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ABSTRACT

A generally intelligent learner should generalize to more complex tasks than it
has previously encountered, but the two common paradigms in machine learn-
ing – either training a separate learner per task or training a single learner for all
tasks – both have difficulty with such generalization because they do not lever-
age the compositional structure of the task distribution. This paper introduces the
compositional problem graph as a broadly applicable formalism to relate tasks of
different complexity in terms of problems with shared subproblems. We propose
the compositional generalization problem for measuring how readily old knowl-
edge can be reused and hence built upon. As a first step for tackling composi-
tional generalization, we introduce the compositional recursive learner, a domain-
general framework for learning algorithmic procedures for composing representa-
tion transformations, producing a learner that reasons about what computation to
execute by making analogies to previously seen problems. We show on a symbolic
and a high-dimensional domain that our compositional approach can generalize
to more complex problems than the learner has previously encountered, whereas
baselines that are not explicitly compositional do not.

1 INTRODUCTION

This paper seeks to tackle the question of how to build machines that leverage prior experience to
solve more complex problems than they have previously encountered. How does a learner represent
prior experience? How does a learner apply what it has learned to solve new problems? Motivated
by these questions, this paper aims to formalize the idea of, as well as to develop an understanding
of the machinery for, compositional generalization in problems that exhibit compositional structure.
The solutions for such problems can be found by composing in sequence a small set of reusable
partial solutions, each of which tackles a subproblem of a larger problem. The central contributions
of this paper are to frame the shared structure across multiple tasks in terms of a compositional
problem graph, propose compositional generalization as an evaluation scheme to test the degree a
learner can apply previously learned knowledge to solve new problems, and introduce the compo-
sitional recursive learner, a domain-general framework1 for sequentially composing representation
transformations that each solve a subproblem of a larger problem.

The key to our approach is recasting the problem of generalization as a problem of learning algo-
rithmic procedures over representation transformations. A solution to a (sub)problem is a transfor-
mation between its input and output representations, and a solution to a larger problem composes

1https://github.com/mbchang/crl
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these subsolutions together. Therefore, representing and leveraging prior problem-solving experi-
ence amounts to learning a set of reusable primitive transformations and their means of composition
that reflect the structural properties of the problem distribution.

This paper introduces the compositional recursive learner (CRL), a framework for learning both
these transformations and their composition together with sparse supervision, taking a step be-
yond other approaches that have assumed either pre-specified transformation or composition rules
(Sec. 5). CRL learns a modular recursive program that iteratively re-represents the input repre-
sentation into more familiar representations it knows how to compute with. In this framework, a
transformation between representations is encapsulated into a computational module, and the overall
program is the sequential combination of the inputs and outputs of these modules, whose application
are decided by a controller.

What sort of training scheme would encourage the spontaneous specialization of the modules around
the compositional structure of the problem distribution? First, exposing the learner to a diverse
distribution of compositional problems helps it pattern-match across problems to distill out common
functionality that it can capture in its modules for future use. Second, enforcing that each module
have only a local view of the global problem encourages task-agnostic functionality that prevents the
learner from overfitting to the empirical training distribution; two ways to do this are to constrain the
model class of the modules and to hide the task specification from the modules. Third, training the
learner with a curriculum encourages the learner to build off old solutions to solve new problems by
re-representing the new problem into one it knows how to solve, rather than learning from scratch.

How should the learner learn to use these modules to exploit the compositional structure of the
problem distribution? We can frame the decision of which computation to execute as a reinforcement
learning problem in the following manner. The application of a sequence of modules can be likened
to the execution trace of the program that CRL automatically constructs, where a computation is the
application of a module to the output of a previous computation. The automatic construction of the
program can be formulated as the solution to a sequential decision-making problem in a meta-level
Markov decision process (MDP) (Hay et al., 2014), where the state space is the learner’s internal
states of computation and the action space is the set of modules. Framing the construction of a
program as a reinforcement learning problem allows us to use techniques in deep reinforcement
learning to implement loops and recursion, as well as decide on which part of the current state of
computation to apply a module, to re-use sub-solutions to solve a larger problem.

