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ABSTRACT

Sequence-to-Sequence (Seq2Seq) neural models have become popular for text
generation problems, e.g. neural machine translation (NMT) (Bahdanau et al.,
2014; Britz et al., 2017), text summarization (Nallapati et al., 2017; Wang &
Ling, 2016), and image captioning (Venugopalan et al., 2015; Liu et al., 2017).
Though sequential modeling has been shown to be effective, the dependency graph
among words contains additional semantic information, and thus can be utilized
for sentence modeling. In this paper, we propose a Graph-Sequence-to-Sequence
(GraphSeq2Seq) model to fuse the dependency graph among words into the tra-
ditional Seq2Seq framework. For each sample, the sub-graph of each word is
encoded to a graph representation, which is then utilized to sequential encoding.
At last, a sequence decoder is leveraged for output generation. Since above model
fuses different features by contacting them together to encode, we also propose
a variant of our model that regards the graph representations as additional anno-
tations in attention mechanism (Bahdanau et al., 2014) by separately encoding
different features. Experiments on several translation benchmarks show that our
models can outperform existing state-of-the-art methods, demonstrating the effec-
tiveness of the combination of Graph2Seq and Seq2Seq.

1 INTRODUCTION

Neural machine translation (NMT) is a hot topic in Natural Language Processing. Most of NMT
models belong to the encoder-decoder framework (Sutskever et al., 2014; Cho et al., 2014) which
encodes the source language to a representation vector and then decodes the vector to the target
language. When both the input and output are sequential words, the models based on this framework
are also called Sequence-to-Sequence (Seq2Seq) models (Sutskever et al., 2014; Bahdanau et al.,
2014). More importantly, the dependency graph among words is also critical for sentence modeling
in the machine translation, since it contains additional semantic information (Bastings et al., 2017).
Even the sequential sentence may serialize closely-related elements far away, the dependency graph
can involve all of the elements closely, which is helpful for sentence modeling. However, most of
existing Seq2Seq models do not well exploit this dependency graph information. How to effectively
combine the dependency graph and the sequential information to improve the translation quality,
therefore, becomes a challenging problem.

To address this problem, we propose a Graph-Sequence-to-Sequence (GraphSeq2Seq) model by
fusing the dependency graph among words into the Seq2Seq framework. For each sentence, we
first utilize a dependency parser to obtain the dependency graph among words. Each sentence has
a graph and each word has a sub-graph. Then the sub-graph is embedded to a representation for
the word, and it is passed to a bidirectional sequence encoder. Finally, a decoder with attention
mechanism generates the outputs. Since above model fuses different features by contacting them
together to encode, we propose a variant of our model that tries another strategy by separately
encoding different features. We evaluate GraphSeq2Seq model and its variant model on several
machine translation benchmarks. Experiment results show our models outperforms existing state-
of-the-art methods, demonstrating the effectiveness of the combination of Graph2Seq and Seq2Seq.

The main contributions of this paper are as follows.
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• We propose a GraphSeq2Seq model by combining Graph2Seq model and Seq2Seq model.
The dependency graph information and sequential information are helpful for sentence
modeling to generate high-quality translations.
• Our GraphSeq2Seq model passes the embedding of the sub-graph of a word to a bidirec-

tional sequence encoder. Besides, a variant of GraphSeq2Seq model is also deployed which
leverages features separately to calculate the context vectors in attention mechanism.
• Experiment results on four translation benchmarks show the better performance of our

models than state-of-the-arts, demonstrating the effectiveness of combining dependency
graph information and sequence information.

2 BACKGROUND

We consider the problem that this paper is trying to address as how to combine Seq2Seq model and
Graph2Seq model to improve the translation quality. Given an input sentence X = {x1, x2, ..., xn}
and its dependency graph for each word G = {g1, g2, ..., gn}, our models combine X and G to
generate the output sequence Y = {y1, y2, ..., ym}. Three sets of input-output pairs (X,Y ) are
assumed to be available for training, validating and testing. The graphG is parsed from the sentence
X . The trained model is evaluated by computing the average task-specific scoreR(Ŷ , Y ) on the test
set, where Ŷ is the prediction.

