ from those in the demonstrations.
State-of-the-art imitation learning algorithms perform well in environments with
low-dimensional observations, but typically involve adversarial optimization pro-
cedures, which can be difficult to use with high-dimensional image observations.
We propose a remarkably simple alternative based on off-policy soft Q-learning,
which we call soft Q imitation learning (SQIL, pronounced “skill”), that rewards
the agent for matching demonstrated actions in demonstrated states. The key idea
is initially filling the agent’s experience replay buffer with demonstrations, where
rewards are set to a positive constant, and setting rewards to zero in all additional
experiences. We derive SQIL from first principles as a method for performing
approximate inference under the MaxCausalEnt model of expert behavior. The
approximate inference objective trades off between a pure behavioral cloning loss
and a regularization term that incorporates information about state transitions via
the soft Bellman error. Our experiments show that SQIL matches the state of the
art in low-dimensional environments, and significantly outperforms prior work in
playing video games from high-dimensional images.

1 INTRODUCTION

Many real-world sequential decision-making problems can be tackled by imitation learning, where
an expert demonstrates near-optimal behavior to an agent that then attempts to replicate that behavior
in novel situations (Argall et al., 2009). This paper considers the problem of training an agent to
imitate an expert policy, given expert action demonstrations and access to the environment. The
agent does not get to observe a reward signal or query the expert, and does not know the state
transition dynamics ex-ante.

Standard approaches to this problem based on behavioral cloning seek to imitate the expert’s actions,
but do not reason about the consequences of actions (Pomerleau, 1991). As a result, they suffer from
state distribution shift, and fail to generalize to states that are very different from those seen in the
demonstrations (Ross & Bagnell, 2010; Ross et al., 2011). Approaches based on inverse reinforce-
ment learning (IRL) deal with this issue by fitting a reward function that represents preferences
over trajectories rather than individual actions (Ng et al., 2000; Ziebart et al., 2008), and using the
learned reward function to train the imitation agent through RL (Wulfmeier et al., 2015; Finn et al.,
2016; Fu et al., 2017). This is the core idea behind generative adversarial imitation learning (GAIL),
which implicitly combines IRL and RL using generative adversarial networks (GANs) (Ho & Er-
mon, 2016; Goodfellow et al., 2014). GAIL is state-of-the-art in environments with low-dimensional
observations, but requires additional reward augmentation and feature engineering when applied to
environments with high-dimensional image observations (Li et al., 2017), due to the difficulty of
training GANs (Kurach et al., 2018). In short, imitation learning from raw pixel inputs without prior
knowledge of the domain remains a challenge.

The key insight in this paper is that instead of using a learned reward function or discriminator
to provide a reward signal to the imitation policy, as is done in IRL-based imitation methods and
GAIL, the imitation agent can simply be rewarded for matching demonstrated actions in demon-
strated states using off-policy soft Q-learning. The agent’s experience replay buffer is initially filled

1

Under review as a conference paper at ICLR 2019

with demonstrations where rewards are set to some positive constant, and gradually accumulates
additional experiences with rewards set to zero. The agent has an incentive to imitate the expert in
demonstrated states, and to take actions that lead it back to demonstrated states when it encounters
new states that differ from the demonstrations. We call this algorithm soft Q imitation learning
(SQIL, pronounced “skill”).

We motivate the SQIL algorithm by deriving it from first principles as a method for performing
approximate inference under the MaxCausalEnt model of expert behavior (Ziebart et al., 2010).
Our analysis shows that SQIL maximizes a lower bound on the log-posterior of the soft Q values
given the demonstrations – a bound that trades off between a pure behavioral cloning loss and a
regularization term that incorporates state transition information via the soft Bellman error.

The main contribution of this paper is SQIL: a practical and general imitation learning algorithm that
is effective in MDPs with high-dimensional, continuous observations – including raw pixel inputs
– and has a natural theoretical interpretation as approximate inference. We run experiments in
the image-based Car Racing and low-dimensional Lunar Lander game environments from OpenAI
Gym, the Humanoid and HalfCheetah continuous control tasks from MuJoCo, and image-based
Atari Pong, to compare SQIL to two prior methods: behavioral cloning and GAIL. The results show
that SQIL matches GAIL in low-dimensional environments, and significantly outperforms GAIL on
the image-based Car Racing and Pong tasks.

2 PRELIMINARIES

This work builds on the maximum causal entropy (MaxCausalEnt) model of expert behavior (Ziebart
et al., 2010; Levine, 2018). In a finite-horizon Markov Decision Process (MDP) with a finite, discrete
action space A,1 the demonstrator is assumed to follow a policy π that maximizes reward R(s, a).
To simplify exposition, we assume the state transition dynamics are deterministic: let s′ denote the
state that follows from taking action a in state s. The policy π forms a Boltzmann distribution over
actions,

π(a|s) , exp (Q(s, a)− V (s)), (1)
where Q is the soft Q function, and V is the soft value function,

V (s) ,

{
0 if s is a terminal state
log
(∑

a∈A exp (Q(s, a))
)

otherwise
(2)

In the standard MaxCausalEnt model, the soft Q values are a deterministic function of the rewards
and dynamics, given by the soft Bellman equation,

Q(s, a) , R(s, a) + γV (s′). (3)

2.1 APPROXIMATE MAXCAUSALENT MODEL

In the analysis in Section 3, the standard MaxCausalEnt model is approximated by a probabilistic
model that treats the soft Q values as random variables,

Q(s, a) ∼ N (R(s, a) + γV (s′), σ2), (4)

where σ ∈ R is a constant hyperparameter, and R(s, a) is a random variable with zero mean and
unit variance. To simplify the analysis in Section 3, we assume that the dynamics of the environment
satisfy the property that if state si is reachable from state sj , then sj is not reachable from si – this
ensures that the probabilistic graphical model that captures the joint distribution over soft Q values
is acyclic. The experiments in Section 5 show that even when this assumption is violated, SQIL
performs well empirically.