Our experiments on solving multilingual arithmetic problems and recognizing spatially transformed
MNIST digits (LeCun et al., 1998) show that the above proposed training scheme prescribes a type
of reformulation: re-representing a new problem in terms of other problems by implicitly making
an analogy between their solutions. We also show that our meta-reasoning approach for deciding
what modules to execute achieves better generalization to more complex problems than monolithic
learners that are not explicitly compositional.

2 COMPOSITIONAL GENERALIZATION

Solving a problem simply means representing it so as to make the solution transparent.

(SIMON, 1988)

Humans navigate foreign cities and understand novel conversations despite only observing a tiny
fraction of the true distribution of the world. Perhaps they can extrapolate in this way because the
world contains compositional structure, such that solving a novel problem is possible by composing
previously learned partial solutions in a novel way to fit the context.

With this perspective, we propose the concept of compositional generalization. The key assumption
of compositional generalization is that harder problems are composed of easier problems. The prob-
lems from the training and test sets share the same primitive subproblems, but differ in the manner
and complexity with which these subproblems are combined. Therefore, problems in the test set can
be solved by combining solutions learned from the training set in novel ways.

Definition. Let a problem P be a pair (Xin, Xout), where Xin and Xout are random variables that
respectively correspond to the input and output representations of the problem. Let the distribution
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Figure 1: (a) Consider a multitask family of problems, whose subproblems are shared within and across
problems. Standard approaches either (b) train a separate learner per task or (c) train a single learner for all
tasks. Both have difficulty generalizing to longer compositional problems. (d) Our goal is to re-use previously
learned sub-solutions to solve new problems by composing computational modules in new ways.

of Xin be rin and the distribution of Xout be rout. To solve a particular problem P = p is to
transform Xin = xin into Xout = xout. A composite problem pa = pb ◦ pc is that for which it
is possible to solve by first solving pc and then solving pb with the output of pc as input. pb and
pc are subproblems with respect to pa. The space of compositional problems form a compositional
problem graph, whose nodes are the representation distributions r. A problem is described as pair
of nodes between which the learner must learn to construct an edge or a path to transform between
the two representations.

Characteristics. First, there are many ways in which a problem can be solved. For example, trans-
lating an English expression to a Spanish one can be solved directly by learning such a transforma-
tion, or a learner could make an analogy with other problems by first translating English to French,
and then French to Spanish as intermediate subproblems. Second, sometimes a useful (although not
only) way to solve a problem is indicated by the recursive structure of the problem itself: solving
the arithmetic expression 3 + 4× 7 modulo 10 can be decomposed by first solving the subproblem
4×7 = 8 and then 3+8 = 1. Third, because a problem is just an (input, output) pair, standard prob-
lems in machine learning fit into this broadly applicable framework. For example, for a supervised
classification problem, the input representation can be an image and the output representation a la-
bel, and intermediate subproblems can be transforming some intermediate representations to other
intermediate representations. Sec. 4 demonstrates CRL on all three of the above examples.

Broad Applicability. Problems in supervised, unsupervised, and reinforcement learning can all be
viewed under the framework of transformations between representations. What we gain from the
compositional problem graph perspective is a methodological way to relate together different prob-
lems of various forms and complexity, which is especially useful in a lifelong learning setting: the
knowledge required to solve one problem is composed of the knowledge required to solve subprob-
lems seen in the past in the context of different problems. For example, we can view latent variable
reinforcement learning architectures such as (Ha & Schmidhuber, 2018; Nair et al., 2018) as si-
multaneously solving an image reconstruction problem and an action prediction problem, both of
which share the same subproblem of transforming a visual observation into a latent representation.
Lifelong learning, then, can be formulated as not only modifying the connections between nodes
in the compositional problem graph but also continuing to make more connections between nodes,
gradually expanding the frontier of nodes explored. Sec. 4 describes how CRL takes advantage of
this compositional formulation in a multi-task zero-shot generalization setup to solve new problems
by re-using computations learned from solving past problems.
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Figure 2: Compositional recursive learner (CRL): top-left: CRL is a symbiotic relationship between a
controller and evaluator: the controller selects a module m given an intermediate representation x and the
evaluator applies m on x to create a new representation. bottom-left: CRL learns dynamically learns the
structure of a program customized for its problem, and this program can be viewed as a finite state machine.
right: A series of computations in the program is equivalent to a traversal through a Meta-MDP, where module
can be reused across different stages of computation, allowing for recursive computation.