2.1 SEQUENCE-TO-SEQUENCE MODELS

Seq2Seq Models (Bahdanau et al., 2014; Neubig, 2017) are general based on Recurrent Neural
Networks (RNN) encoder-decoder framework (Sutskever et al., 2014; Cho et al., 2014). Seq2Seq
models is widely used for the Machine Translation task, but it has been also used for a variety of
other tasks, including Summarization, Conversational Modeling, and Image Captioning etc. Rush
et al. (2015) utilized sequence-to-sequence encoder-decoder Long Short-Term Memory (LSTM)
with attention to train a neural model for summarization task. Shang et al. (2015) proposed a neural
network-based response generator for Short Text Conversation using the encoder-decoder frame-
work. As long as the problem can be phrased as encoding input data in one format and decoding it
into another format, Seq2Seq can be utilized to address it.

Given a sequence X , an encoder reads it into hidden state vector h. Generally, a bidirectional
RNN (Schuster & Paliwal, 1997) is utilized. For the input sequence with ordering from x1 to xT ,
the forward RNN calculates a sequence of its forward hidden states {

−→
h1, · · · ,

−→
hT }. Meanwhile,

reversing the input as the order from xT to x1, the backward RNN calculates a sequence of its
backward hidden states {

←−
h1, · · · ,

←−
hT }. Then we obtain the final hidden states by concatenating

them as hj = {
−→
hj ,
←−
hj} which saves the summaries of both the preceding words and the following

words.

Attention mechanism (Bahdanau et al., 2014) aims to find the parts of inputs that should be focused.
Thus, the context vector c is calculated by a weighted sum of the final hidden states:

ct =

T∑
j=1

αt,jhj , (1)

where the weight αt,j is computed by an alignment model. Its details can be found in Bahdanau
et al. (2014).

Given the predicted preceding words {y1, y2, · · · , yt−1}, context vector ct, and the RNN hidden
state st, the decoder calculates a probability of the next word yt:

p(yt|X, y1, y2, · · · , yt−1) = g(yt−1, st, ct), (2)

where g(·) is a softmax activation function and

st = f(yt−1, st−1, ct), (3)

here, f is a non-linear function. It can be a logistic function, an LSTM unit, or a Gated Recurrent
Unit (GRU).
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Recently, Byte Pair Encoding (BPE) is utilized for word segmentation Sennrich et al. (2016) to
overcome the out-of-vocabulary problem and rare in-vocabulary problem. Both of Edunov et al.
(2018) and Deng et al. (2018) achieve state-of-the-art results, where they utilize BPE on both source
side and target side. However, our GraphSeq2Seq cannot apply BPE on the source side. Thus, we
do not choose this kind of methods for comparison.

2.2 GRAPH-TO-SEQUENCE MODELS

Graph2Seq models (Cohn et al., 2018; Gildea et al., 2018) are generally utilized to address the gen-
eration of graph-structured data (such as Abstract Meaning Representation (AMR) (Banarescu et al.,
2013) and dependency graph (Chen et al., 2017)) to text. It is to recover a text representing the same
meaning as an input graph. Flanigan et al. (2016) converted input graphs to trees by splitting re-
entrances, and then translated the trees into sentences with a tree-to-string transducer. Graph convo-
lutional networks (GCN) (Kipf & Welling, 2016) are used for semantic role labeling (Marcheggiani
& Titov, 2017) and neural machine translation (Bastings et al., 2017). Graph state LSTM (Gildea
et al., 2018; Song et al., 2018) adopts gated operations for making updates, while GCN uses a linear
transformation.