1Assuming a discrete action space simplifies exposition. The analysis can be extended to continuous action
spaces, as long as the entropy of policy π(·|s) is bounded above by some constant (see Equation 13), where π
is any policy in the policy class being optimized over. The SQIL algorithm can be applied to continuous control
tasks using existing soft Q-learning methods (Haarnoja et al., 2017; 2018), as illustrated in Section 5.4.

2

Under review as a conference paper at ICLR 2019

3 IMITATION LEARNING VIA APPROXIMATE MAXCAUSALENT INFERENCE

We aim for an imitation learning algorithm that generalizes to new states, without resorting to adver-
sarial optimization procedures that would be difficult to use with image observations. Our approach
is to derive a lower bound on the log-posterior of the soft Q values given the demonstrations; in
particular, a lower bound that is maximized by the SQIL algorithm.

3.1 DERIVING THE APPROXIMATE INFERENCE OBJECTIVE

Consider a demonstration rollout τ = (s0, a0, s1, a1, ..., sT), where sT is a terminal state. Standard
MaxCausalEnt IRL searches for the reward function that maximizes the posterior probability of the
rewards given the demonstration. Our goal, however, is not to infer the expert’s reward function;
it is to infer the expert’s policy, which is represented by their soft Q function. We approach this
problem by formalizing uncertainty about the soft Q values using the probabilistic model described
in Section 2.1. We fit a soft Q function to optimize the posterior probability of the soft Q values Q
given the demonstration τ , where Q , {Q(s, a) | (s, a) ∈ X}, and X is a finite subset of S × A
that includes the state-action pairs in τ . Since Q(s, a) may depend on Q(s′, a′) (see Equations 4
and 2), X is assumed to satisfy the closure property,

∀(s, a) ∈ X . (s′ not terminal =⇒ (∀a′ ∈ A. (s′, a′) ∈ X)). (5)
The goal is to derive a lower bound on the log-posterior, log p(Q|τ), that is maximized by the SQIL
algorithm. The first step is to marginalize out the rewards,R , {R(s, a) | (s, a) ∈ X}, as follows.

p(Q|τ) ∝ p(τ |Q)p(Q) = ER[p(τ |Q,R)p(Q|R)] = ER[p(τ |Q)p(Q|R)]. (6)
First bound. Optimizing the log of the expectation in Equation 6 is hard, for a number of reasons:
we haven’t assumed a particular prior distribution over rewards (only that it has zero mean and unit
variance), and the soft Q values in Q are not conditionally independent given R. Optimizing the
expectation of the log is easier. By Jensen’s inequality,

log (ER[p(τ |Q)p(Q|R)]) ≥ ER[log p(τ |Q) + log p(Q|R)]. (7)
The conditional likelihood of the demonstration τ given the soft Q valuesQ is given by Equation 1:

p(τ |Q) = exp

(
T−1∑
t=0

Q(st, at)− V (st)

)
. (8)

The conditional likelihood of the soft Q valuesQ given the rewardsR is given by Equation 4:

p(Q|R) =
∏

(s,a)∈X

N (Q(s, a);R(s, a) + γV (s′), σ2), (9)

where the joint distribution over Q can be factored due to the state re-entry assumption about the
dynamics made in Section 2.1 and the closure assumption about X made in Equation 5. Simplifying
the lower bound in Equation 7,

(7) =
T−1∑
t=0

Q(st, at)− V (st)

+
∑

(s,a)∈X

− 1

2σ2

(
(Q(s, a)− (E[R(s, a)] + γV (s′)))2 +Var[R(s, a)]

)
− log

√
2πσ2. (10)

Applying the assumption from Section 2.1 that the rewards have zero mean and unit variance,

(10) =
T−1∑
t=0

Q(st, at)− V (st) +
∑

(s,a)∈X

− 1

2σ2
((Q(s, a)− γV (s′))2 + 1)− log

√
2πσ2. (11)

Second bound. Next, the bound is intentionally loosened, in order to arrive at an objective that is
maximized by the SQIL algorithm.2 By the MaxCausalEnt assumptions in Section 2,

V (s0) = Eτ∼p(τ |π)

[
T−1∑
t=0

γt (Q(st, at)− γV (st+1) +H(π(·|st)))
]
, (12)

2The experiments in Section 5 compare the performance of SQIL, which optimizes the bound in Equation
13, to the performance of SQIL-T, which optimizes the tighter bound in Equation 11. See Section A.1 in the
appendix for a more detailed description of SQIL-T.