Evaluation. To evaluate a learner’s capacity for compositional generalization, we introduce two
challenges. The first is to generalize to problems with different subproblem combinations from what
the learner has seen. The second is to generalize to problems with longer subproblems combinations
than the learner has seen. Evaluating a learner’s capability for compositional generalization is one
way to measure how readily old knowledge can be reused and hence built upon.

3 A LEARNER THAT PROGRAMS ITSELF

This paper departs from the popular representation-centric view of knowledge (Bengio et al., 2013)
and instead adopts a computation-centric view of knowledge: our goal is to encapsulate useful
functionality shared across tasks into specialized computational modules – atomic function operators
that perform transformations between representations. This section introduces the compositional
recursive learner (CRL), a framework for training modules to capture primitive subproblems and
for composing together these modules as subproblem solutions to form a path between nodes of the
compositional problem graph.

3.1 COMPOSITIONAL RECURSIVE LEARNER

The CRL framework consists of a controller π, a set of modules m ∈M , and an evaluator E. Train-
ing CRL on a diverse compositional problem distribution produces a modular recursive program
that is trained to transform the input Xin into its output Xout, the corresponding samples of which
are drawn from pairs of nodes in the compositional problem graph. In this program, the controller
looks at the current state xi of the program and chooses a module m to apply to the state. The
evaluator executes the module on that state to produce the next state xi+1 of the program. Xin is
the initial state of the program, X̂out is the last, and the intermediate states Xi of the execution trace
correspond to the other representations produced and consumed by the modules. The controller can
choose to re-use modules across different program executions to solve different problems, making it
straightforward to re-use computation learned from solving other problems to solve the current one.
The controller can also choose to reuse modules several times within the same program execution,
which produces recursive behavior.
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3.2 DECIDING WHICH COMPUTATIONS TO EXECUTE

The sequential decision problem that the controller solves can be formalized as a meta-level Markov
decision process (meta-MDP) (Hay et al., 2014), whose state space corresponds to the intermediate
states of computation X , whose action space corresponds to the modules M , and whose transition
model corresponds to the evaluatorE. The symbiotic relationship among these components is shown
in Fig. 2. In the bounded-horizon version of CRL (Sec. 4.2), the meta-MDP has a finite horizon
whose length is determined by the complexity of the current problem. In the infinite-horizon version
of CRL (Sec. 4.1), the program itself determines when to halt when the controller selects the HALT
signal. When the program halts, in both versions the current state of computation is produced as
output x̂out, and CRL receives a terminal reward that reflects how x̂out matches the desired output
xout. The infinite-horizon CRL also incurs a cost for every computation it executes to encourage it
to customize its complexity to the problem.

Note the following key characteristics of CRL. First, unlike standard reinforcement learning setups,
the state space and action space can vary in dimensionality across and within episodes because
CRL trains on problems of different complexity, reducing more complex problems to simpler ones
(Sec. 4.1). Second, because the meta-MDP is internal to CRL, the controller shapes the meta-MDP
by choosing which modules get trained and the meta-MDP in turn shapes the controller through its
non-stationary state-distribution, action-distribution, and transition function. Thus CRL simultane-
ously designs and solves reinforcement learning problems “in its own mind,” whose dynamics de-
pend just as much on the intrinsic complexity of the problem as well as the current problem-solving
capabilities of CRL.