A graph consists of triples (i, j, l), where i and j are indices of the incoming and outgoing nodes, l is
their edge label. For a sub-graph g(n) of the n-th node xn, Gildea et al. (2018) described incoming
representation and outgoing representation as:

xinn =
∑

(i, n, l)∈gin(n)

W [xi, el] + b, (4)

xoutn =
∑

(n, j, l)∈gout(n)

W [xj , el] + b, (5)

where xi is the node representation and el is the edge representation, [·] is a concat operation for
them. W and b are the weight and bias to encode the representations. Then Gildea et al. (2018)
adopted a graph state LSTM to encode each sub-graph as:

in(t) = σ(Wix
in
n + Ŵix

out
n + Uih

in
n + Ûih

out
n + bi), (6)

on(t) = σ(Wox
in
n + Ŵox

out
n + Uoh

in
n + Ûoh

out
n + bo), (7)

fn(t) = σ(Wfx
in
n + Ŵfx

out
n + Ufh

in
n + Ûfh

out
n + bf ), (8)

un(t) = σ(Wux
in
n + Ŵux

out
n + Uuh

in
n + Ûuh

out
n + bu), (9)

cn(t) = fn(t)� cn(t− 1) + in(t)� un(t), (10)

hn(t) = on(t)� tanh(cn(t)), (11)

where in(t), on(t) and fn(t) are the input, output and forget gates. W , Ŵ , U , Û and b are model
parameters. Besides, the incoming hidden and outgoing hidden also consider the graph structure so
that they are represented by

∑
(i, n, l)∈gin(n) hi(t − 1) and

∑
(n, j, l)∈gout(n) hj(t − 1). Then the

hidden vectors are adopted in the decoder.

3 GRAPH-SEQUENCE-TO-SEQUENCE MODEL

This section introduces the details about our GraphSeq2Seq model. Fig. 1 is an overview of our
model. Given an input sentence X , GraphSeq2Seq 1) gets the sub-graph gn including the incoming
nodes xi and outgoing nodes xo for each word xn, and uses a graph state LSTM (Gildea et al.,
2018) to encode gn; 2) fuses the word representation, sub-graph state, incoming and outgoing rep-
resentations into a full graph representation; 3) regards the graph representation as the input of a
bidirectional sequence encoder (Schuster & Paliwal, 1997); 4) with an attention mechanism (Bah-
danau et al., 2014), the decoder generates the output words Y .
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Figure 1: An overview for our GraphSeq2Seq model by combining Graph2Seq (Gildea et al., 2018)
and Seq2Seq (Bahdanau et al., 2014).

3.1 SUB-GRAPH ENCODER

Given an input sentence X , we use a dependency parser Spacy1 which is a free open-source library
for Natural Language Processing in Python to extract the dependency graph G among words. For
each word, there is exactly another one word corresponding to it. Then we get a triple (i, j, l), where
i and j are indices of the source (incoming) and target (outgoing) nodes, l is their dependency which
is seen as the edge label in the graph. So each word has a sub-graph consisting of several triples from
the whole graph. In the sub-graph g(n) of the n-th node xn, incoming representation and outgoing
representation are xinn and xoutn calculated by Eq. 4 and Eq. 5. Then through the sub-graph encoder,
we get

hn(t), cn(t) = gsLSTM(xinn , x
out
n , hinn , h

out
n , cn(t− 1)), (12)

where gsLSTM is the graph state LSTM (Gildea et al., 2018) described in Section 2.2, and the
incoming hidden hinn and outgoing hidden houtn also consider the graph structure with different
weights so that

hinn (t) =
∑

(i, n, l)∈gin(n)

wi,n ∗ hi(t− 1), (13)

houtn (t) =
∑

(n, j, l)∈gout(n)

wn,j ∗ hj(t− 1). (14)

The final incoming hidden hinn , outgoing hidden houtn , and the final sub-graph hidden hn contains
different information. We concat them trying to build a final graph representation. Since these
hidden features may loss some information of the initial node representation, we adopt a highway
network (Srivastava et al., 2015) to transform and keep the initial node representation xn by