3

Under review as a conference paper at ICLR 2019

where H denotes entropy. Maximizing Equation 11 with respect to Q yields a solution in which
Q(s, a) − γV (s′) ≤ f(σ2), where f is an increasing function of σ2. Thus, V (s0) ≤ (f(σ2) +
log |A|)/(1− γ), and

(11) ≥ (11) + V (s0)− (f(σ2) + log |A|)/(1− γ). (13)
The soft Q function that maximizes the lower bound in Equation 13 is

Q∗ , argmax
Q

V (s0) +

T−1∑
t=0

Q(st, at)− V (st)−
1

2σ2

∑
(s,a)∈X

(Q(s, a)− γV (s′))2. (14)

Practical implementation. For environments with a small, discrete state space S and known dy-
namics, X can be set to S × A. For environments with a continuous state space S and unknown
dynamics, we setX to be the set of state-action pairs in the demonstration rolloutsDdemo and rollouts
Dsamp of the imitation policy, which are periodically sampled during training.3 We fit a parameter-
ized soft Q function Qθ to minimize the loss,

`(θ) , α
∑

τ∈Ddemo

(
−Vθ(s0) +

T−1∑
t=0

−(Qθ(st, at)− Vθ(st))

)
+ λdemoBθ(Ddemo, 0) + λsampBθ(Dsamp, 0),

(15)

where α, λdemo, λsamp ∈ R≥0 are constant hyperparameters, Vθ denotes the soft value function given
by Qθ and Equation 2,4 and Bθ denotes the sum of squared soft Bellman errors,

Bθ(D, r) ,
∑
τ∈D

T−1∑
t=0

(Qθ(st, at)− (r + γVθ(st+1)))
2, (16)

where r ∈ R is a constant that does not depend on the state or action. The experiments in Section 5
use a convolutional neural network or multi-layer perceptron to model Qθ, where θ are the weights
of the neural network (Schmidhuber, 2015).

The loss in Equation 15 bounds the log-posterior of the soft Q values given the demonstrations.
Searching for a soft Q function that optimizes this objective is equivalent to performing approximate
inference under the MaxCausalEnt model of expert behavior. The objective combines a behavioral
cloning loss, which does not reason about the consequences of actions, with a regularization term
that incorporates information about state transitions. The regularization term performs soft Bellman
backups on a reward of zero – a consequence of the prior distribution over rewards, which has an
expected value of zero – and can be seen as imposing a prior distribution on the soft Q values that is
independent of the expert demonstrations.

3.2 IMPLEMENTING APPROXIMATE INFERENCE WITH OFF-POLICY SOFT Q-LEARNING

Surprisingly, the gradient of the approximate inference objective in Equation 15 is equivalent to the
gradient of the objective of a soft Q-learning algorithm (Haarnoja et al., 2017) that gives the agent
a constant positive reward for matching the demonstrated action in a demonstrated state, and zero
reward otherwise. Differentiating the objective in Equation 15,

∇θ`(θ) = α
∑

τ∈Ddemo

(
−∇Vθ(s0) +

T−1∑
t=0

−(∇Qθ(st, at)−∇Vθ(st))
)

+ λdemo

∑
τ∈Ddemo

T−1∑
t=0

∇(Qθ(st, at)− γVθ(st+1))
2 + λsamp∇Bθ(Dsamp, 0)

=
∑

τ∈Ddemo

(
−α∇Vθ(s0) +

T−1∑
t=0

α∇Vθ(st)− αγ∇Vθ(st+1)

)

+ λdemo∇Bθ
(
Ddemo,

α

2λdemo

)
+ λsamp∇Bθ(Dsamp, 0). (17)

3The demonstrations alone may not satisfy the closure property in Equation 5. Augmenting the demonstra-
tions with rollouts of the imitation policy improves our approximation of the objective in Equation 14.

4Note that there is a Q network Qθ and a value function V that is defined in terms of Qθ (see Equation 2),
rather than a separate Q network and V network.

4

Under review as a conference paper at ICLR 2019

Algorithm 1 Soft Q Imitation Learning (SQIL, pronounced “skill”)
1: Require r, λsamp ∈ R≥0, k ∈ N
2: Initialize Dsamp ← ∅
3: for i = 1, 2, ... do
4: θ ← θ − η∇θ(Bθ(Ddemo, r) + λsampBθ(Dsamp, 0)) . See Equation 16
5: if imod k ≡ 0 then
6: Sample rollout τ = (s0, a0, s1, a1, ..., sT) with imitation policy πθ(at|st) . See Equation 1
7: Dsamp ← Dsamp ∪ {τ}
8: end if
9: end for

Setting γ , 1 turns the inner sum in the first term into a telescoping sum, yielding

(17) = ∇
(
λdemoBθ

(
Ddemo,

α

2λdemo

)
+ λsampBθ(Dsamp, 0)

)
. (18)

Setting λdemo , 1 and α , 2λdemor yields the gradient of a soft Q-learning algorithm that gives
the agent a reward of r for taking the demonstrated action in a demonstrated state, and zero reward
otherwise. The agent’s experience replay buffer consists of Ddemo ∪ Dsamp. We call this algorithm
soft Q imitation learning (SQIL, pronounced “skill”).

3.3 SOFT Q IMITATION LEARNING

SQIL is summarized in Algorithm 1. It performs soft Q-learning with two important modifications:
(1) it initially fills the agent’s experience replay buffer with demonstrations, where the rewards are
set to some positive constant (e.g., r , 1), and (2) as the agent interacts with the world and accu-
mulates new experiences, it adds them to the replay buffer, and sets the rewards for these additional
experiences to zero. The agent has an incentive to imitate the expert in states that are similar to those
encountered in the demonstrations. During training, the agent may encounter out-of-distribution
states that are very different from those in the demonstrations. In such states, the agent has an
incentive to take actions that lead it back to demonstration states, where rewards are positive.