3.3 MAKING ANALOGIES IN THE COMPOSITIONAL PROBLEM GRAPH

The solution that we want CRL to discover lies between two extremes, both of which have their
own drawbacks. One extreme is where CRL learns a module specialized for every pair of nodes
in the compositional problem graph, and the other is where CRL only learns one module for all
pairs of nodes. Both extremes yield a horizon-one meta-MDP and are undesirable for compositional
generalization: the former does not re-use past knowledge and the latter cannot flexibly continuously
learn without suffering from negative transfer.

What is the best solution that CRL could discover? For a given compositional problem graph,
an optimal solution would be to recover the original compositional problem graph such that the
modules exactly capture the subproblems and the controller composes these modules to reflect how
the subproblems were originally generated. By learning both the parameters of the modules and the
controller that composes them, during CRL would construct its own internal representation of the
problem graph, where the functionality of the modules produces the nodes of the graph. How can
we encourage CRL’s internal graph to reflect the original compositional problem graph?

We want to encourage the modules to capture the most primitive subproblems, such that they can
be composed as atomic computations for other problems. To do this, we need to enforce that each
module only has a local view of the global problem. If tasks are distinguished from each other based
on the input (see Sec. 4.2), we can use domain knowledge to restrict the representation vocabulary
and the function class of the modules. If we have access to a task specification (e.g. goal or task id)
in addition to the input, we can additionally give only the controller access to the task specification
while hiding it from the modules. This forces the modules to be task agnostic, which encourages
that they learn useful functionality that generalizes across problems.

Because the the space of subproblem compositions is combinatorially large, we use a curriculum
to encourage solutions for the simpler subproblems to converge somewhat before introducing more
complex problems, for which CRL can learn to solve by composing together the modules that had
been trained on simpler problems. Lastly, to encourage the controller to generalize to new node
combinations it has not seen, we train on a diverse distribution of compositional problems, such that
the controller does not overfit to any one problem. This encourages controller to make analogies be-
tween problems during training by re-using partial solutions learned while solving other problems.
Our experiments show that this analogy-making ability helps with compositional generalization be-
cause the controller solves new or more complex subproblem combinations by re-using modules
that it learned during training.
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(a) Training (b) Different subproblem combinations (c) More complex subproblem combinations

Figure 3: Multilingual Arithmetic (Quantitative). CRL generalizes significantly better than the RNN,
which, even with ten times more data, does not generalize to 10-length multilingual arithmetic expressions.
Pretraining the RNN on domain-specific auxiliary tasks does not help the 10-length case, highlighting a lim-
itation of using monolithic learners for compositional problems. By comparing CRL with a version trained
without a curriculum (“No Curr”: blue), we see the benefit of slowly growing the complexity of problems
throughout training, although this benefit does not transfer to the RNN. The vertical black dashed line indicates
at which point all the training data has been added when CRL is trained with a curriculum (red). The initial
consistent rise of the red training curve before this point shows CRL exhibits forward transfer (Lopez-Paz et al.,
2017) to expressions of longer length. Generalization becomes apparent only after a million iterations after all
the training data has been added. (b, c) only show accuracy on the expressions with the maximum length of
those added so far to the curriculum. “1e4” and “1e5” correspond to the order of magnitude of the number of
samples in the dataset, of which 70% are used for training. 10, 50, and 90 percentiles are shown over 6 runs.

4 EXPERIMENTS

The main purpose of our experiments is to test the hypothesis that explicitly decomposing a learner
around the structure of a compositional problem distribution yields significant generalization bene-
fit over the standard paradigm of training a single monolithic architecture on the same distribution
of problems. To evaluate compositional generalization, we select disjoint subsets of node pairs for
training and evaluating the learner. Evaluating on problems distinct from those in training tests the
learner’s ability to apply what it has learned to new problems. To demonstrate the broad applicability
of the compositional graph, we consider the structured symbolic domain of multilingual arithmetic
and the underconstrained and high-dimensional domain of transformed-MNIST classification. We
find that composing representation transformations with CRL achieves significantly better general-
ization when compared to generic monolithic learners, especially when the learner needs to gener-
alize to problems with longer subproblem combinations than those seen during training.