Hn = (Wtxn + bt) ∗ (Wcxn + bc) + xn(1− (Wcxn + bc)), (15)

whereHn is the output of the highway network which not only contains the transformed information
but also carries the initial information. Finally, through the sub-graph encoder, we get the final
representation which is a concat as

rn = [hinn , h
out
n , hn, Hn]. (16)

3.2 BIDIRECTIONAL SEQUENCE ENCODER AND THE DECODER WITH ATTENTION

Aforementioned final representation r for each node is utilized as a sequence input of a bidirec-
tional LSTM (Schuster & Paliwal, 1997) encoder as traditional Seq2Seq models (Bahdanau et al.,

1https://spacy.io
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2014). Given an representation sequence with ordering from r1 to rn, the forward hidden state and
backward hidden state of rn is

−→
hn = LSTMf (rn,

−→
h n−1), (17)

←−
hn = LSTMb(rn,

←−
h n−1), (18)

where LSTMf is a forward LSTM and LSTMb is a backward LSTM. Note that, for the backward
LSTM, we feed the reversed input as the order from xn to x1. Then we obtain the final hidden states
by concatenating them as hj = {

−→
hj ,
←−
hj} which saves the summaries of both the preceding words

and the following words. Finally, a decoder with the attention mechanism (Bahdanau et al., 2014)
described in Section 2.1 is leveraged to generate outputs.

3.3 A VARIANT MODEL

Aforementioned GraphSeq2Seq model utilizes the output of the graph encoder to be the input of
sequence encoder. However, the output of the graph encoder consists of different features, such as
the hidden feature hinn for incoming sub-graph, the hidden feature houtn for outgoing sub-graph, and
the node representations xn. The original GraphSeq2Seq model directly concats these features to
encode them together, which may lost some information. Here, we try to reserve the information by
encoding these features separately. The main difference is that the original model is to encode the
concated representation of the sub-graph by using only one Bi-LSTM, while the variant model lever-
ages three Bi-LSTMs to respectively encode the specific representations of the sub-graph, including
the incoming feature, the outgoing feature, and the node representation.

Figure 2: A variant for the encoder part of GraphSeq2Seq model. It encodes the features separately
with three different Bi-LSTMs, while the original model is to encode the features by using only one
Bi-LSTM.

As shown in Fig. 2, after the sub-graph encoder, we get the hidden feature for each node. Then
we rebuild the sub-graph for the current node. For the rebuilded sub-graph, its outgoing hidden
feature is the input of a Graph Out Bi-LSTM, while its incoming hidden feature is for a Graph in Bi-
LSTM. For the current node, its node representation is utilized for a Node Sequence Bi-LSTM. Thus,

final hidden states are the concat [
−−→
houtn ,

←−−
houtn ,

−→
hinn ,
←−
hinn ,
−→
Hn,
←−
Hn]. After that, a traditional attention

mechanism (Bahdanau et al., 2014) as presented in Section 2.1 is utilized to generate outputs.

4 EXPERIMENTS

In this section, we evaluate our model on IWSLT 2014 German-to-English, IWSLT 2014 English-
to-German (Cettolo et al., 2014), IWSLT 2015 English-to-Vietnamese (Cettolo et al., 2015), and
WMT 2016 English-to-Czech (DBL, 2016) machine translation benchmarks. This section describes
the details of the experiments, including the detailed implementations2, comparison results and
discussions. Experiment results show our GraphSeq2Seq are better than existing methods on the
three benchmarks. The variant model is mostly better than existing methods. Furthermore, we also
demonstrate the benefit of combining Graph2Sqe (Gildea et al., 2018) and Seq2Seq (Bahdanau et al.,

2We will release our code on Github upon the acceptance.
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Table 1: Performance comparison on IWSLT2014 German-English dataset.