Since the number of demonstrations is fixed and the number of additional experiences grows over
time, we balance the number of demonstration experiences and additional experiences sampled for
each gradient step in line 4 of Algorithm 1. As the imitation policy learns to behave more like
the expert, the state-action distributions of Dsamp and Ddemo grow closer, which causes the reward
for taking the expert action in an expert state to decay from r to an expected value of r

1+λsamp
.

This reward decay has the effect of making the imitation policy more stochastic over time, and
could potentially be countered by decreasing λsamp to zero over time, or decreasing the temperature
parameter of the stochastic policy, but neither of these fixes were necessary in our experiments.

One potential issue with SQIL is that by setting the reward for taking demonstrated actions in demon-
strated states to a positive constant, and implicitly setting rewards at terminal states to zero (see
Equation 2), SQIL may encourage the agent to deviate from the expert trajectories in order to avoid
terminating the episode, especially in environments with long horizons. This is also an issue with
GAIL, and is addressed in Anonymous (2019) by explicitly learning the rewards at absorbing states.
One potential way to fix this issue in SQIL is to set the rewards for demonstrated transitions into ter-
minal states to be r

1−γ instead of r. This effectively augments the demonstration data with infinitely
many rewarding transitions at absorbing states. This was not necessary in our experiments, since the
horizons were relatively short (on the order of 1000 steps).

4 RELATED WORK

SQIL is inspired by the inverse soft Q-learning (ISQL) algorithm for internal dynamics estimation
(Reddy et al., 2018), in that the objective in Equation 15 combines a behavioral cloning loss with
soft Bellman error penalty terms, which is similar to the ISQL objective. The details of the two
methods and their motivations are, however, completely different. ISQL is an internal dynamics
estimation algorithm, while SQIL is meant for imitation learning. ISQL assumes that the demon-
strations include observations of the expert’s reward signal, while SQIL does not.

5

Under review as a conference paper at ICLR 2019

SQIL also resembles the Deep Q-learning from Demonstrations (DQfD) (Hester et al., 2017) and
Normalized Actor-Critic (NAC) algorithms (Gao et al., 2018), in that all three algorithms fill the
agent’s experience replay buffer with demonstrations and include an imitation loss in the agent’s
objective. The key difference between SQIL and these prior methods is that DQfD and NAC are
RL algorithms that assume access to a reward signal, while SQIL is an imitation learning algorithm
that does not require an extrinsic reward signal from the environment. Instead, SQIL automatically
constructs a reward signal from the demonstrations.5

5 SIMULATION EXPERIMENTS

The purpose of our experiments is three-fold. The first objective is to compare SQIL to prior work;
in particular, on tasks with high-dimensional image observations, where prior methods are difficult
to use. The second objective is to show that SQIL can be successfully deployed in MDPs with
continuous action spaces. The third objective is to understand which components of SQIL contribute
most to its performance. To accomplish the first objective, we use the image-based Car Racing and
Atari Pong games, as well as the low-dimensional Lunar Lander environment from OpenAI Gym
(Brockman et al., 2016), to benchmark SQIL against GAIL and behavioral cloning (BC). SQIL
consistently outperforms BC, matches GAIL on low-dimensional Lunar Lander, and outperforms
GAIL on the image-based Car Racing and Pong tasks. To accomplish the second objective, we
use the Humanoid and HalfCheetah continuous control tasks from MuJoCo (Todorov et al., 2012)
to show that SQIL performs comparably to GAIL on low-dimensional problems with continuous
actions. To accomplish the third objective, we use the Lunar Lander game to conduct an ablation
study that tests various hypotheses about which components of SQIL contribute to its performance.

5.1 COMPARISON TO PRIOR METHODS ON LOW-DIMENSIONAL LUNAR LANDER

The experiments in this section use the low-dimensional Lunar Lander game to verify that SQIL
performs well on a relatively easy task. To emphasize the gap between imitation methods that take
into account the consequences of actions, like SQIL and GAIL, and methods that do not, like BC,
we exacerbate the state distribution shift that usually occurs due to compounding errors, by training
the imitation agents in an environment with a different initial state distribution S train

0 than that of
the expert demonstrations Sdemo

0 . This intervention explicitly tests the generalization capabilities of
imitation learning, by placing the agent in start states S train

0 that are very different from those seen in
the demonstrations.

Experimental setup. The Lunar Lander game is a navigation task with deterministic dynamics in
which the objective is to land on the ground, without crashing or flying out of bounds, using two
lateral thrusters and a main engine. The action space consists of six discrete actions for steering
and firing the main engine. Low-dimensional state observations s ∈ R9 encode position, velocity,
orientation, and the location of the landing site. Demonstrations are collected from an expert trained
using deep Q-learning (Mnih et al., 2015). The goal of this experiment is to study not only how
well each method can mimic the expert demonstrations, but also how well they can acquire policies
that generalize effectively to new states. After all, the main benefit of actually learning a policy, as
opposed to simply playing back the expert’s actions, is to acquire a strategy that generalizes to new
situations. Therefore, we manipulate the initial state distribution of the environment in which the
imitation agents are trained and evaluated. The expert demonstrations are collected starting from the
initial state distribution Sdemo

0 . The imitation agents are then trained in the same environment, but
starting from a different initial state distribution S train

0 . To create S train
0 in the Lunar Lander game,

the agent is placed in a starting position that is rarely visited in the demonstrations. The agents are
evaluated by training and testing with Sdemo

0 , as well as training and testing with S train
0 – both results

are reported in Table 1 and Figure 1. We measure the agents’ success rate in landing at the target
without crashing, flying out of bounds, or running out of time.