In our experiments, the controller and modules begin as randomly initialized neural networks. The
loss is backpropagated through the modules, which are trained with Adam (Kingma & Ba, 2014).
The controller receives a sparse reward derived from the loss at the end of the computation, and
a small cost for each computational step. The model is trained with proximal policy optimization
(Schulman et al., 2017).

4.1 MULTILINGUAL ARITHMETIC

This experiment evaluates the infinite-horizon CRL in a multi-objective, variable-length input, sym-
bolic reasoning multi-task setting. A task is to simplify an arithmetic expression expressed in a
source language, encoded as variable-length sequences of one-hot tokens, and produce the answer
modulo 10 in a given target language. To evaluate compositional generalization, we test whether,
after having trained on 46200 examples of 2, 3, 4, 5-length expressions (2.76 · 10−4 of the training
distribution) involving 20 of the 5 × 5 = 25 pairs of five languages, the learner can generalize to
5-length and 10-length expressions involving the other five held-out language pairs (problem space:
4.92 · 1015 problems). To handle the multiple target languages, the CRL controller receives a one-
hot token for the target language at every computational step additional to the arithmetic expression.
The CRL modules consist of two types of feedforward networks: reducers and translators, which do
not know the target language and so can only make local progress on the global problem. Reducers
transform a consecutive window of three tokens into one token, and translators transform all tokens
in a sequence by the same transformation. The CRL controller also selects where in the arithmetic
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Figure 4: Left: For multilingual arithmetic, blue denotes the language pairs for training and red denotes
the language pairs held out for evaluation in Fig 3b,c. Center: For transformed MNIST classification, blue
denotes the length-2 transformation combinations that produced the input for training, red denotes the length-2
transformation combinations held out for evaluation. Not shown are the more complex length-3 transformation
combinations (scale then rotate then translate) we also tested on. Right: For transformed MNIST classification,
each learner performs better than the others in a different metric: the CNN performs best on the training
subproblem combinations, the STN on different subproblem combinations of the same length as training, and
CRL on longer subproblem combinations than training. While CRL performs comparably with the others in
the former two metrics, CRL’s ∼ 40% improvement for more complex image transformations is significant.

expression to apply a reducer. We trained by gradually increasing the complexity of arithmetic
expressions from length two to length five.

Quantitive results in Fig. 3 show that CRL achieves significantly better compositional generaliza-
tion than a recurrent neural network (RNN) baseline (Cho et al., 2014) trained to directly map the
expression to its answer, even when the RNN has been pretrained or receives 10x more data. Fig. 9
shows that CRL achieves about 60% accuracy for extrapolating to 100-term problems (problem
space: 4.29 · 10148).

The curriculum-based training scheme encourages CRL to designs its own edges and paths to con-
nect nodes in the compositional problem graph, solving harder problems with the solutions from
simpler ones. It also encourages its internal representations to mirror the external representations it
observes in the problem distribution, even though it has no direct supervision to do so. However,
while this is often the case, qualitative results in Fig. 5 show that CRL also comes up with its own
internal language – hybrid representations that mix different external representations together – to
construct compositional solutions for novel problems. Rather than learn translators and reducers
that are specific to single input and output language pair as we had expected, the modules, possibly
due to their nonlinear nature, tended to learn operations specific to the output language only.