Method BLEU
Greedy Search Beam search

MIXER (Ranzato et al., 2015) 20.73 21.83
BSO (Wiseman & Rush, 2016) 23.83 25.48

LL (Bahdanau et al., 2017) 26.17 27.61
RF-C+LL (Bahdanau et al., 2017) 27.70 28.30
AC+LL (Bahdanau et al., 2017) 27.49 28.53

NPMT (Huang et al., 2018) 28.57 29.92
NPMT+LM (Huang et al., 2018) N/A 30.08

Coaching GBN (Chen et al., 2018) N/A 30.18

Seq2Seq (Bahdanau et al., 2014) 26.90 28.79
Graph2Seq (Gildea et al., 2018) 19.89 22.31

GraphSeq2Seq (Ours) 29.06 30.66
GraphSeq2Seq-Variant (Ours) 28.21 29.61

2014). Besides, our GraphSeq2Seq is trained faster than the state-of-the-art method NMPT (Huang
et al., 2018).

4.1 IWSLT 2014 GERMAN-TO-ENGLISH

This subsection presents the detailed implementations and evaluation results on the IWSLT 2014
German-to-English machine translation benchmark (Cettolo et al., 2014). Its dataset consists of
153K training samples, 7K validation samples, and 7K test samples. We use the same procedure
for preprocessing and dataset splits as in Gildea et al. (2018); Huang et al. (2018). The German and
English vocabulary sizes are 32,010 and 22,823 as in Huang et al. (2018). With the words that are
out of the vocabularies, we leverage an <UNK> symbol to replace them.

Implementation We use Tensorflow3 to implement the proposed models. All input sentences are
padded to the same length with an additional mask variable storing the real length of each input. The
hidden vector size for sub-graph encoder is 300. Three layers of the highway network (Srivastava
et al., 2015) are set to transform and carry the initial node representation. One layer of the bidirec-
tional LSTM (Schuster & Paliwal, 1997) is used for sequence encoding. For the decoder, two layers
of LSTM are used to decode the passed informationThe regularization dropout with probability 0.5
is set as in Huang et al. (2018). We trained our models with Adam (Kingma & Ba, 2014) with an
initial learning rate 0.001. The batch size is set to 32, and for decoding, we use greedy search and
beam search with a beam size of 10 as in Huang et al. (2018).

Comparison Results We compare our GraphSeq2Seq model and its variant with existing meth-
ods including MIXER (Ranzato et al., 2015), BSO (Wiseman & Rush, 2016), LL (Bahdanau et al.,
2017), RF-C+LL (Bahdanau et al., 2017), AC+LL (Bahdanau et al., 2017), NPMT (Huang et al.,
2018), NPMT+LM (Huang et al., 2018), Coaching GBN (Chen et al., 2018), Seq2Seq (Bahdanau
et al., 2014), and Graph2Seq (Gildea et al., 2018). We leverage BLEU (Papineni et al., 2002) which
is a method for automatic evaluation of machine translation to evaluate our models. The higher the
BLEU score is, the better the translations are. Table 1 summaries the performance comparison on
IWSLT2014 German-to-English dataset. GraphSeq2Seq achieves better results than the compared
methods. Compared with the state-of-the-art methods NPMT and NPMT+LL (Huang et al., 2018),
GraphSeq2Seq achieves 0.49 BLEU gains in the greedy setting and 0.58 BLEU gains using beam
search. Even GraphSeq2Seq does not get much gains, it is much faster than NPMT and NPMT+LM.
It takes about 16 hours to run to convergence (22 epochs) on a machine with one TITAN X GPU,
while Huang et al. (2018) notes that NPMT takes about 2-3 days to run to convergence (40 epochs)
on four M40 GPUs. Therefore, our GraphSeq2Seq is at least 8 times faster than NPMT. Besides,
Huang et al. (2018) also reports the state-of-the-art performance on this dataset, and our Graph-
Seq2Seq achieves 0.48 BLEU gains on beam search. Comparing with Seq2Seq and Graph2Seq,
GraphSeq2Seq achieves at least 2.16 gains on greedy search and 1.87 gains using beam search,
which significantly demonstrates the effectiveness of the combination of Seq2Seq and Graph2Seq.
For the variant of GraphSeq2Seq, it is slightly lower than GraphSeq2Seq but achieves comparable
performance with NPMT.