5DQfD and NAC are demonstration-accelerated RL algorithms, which require knowledge of the reward
function, while SQIL is an imitation learning algorithm that does not. Hence, when a reward signal is ob-
served, SQIL has no advantage over DQfD or NAC, just as pure imitation learning has no advantage over
demonstration-accelerated RL.

6

Under review as a conference paper at ICLR 2019

Figure 1: Error regions show standard error
across five random seeds. BC performance
after training. X-axis represents amount of
interaction with the environment (not expert
demonstrations).

S train
0 Sdemo

0

Random 0.10± 0.30 0.04± 0.02
BC 0.07± 0.03 0.93± 0.03
GAIL 0.98± 0.01 0.95± 0.02
SQIL-T 0.66± 0.02 0.89± 0.01
SQIL 0.89± 0.02 0.88± 0.03
Expert 0.93± 0.03 0.89± 0.31

Table 1: Lunar Lander. Best performance
on 100 consecutive episodes during training.
Standard errors shown for five random seeds.

Analysis. The results show that when there is no variation in the initial state, all methods perform
equally well (see the Sdemo

0 column in Table 1). The task is easy enough that even behavioral cloning
achieves a high success rate. When the initial state is changed for the purpose of testing generaliza-
tion, SQIL and GAIL both perform much better than BC (see Figure 1 and the S train

0 column in Table
1). This is unsurprising, since BC suffers from state distribution shift, and GAIL tends to perform
well on tasks with low-dimensional observations.

GAIL achieves a higher success rate than SQIL, but requires many more interactions with the en-
vironment. This can most likely be attributed to the fact that GAIL uses TRPO (Schulman et al.,
2015) for policy optimization, while SQIL uses Q-learning. Since this difference in the underlying
RL algorithm makes it difficult to fairly compare SQIL to GAIL, the results are merely intended to
illustrate that both SQIL and GAIL can outperform BC and perform on par with the expert. In the
following two sections, we show that SQIL significantly outperforms GAIL on high-dimensional,
image-based tasks.

SQIL, which optimizes the bound in Equation 13, performs better than its cousin, SQIL-T, which
optimizes the tighter bound in Equation 11. This is a somewhat surprising result, since optimizing a
tighter bound on the log-posterior should lead to better performance. One possible explanation for
this not being the case is that in practice, optimizing Equation 11 via gradient descent is harder than
optimizing Equation 13.

5.2 COMPARISON TO PRIOR METHODS ON IMAGE-BASED CAR RACING

Section 5.1 showed that SQIL performs on par with GAIL and better than BC in environments
with low-dimensional observations. This section shows that SQIL can significantly outperform
GAIL and BC in environments with high-dimensional image observations. With images, the policy
learning problem becomes substantially harder: now, the policy must learn to interpret raw image
observations and determine the best course of action. This is notoriously difficult for methods based
on adversarial learning, such as GAIL.

Experimental setup. The Car Racing game is a navigation task with deterministic dynamics in
which the objective is to visit as many road markers as possible, while avoiding the grass. The
agent receives 64x64 RGB images as observations, and outputs a discrete steering command (left,
right, or straight). An episode lasts at most 1000 steps, and terminates early if the car deviates too
far from the road. Demonstrations are collected from an expert trained using model-based RL (Ha
& Schmidhuber, 2018). The initial state distribution is manipulated as in Section 5.1. To create
S train
0 in the Car Racing game, the car is rotated 90 degrees so that it begins perpendicular to the

track, instead of parallel to the track as in Sdemo
0 . This simple intervention presents a significant

generalization challenge to the imitation learner, since the expert demonstrations do not contain any
examples of states where the car is perpendicular to the road, or even significantly off the road axis.
The agent must learn to make a tight turn to get back on the road, then stabilize its orientation so
that it is parallel to the road, and only then proceed forward to mimic the expert demonstrations.
We measure the reward collected by the agent, which counts the number of road markers it visits,

7

Under review as a conference paper at ICLR 2019

and includes a -100 penalty for deviating too far from the road and causing the episode to terminate
early.

Figure 2: Error regions show standard error
across five random seeds. GAIL and BC per-
formance after training.

S train
0 Sdemo

0

Random −21± 56 −68± 4
BC −45± 18 698± 10
GAIL 17± 0 7± 1
SQIL-T 311± 10 693± 7
SQIL 375± 19 704± 6
Expert 480± 11 704± 79

Table 2: Car Racing. Final performance on 20
episodes after training. Standard errors shown
for five random seeds.

Analysis. Table 2 and Figure 2 show that SQIL performs much better than both BC and GAIL,
when starting from S train

0 . SQIL learns to make a tight turn that takes the car through the grass
and back onto the road, then stabilizes the car’s orientation so that it is parallel to the track, and
then proceeds forward like the expert does in the demonstrations. GAIL does not improve upon
its initialized policy, which keeps turning in a loop, and does not move forward once the agent is
parallel to the road. BC tends to drive straight ahead into the grass instead of turning back onto the
road. One explanation of these results is that GAIL uses TRPO (Schulman et al., 2015) to fit the
imitation policy, which inherits the challenges of RL with image observations. SQIL, on the other
hand, inherits the ease of fitting an image-based policy from behavioral cloning via the analysis in
Section 3, and only relies on soft Bellman backups for regularization and fine-tuning (vs. RL from
scratch). SQIL outperforms SQIL-T, as in Section 5.1, though the performance gap is smaller here
than in Section 5.1.