3https://www.tensorflow.org
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Table 2: Performance comparison on
IWSLT2014 English-to-German dataset.

Method BLEU
Greedy Beam

NPMT (Huang et al., 2018) 23.62 25.08
NPMT+LM (Huang et al., 2018) N/A 25.36

Seq2Seq (Bahdanau et al., 2014) 21.26 22.59
Graph2Seq (Gildea et al., 2018) 20.32 22.39

GraphSeq2Seq (Ours) 26.02 27.32
GraphSeq2Seq-Variant (Ours) 25.78 27.00

Table 3: Performance comparison on
IWSLT2015 English-to-Vietnamese dataset.

Method BLEU
Greedy Beam

Hard monotonic (Raffel et al., 2017) 23.0 N/A
Luong & Manning (2015) N/A 23.3

NPMT (Huang et al., 2018) 26.91 27.69
NPMT+LM (Huang et al., 2018) N/A 28.07

Seq2Seq (Bahdanau et al., 2014) 25.50 26.10
Graph2Seq (Gildea et al., 2018) 22.70 24.73

GraphSeq2Seq (Ours) 28.44 29.25
GraphSeq2Seq-Variant (Ours) 28.48 29.62

4.2 IWSLT 2014 ENGLISH-TO-GERMAN

Implementation For the IWSLT 2014 English-to-German machine translation benchmark, follow-
ing the setup presented in Section 4.1, the same dataset is used but with the opposition direction.
We utilize the same settings for our model as the German-to-English task, including the batch size,
beam search size, optimization algorithm, dropout probability, and hidden layer sizes, etc.

Comparison Results We compare with Seq2Seq (Bahdanau et al., 2014), Graph2Seq (Gildea et al.,
2018), and state-of-the-art methods NPMT and NPMT+LM (Huang et al., 2018) on this dataset. Ta-
ble 2 reports their performance comparison. It shows GraphSeq2Seq achieves better results. Com-
pared with the state-of-the-art methods NPMT and NPMT+LL, GraphSeq2Seq achieves 2.4 BLEU
gain on greedy search and 1.96 BLEU gain using beam search. The variant model also outperforms
NPMT and NPMT+LL by 2.16 BLEU gain and 1.64 BLEU gain on greedy and beam search re-
spectively. GraphSeq2Seq is much better than Seq2Seq and Graph2Seq which demonstrates the ef-
fectiveness of our contribution that combines Seq2Seq and Graph2Seq. Besides, our GraphSeq2Seq
takes about 15 hours to run to convergence (19 epochs) on a machine with one TITAN X GPU, while
Huang et al. (2018) notes that NPMT still takes about 2-3 days to run to convergence (40 epochs)
on four M40 GPUs. On this dataset, GraphSeq2Seq is still at least 8 times faster than NPMT.

4.3 IWSLT 2015 ENGLISH-TO-VIETNAMESE

Implementation For IWSLT 2015 English-to-Vietnamese machine translation benchmark, the
dataset consists of roughly 133K training samples, 15K validation samples (from TED tst2012)
and 13K test samples (from TED tst2013). The same preprocessing, vocabularies, dropout proba-
bility, and batch size are set as in Huang et al. (2018). The other hyperparameters are the same as
presented in Section 4.1.

Comparison Results We compare our GraphSeq2Seq with Hard monotonic (Raffel et al., 2017),
Luong & Manning (2015), Seq2Seq (Bahdanau et al., 2014), Graph2Seq (Gildea et al., 2018), and
state-of-the-art methods NPMT and NPMT+LM (Huang et al., 2018). Hard monotonic is an end-to-
end differentiable method for learning monotonic alignments which, at test time, enables computing
attention online and in linear time. Luong & Manning (2015) explored the use of Neural Machine
Translation and demonstrated that an off-the-shelf NMT framework can achieve competitive perfor-
mance with very little data. Table 3 reports the performance comparison. It shows GraphSeq2Seq
performs much better than the compared methods. Compared with the state-of-the-art methods
NPMT and NPMT+LL, GraphSeq2Seq achieves 1.53 BLEU gain on greedy search and 1.18 BLEU
gain using beam search. The variant model also outperforms NPMT and NPMT+LL by 1.57 BLEU
gain and 1.55 BLEU gain on greedy search and beam search respectively. Our GraphSeq2Seq is
much better than Seq2Seq and Graph2Seq which verifies the contribution of their combination.

4.4 WMT 2016 ENGLISH-TO-CZECH

Implementation WMT 2016 English-to-Czech machine translation benchmark, the dataset consists
of roughly 181K training samples, 27K validation samples and 30K test samples. The same prepro-
cessing is leveraged but here we use BPE on the target side as Bastings et al. (2017). The vocabulary
sizes of the source side and target side are 33,786 and 8,000 respectively. The other hyperparameters
are the same as presented in Section 4.1.
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Table 4: Performance comparison on WMT 2016 English-Czech dataset.

Method BLEU1 BLEU

BoW+GCN (Bastings et al., 2017) 35.4 7.5
CNN+GCN (Bastings et al., 2017) 36.1 8.7

BiRNN+GCN (Bastings et al., 2017) 38.8 9.6

Seq2Seq (Bahdanau et al., 2014) 38.2 9.93
Graph2Seq (Gildea et al., 2018) 36.0 8.22

GraphSeq2Seq (Ours) 40.2 11.11
GraphSeq2Seq-Variant (Ours) 39.6 10.7

Comparison Results Bastings et al. (2017) provide three baselines for Graph Convolutional Net-
works (GCN), each with a different encoder: a bag-of-words encoder, a convolutional encoder,
and a BiRNN. They use predicted syntactic dependency trees of source sentences to produce rep-
resentations of words that are sensitive to their syntactic neighborhoods. As shown in Table 4,
our GraphSeq2Seq performs better than the compared methods. Compared with the state-of-the-
art method BiRNN+GCN (Bastings et al., 2017), GraphSeq2Seq increases the BLEU scores by 1.4
(BLEU1) and 1.51 (BLEU), where the BLEU1 means the score for 1-grams and BLEU is for up to
4-grams. Our GraphSeq2Seq is much better than Seq2Seq and Graph2Seq which demonstrates the
effectiveness of their combination.

4.5 DISCUSSIONS

This subsection is to discuss the effectiveness of our GraphSeq2Seq model including 1) quantitative
analysis on graph and sequence information, 2) the impact of highway layers, and 3) the impact of
the weight in sub-graph encoder.

Quantitative analysis on graph and sequence information This experiment is used to verify
the quantitative analysis of our GraphSeq2Seq with random graph and sequence noises based on
IWSLT2014 German-English dataset. As shown in Table 5, the random noises change from 0% to
75%, where 75% indicates that 75% of graph and sequence information are noises. 100% is not
performed because it is meaningless in real life. Table 5 shows that the BLEU scores go to bad from
29.06 (Greedy) and 30.66 (Beam) to 17.38 and 20.28 when the sequence noise varies from 0% to
75%. For the graph noise, we have a similar observation that the BLEU scores go to bad from 29.06
(Greedy) and 30.66 (Beam) to 24.19 and 26.08 when the graph noise varies from 0% to 75%. It
demonstrates that both graph and sequence information are effective in our GraphSeq2Seq, and the
performance relies on their qualities.