5.3 COMPARISON TO PRIOR METHODS ON IMAGE-BASED ATARI PONG

0 500 1000 1500 2000
Number of Training Episodes

−20

−10

0

10

20

R
ew

ar
d

Image-Based Atari Pong

SQIL

GAIL

Random

Expert

Smoothed with a rolling window of
100 episodes. Standard error on three
random seeds.

The experiments in the previous sections compare SQIL,
which uses Q-learning, to GAIL, which uses TRPO. This can
make it difficult to compare the performance and sample ef-
ficiency of SQIL and GAIL. The experiment in this section
compares SQIL to a version of GAIL that uses Q-learning in-
stead of TRPO, on the Pong Atari game with raw image obser-
vations. This allows for a head-to-head comparison of SQIL
and GAIL: both algorithms use the same underlying RL al-
gorithm (Q-learning) but provide the agent with different re-
wards – SQIL provides constant rewards, while GAIL provides
learned rewards. The results in the figure to the right show that
SQIL outperforms GAIL on this challenging image-based task.

5.4 COMPARISON TO PRIOR METHODS ON CONTINUOUS CONTROL TASKS

0 20 40
Number of Demonstration Rollouts

0

200

400

600

800

R
ew

ar
d

Humanoid-v1

GAIL

Expert (Stochastic)

SQIL

0 20 40
Number of Demonstration Rollouts

0

500

1000

R
ew

ar
d

HalfCheetah-v1

GAIL

Expert (Deterministic)

SQIL

SQIL: best performance on 10 consecutive training episodes. GAIL: results
from Dhariwal et al. (2017).

The experiments in the
previous sections evaluate
SQIL in environments with
discrete action spaces. The
experiments in this sec-
tion illustrate how SQIL
can be adapted to continu-
ous action spaces. We in-
stantiate SQIL using soft
actor-critic (SAC) – an off-
policy RL algorithm that
can solve continuous con-

8

Under review as a conference paper at ICLR 2019

trol tasks (Haarnoja et al., 2018). In particular, SAC is modified in the following ways: (1) the
agent’s experience replay buffer is initially filled with expert demonstrations, where rewards are set
to a positive constant, (2) when taking gradient steps to fit the agent’s soft Q function, we sample
a balanced number of demonstration experiences and new experiences from the replay buffer, and
(3) the agent observes rewards of zero during their interactions with the environment, instead of an
extrinsic reward signal that specifies the desired task. This instantiation of SQIL is compared to
GAIL on the Humanoid (17 DoF) and HalfCheetah (6 DoF) tasks from MuJoCo (Todorov et al.,
2012). The results in the figure to the right show that SQIL and GAIL perform comparably to each
other on both Humanoid and HalfCheetah, demonstrating that SQIL can be successfully deployed
on problems with continuous action spaces.

5.5 ABLATION STUDY

The experiments in Sections 5.1 and 5.2 show that SQIL can outperform prior methods, but they
do not illuminate how the various terms in the SQIL gradient in line 4 of Algorithm 1 interact to
yield these results. The experiments in this section use the Lunar Lander environment to conduct an
ablation study to better understand the importance of each component of SQIL. We hypothesize that
incorporating the right information about state transitions into the agent’s experience replay buffer is
essential: the replay buffer needs to contain more than just the demonstrations, and these additional
experiences need to be sampled on-policy (see line 6 of Algorithm 1).

Experimental setup. We manipulate the parameters of SQIL to hobble it in various ways that test
our hypotheses. In the first condition, λsamp is set to zero, to prevent SQIL from using additional
samples drawn from the training environment. In the second condition, γ is set to zero to prevent
SQIL from accessing information about state transitions. In the third condition, a uniform random
policy is used to sample additional rollouts instead of the imitation policy πθ in line 6 of Algorithm
1. We measure the agents’ success rate, as in Section 5.1.

Figure 3: Error regions show standard error
across five random seeds.

S train
0 Sdemo

0

Random 0.10± 0.30 0.04± 0.02
λsamp = 0 0.12± 0.02 0.87± 0.02
γ = 0 0.41± 0.02 0.84± 0.02
π = Unif 0.47± 0.02 0.82± 0.02
SQIL-T 0.66± 0.02 0.89± 0.01
SQIL 0.89± 0.02 0.88± 0.03
Expert 0.93± 0.03 0.89± 0.31

Table 3: Lunar Lander. Best performance
on 100 consecutive episodes during training.
Standard errors shown for five random seeds.

Analysis. The results in Figure 3 and Table 3 show that the original method performs significantly
better than its hobbled counterparts when starting from S train

0 , suggesting that SQIL relies on infor-
mation about the environment dynamics encoded in state transitions (SQIL vs. γ = 0), and that
SQIL requires on-policy sampling (SQIL vs. π = Unif and λsamp = 0).

6 DISCUSSION

Summary. We contribute a practical and general algorithm for learning to imitate an expert given
action demonstrations and access to the environment. Simulation experiments demonstrate the ef-
fectiveness of our method at recovering an imitation policy that performs well in comparison to
GAIL and behavioral cloning on tasks with high-dimensional, continuous observations as well as
continuous actions.