Table 5: Quantitative analysis of our GraphSeq2Seq on BLEU scores with random graph and se-
quence noises based on IWSLT2014 German-English dataset. The random noises change from 0%
to 75%. Note that 75% indicates that 75% of graph and sequence information are noises.

0% 25% 50% 75%

Graph Noises Greedy 29.06 27.61 24.96 24.19
Beam 30.66 29.22 26.87 26.08

Sequence Noises Greedy 29.06 26.11 24.09 17.38
Beam 30.66 27.97 25.58 20.28

The impact of highway layers In GraphSeq2Seq model, we leverage a highway network (Sri-
vastava et al., 2015) to transform and carry the initial information for input words as presented in
Section 3.1. It is necessary to discuss whether the highway layers have contributions to the per-
formance. Therefore, we conduct several experiments with different settings of highway layers.
Table 6 reports the performance of GraphSeq2Seq on test set and it is training with different num-
bers of highway layers. Compared with no highway layers, GraphSeq2Seq using one highway layer
improves BLEU from 28.13 and 29.78 to 28.84 and 30.13 respectively on greedy and beam search
settings. Nearly 0.5 increment on BLEU demonstrates fusing highway layers contributes to the final
performance. We test GraphSeq2Seq by varying layer numbers from 0 to 5 and find using 3 high-
way layers achieves the best performance. With too many highway layers, the performance may be
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Table 6: The impact of highway layers on the performance (BLEU) of GraphSeq2Seq on
IWSLT2014 German-English dataset. GraphSeq2Seq is training with different numbers of high-
way layers.

Highway Layers 0 1 2 3 4 5

BLEU Greedy Search 28.13 28.84 28.72 29.06 28.43 26.76
Beam Search 29.78 30.13 30.00 30.66 30.02 28.03

Table 7: The impact of the weight for graph encoding on the performance (BLEU) of GraphSeq2Seq.

German-English English-German English-Vietnamese
w/o weight w/ weight w/o weight w/ weight w/o weight w/ weight

Greedy Search 27.59 28.84 25.11 26.02 26.65 28.45
Beam Search 29.13 30.13 26.60 27.32 28.35 29.26

worse than that without highway layers. A plausible reason is that using too many highway layers
increases so many parameters that it needs to carefully adjust the hyperparameters and needs more
epochs to run to convergence.

The impact of the weight in sub-graph encoder A weight is used in our sub-graph encoder to
learn the incoming and outgoing hidden features as presented in Eq. 13 and 14. Here we discuss
whether the weight contributes to the performance. Table 7 shows the performance comparisons for
GraphSeq2Seq with or without this weight based on the same hyperparameters. Experiment results
on three translation datasets shows that performances of using the weight are much better than the
performances that without the weight. It almost improves 1 BLEU score which is a relatively big
contribution to the performance of GraphSeq2Seq.

5 CONCLUSION AND FUTURE WORK

We proposed GraphSeq2Seq, a machine translation model that combines the Seq2Seq model and
Graph2Seq model. Besides the effective sequential modeling, it utilizes the dependency graph which
contains additional semantic information for sentence modeling. Experiment results show promis-
ing performance of our GraphSeq2Seq on IWSLT2014 English-to-German, German-to-English,
IWSLT2015 English-to-Vietnamese, and WMT 2016 English-to-Czech machine translation bench-
marks. In performance comparison, GraphSeq2Seq is much better than Seq2Seq and Graph2Seq
demonstrating the effectiveness of their combination. It also outperforms the state-of-the-art meth-
ods NPMT (Huang et al., 2018), BiRNN+GCN (Bastings et al., 2017) and Coaching GBN (Chen
et al., 2018) as well as being trained almost 8 times faster than NPMT.

In future work, we will 1) apply GraphSeq2Seq to larger datasets and more natural language genera-
tion tasks; 2) explore the graph structure among words and sentences to address the paragraph-level
translation task.
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