Limitations. The analysis in Section 3, which proves that SQIL is equivalent to approximate in-
ference of the expert policy under the MaxCausalEnt model of expert behavior, is limited in that
does not show that SQIL exactly recovers the expert policy in the limit of having infinite demon-
strations, or that the optimal imitation policy’s state-action occupancy measure converges to the

9

Under review as a conference paper at ICLR 2019

expert’s. These are desirable properties for an imitation learning algorithm, and it is unclear if SQIL
possesses them.

Future work. The ability to robustly recover an imitation policy from image observations, even
when the initial state distribution differs between demonstration time and training time, enables
open-world robotics experiments in which using sensors other than a camera would be expensive,
and consistently resetting the environment to the same set of start states is difficult.

REFERENCES

Anonymous. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial im-
itation learning. In Submitted to International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=Hk4fpoA5Km. under review.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal,
Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym, 2016.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John
Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https://github.com/
openai/baselines, 2017.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control via policy
optimization. In International Conference on Machine Learning, pp. 49–58, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforcement
learning. arXiv preprint arXiv:1710.11248, 2017.

Yang Gao, Ji Lin, Fisher Yu, Sergey Levine, Trevor Darrell, et al. Reinforcement learning from imperfect
demonstrations. arXiv preprint arXiv:1802.05313, 2018.

Alessandro Giusti, Jérôme Guzzi, Dan C Ciresan, Fang-Lin He, Juan P Rodrı́guez, Flavio Fontana, Matthias
Faessler, Christian Forster, Jürgen Schmidhuber, Gianni Di Caro, et al. A machine learning approach to
visual perception of forest trails for mobile robots. IEEE Robotics and Automation Letters, 1(2):661–667,
2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information process-
ing systems, pp. 2672–2680, 2014.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. arXiv preprint
arXiv:1809.01999, 2018.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with deep energy-
based policies. arXiv preprint arXiv:1702.08165, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan,
Andrew Sendonaris, Gabriel Dulac-Arnold, et al. Deep q-learning from demonstrations. arXiv preprint
arXiv:1704.03732, 2017.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural Information
Processing Systems, pp. 4565–4573, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Karol Kurach, Mario Lucic, Xiaohua Zhai, Marcin Michalski, and Sylvain Gelly. The gan landscape: Losses,
architectures, regularization, and normalization. arXiv preprint arXiv:1807.04720, 2018.

10

https://openreview.net/forum?id=Hk4fpoA5Km
https://github.com/openai/baselines
https://github.com/openai/baselines

Under review as a conference paper at ICLR 2019

Michael Laskey, Sam Staszak, Wesley Yu-Shu Hsieh, Jeffrey Mahler, Florian T Pokorny, Anca D Dragan, and
Ken Goldberg. Shiv: Reducing supervisor burden in dagger using support vectors for efficient learning
from demonstrations in high dimensional state spaces. In Robotics and Automation (ICRA), 2016 IEEE
International Conference on, pp. 462–469. IEEE, 2016.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv
preprint arXiv:1805.00909, 2018.

Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual demon-
strations. In Advances in Neural Information Processing Systems, pp. 3812–3822, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml, pp. 663–670,
2000.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural Compu-
tation, 3(1):88–97, 1991.

Rouhollah Rahmatizadeh, Pooya Abolghasemi, Aman Behal, and Ladislau Bölöni. Learning real manipulation
tasks from virtual demonstrations using lstm. arXiv preprint, 2016.

Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Bölöni, and Sergey Levine. Vision-based multi-
task manipulation for inexpensive robots using end-to-end learning from demonstration. arXiv preprint
arXiv:1707.02920, 2017.

Siddharth Reddy, Anca D Dragan, and Sergey Levine. Where do you think you’re going?: Inferring beliefs
about dynamics from behavior. arXiv preprint arXiv:1805.08010, 2018.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pp. 661–668, 2010.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured pre-
diction to no-regret online learning. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pp. 627–635, 2011.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117, 2015.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy opti-
mization. In International Conference on Machine Learning, pp. 1889–1897, 2015.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In In-
telligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–5033. IEEE,
2012.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse reinforcement learn-
ing. arXiv preprint arXiv:1507.04888, 2015.

Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Ken Goldberg, and Pieter Abbeel. Deep imitation
learning for complex manipulation tasks from virtual reality teleoperation. arXiv preprint arXiv:1710.04615,
2017.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse reinforce-
ment learning. In AAAI, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Modeling interaction via the principle of maximum
causal entropy. In Proceedings of the 27th International Conference on International Conference on Machine
Learning, pp. 1255–1262. Omnipress, 2010.

11

Under review as a conference paper at ICLR 2019

A APPENDIX

A.1 SQIL-T

SQIL-T uses Adam (Kingma & Ba, 2014) to minimize the loss function,

`SQIL-T(θ) , α
∑

τ∈Ddemo

T−1∑
t=0

−(Qθ(st, at)− Vθ(st)) + λdemoBθ(Ddemo, 0) + λsampBθ(Dsamp, 0),

(19)

which is identical to the SQIL loss in Equation 15, except that the Vθ(s0) terms are not present in
Equation 19.

A.2 IMPLEMENTATION DETAILS

Code and data for the experiments in Section 5 are publicly available.6

To ensure fair comparisons, the same network architectures were used to evaluate SQIL, GAIL, and
BC. For Lunar Lander, we used a network architecture with two fully-connected layers containing
128 hidden units each to represent the Q network in SQIL, the policy and discriminator networks in
GAIL, and the policy network in BC. For Car Racing, we used four convolutional layers (following
Ha & Schmidhuber (2018)) and two fully-connected layers containing 256 hidden units each. For
Humanoid and HalfCheetah, we used two fully-connected layers containing 256 hidden units each.
For Pong, we used the convolutional neural network described in Mnih et al. (2015) to represent the
Q network in SQIL, as well as the Q network and discriminator network in GAIL.

To ensure fair comparisons, the same demonstration data was used to train SQIL, GAIL, and BC. For
Lunar Lander, we collected 100 demonstration rollouts. For Car Racing, we collected 20 demon-
stration rollouts. For Pong, we collected 50 demonstration rollouts. Expert demonstrations were
generated from scratch for Lunar Lander using DQN (Mnih et al., 2015), and collected from open-
source pre-trained policies for Car Racing (Ha & Schmidhuber, 2018) as well as Humanoid and
HalfCheetah (Dhariwal et al., 2017). The Humanoid demonstrations were generated by a stochastic
expert policy, while the HalfCheetah demonstrations were generated by a deterministic expert pol-
icy; both experts were trained using TRPO.7 We used two open-source implementations of GAIL: Fu
et al. (2017) for Lunar Lander and Car Racing, and Dhariwal et al. (2017) for MuJoCo. We adapted
the OpenAI Baselines implementation of GAIL to use Q-learning for Pong. Expert demonstrations
were generated from scratch for Pong using DQN.

For Lunar Lander, we set r = 1, k = 200, and λsamp = 10−6. For Car Racing, we set r = 1, k = 50,
and λsamp = 0.01. For Humanoid, we set r = 5 and λsamp = 1. For HalfCheetah, we set r = 10 and
λsamp = 1. For Pong, we set r = 100, k = 1, and λsamp = 1.

SQIL was not pre-trained in any of the experiments. GAIL was pre-trained using behavioral cloning
for HalfCheetah, but was not pre-trained in any other experiments.

In standard implementations of Q-learning and SAC, the agent’s experience replay buffer typically
has a fixed size, and once the buffer is full, old experiences are deleted to make room for new expe-
riences. In SQIL, we never delete demonstration experiences from the replay buffer, but otherwise
follow the standard implementation.

We use Adam (Kingma & Ba, 2014) to take the gradient step in line 4 of Algorithm 1.

The GAIL performance metrics in Section 5.4 are taken from Dhariwal et al. (2017).8

The GAIL and SQIL policies in Section 5.4 are set to be deterministic during the evaluation rollouts
used to measure performance.

6https://drive.google.com/file/d/1fQpMza1-9wBmKYxfZ0bZvjw8rFBoVdgv/
view?usp=sharing

7https://drive.google.com/drive/folders/1h3H4AY_ZBx08hz-Ct0Nxxus-V1melu1U
8https://github.com/openai/baselines/blob/master/baselines/gail/result/

gail-result.md

12

https://drive.google.com/file/d/1fQpMza1-9wBmKYxfZ0bZvjw8rFBoVdgv/view?usp=sharing
https://drive.google.com/file/d/1fQpMza1-9wBmKYxfZ0bZvjw8rFBoVdgv/view?usp=sharing
https://drive.google.com/drive/folders/1h3H4AY_ZBx08hz-Ct0Nxxus-V1melu1U
https://github.com/openai/baselines/blob/master/baselines/gail/result/gail-result.md
https://github.com/openai/baselines/blob/master/baselines/gail/result/gail-result.md

Under review as a conference paper at ICLR 2019

0 200000 400000
Number of Training Steps

250

500

750

1000

R
ew

ar
d

Humanoid-v1

SQIL

Expert

GAIL

Figure 4: Standard error shown for five random seeds on the first 200k steps. No smoothing across
training steps. The first four random seeds are from the experiment in Section 5.4, which only train
for 200k steps. To measure the effect of training on more episodes, we ran another experiment with
a fifth random seed and trained for 500k steps. Training for a much larger number of steps does not
lead to significant deterioration in performance.

A.3 RELATED WORK

Various approaches have been developed to address state distribution shift in behavioral cloning,
without relying on IRL. Hand-engineering a domain-specific loss function and carefully designing
the demonstration collection process have enabled researchers to train effective imitation policies
for self-driving cars (Bojarski et al., 2016), autonomous drones (Giusti et al., 2016), and robotic
manipulators (Zhang et al., 2017; Rahmatizadeh et al., 2017; 2016). DAgger-based methods query
the expert for on-policy action labels (Ross et al., 2011; Laskey et al., 2016). These approaches
either require domain knowledge or the ability to query the expert, while SQIL requires neither.

13

	Introduction
	Preliminaries
	Approximate MaxCausalEnt Model

	Imitation Learning via Approximate MaxCausalEnt Inference
	Deriving the Approximate Inference Objective
	Implementing Approximate Inference with Off-Policy Soft Q-Learning
	Soft Q Imitation Learning

	Related Work
	Simulation Experiments
	Comparison to Prior Methods on Low-Dimensional Lunar Lander
	Comparison to Prior Methods on Image-Based Car Racing
	Comparison to Prior Methods on Image-Based Atari Pong
	Comparison to Prior Methods on Continuous Control Tasks
	Ablation Study

	Discussion
	Appendix
	SQIL-T
	Implementation Details
	Related Work