4.2 IMAGE TRANSFORMATIONS

This experiment evaluates the bounded-horizon CRL in a single-objective, latent-structured, high-
dimensional multi-task setting. A task is to classify an MNIST digit, where the MNIST digit has
been randomly translated (left, right, up, down), rotated (left, right), and scaled (small, big). Suppose
CRL has knowledge of what untransformed MNIST digits look like; is it possible that CRL can
learn to compose appropriate spatial affine transformations in sequence to convert the transformed
MNIST digit into a “canonical” one, such that it can use a pre-trained classifier to classify it? To
reformulate a scenario to one that is more familar is characteristic of compositional generalization
humans: humans view an object at different angles yet understand it is the same object; they may
have an accustomed route to work, but can adapt to a detour if the route is blocked. To evaluate
compositional generalization, we test whether, having trained on images produced by combinations
of two spatial transformations, CRL can can generalize to different length-2 combinations as well
as length-3 combinations. A challenge in this domain is that the compositional structure is latent,
rather than apparent in the input for the learner to exploit.

CRL is initialized with four types of modules: a Spatial Transformer Network (STN) (Jaderberg
et al., 2015) parametrized to only rotate, an STN that only scales, an STN that only translates, and
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Figure 5: Multilingual Arithmetic (Qualitative). A randomly selected execution trace for generalizing from
length-5 to length-10 expressions. The input is 0−6+1+7×3×6−3+7−7×7 expressed in Pig Latin. The
desired output is seis, which is the value of the expression, 6, expressed in Spanish. The purple modules are
reducers and the red modules are translators. The input to a module is highlighted and the output of the module
is boxed. The controller learns order of operations. Observe that reducer m9 learns to reduce to numerals and
reducer m10 to English terms. The task-agnostic nature of the modules forces them to learn transformations
that the controller would commonly reuse across problems. Even if the problem may not be compositionally
structured, such as translating Pig Latin to Spanish, CRL learns to design a compositional solution (Pig Latin
to Numerals to Spanish) from previous experience (Pig Latin to Numerals and Numerals to Spanish) in order
to generalize: it first reduces the Pig Latin expression to a numerical evaluation, and then translates that to its
Spanish representation using the translator m6. Note that all of this computation is happening internally to the
learner, which computes on softmax distributions over the vocabulary; for visualization we show the token of
the distribution with maximum probability.
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Figure 6: Image Transformations: CRL reasonably applies a sequence of modules to transform a transformed
MNIST digit into canonical position, and generalizes to different and longer compositions of generative trans-
formations. m0 is constrained to output the sine and cosine of a rotation angle, m1 is constrained to output the
scaling factor, and m2 through m13 are constrained to output spatial translations. Some modules like m2 and
m6 learn to translate up, some like m3 and m10 learn to translate down, some like m7 learn to shift right, and
some like m13 learn to shift left. Consider (d): the original generative transformations were “scale big” then
“translate left,” so the correct inversion should be “translate right” then “scale small.” However, CRL chose to
equivalently “scale small” and then “translate right.” CRL also creatively uses m0 to scale, as in (e) and (f),
even though its original parametrization of outputting sine and cosine is biased towards rotation.

an identity function. All modules are initialized to perform the identity transformation, such that
symmetry breaking (and their eventual specialization) is due to the stochasticity of the controller.

Quantitative results in Fig. 4 show that CRL achieves significantly better compositional generaliza-
tion than both the standard practice of finetuning the convolutional neural network (Springenberg
et al., 2014) pretrained classifier and training an affine-STN as a pre-processor to the classifier. Both
baselines perform better than CRL on the training set, and the STN’s inductive bias surprisingly also
allows it to generalize to different length-2 combinations. However, both baselines achieve only less
than one-third of CRL’s generalization performance for length-3 combinations, which showcases
the value of explicitly decomposing problems. Note that in Fig. 6 the sequence of transformations
CRL performs are not necessarily the reverse of those that generated the original input, which shows
that CRL has learned its own internal language for representing nodes in the problem graph.

5 RELATED WORK

Several recent and contemporaneous work (Lake & Baroni, 2017; Liška et al., 2018; Loula et al.,
2018; Bahdanau et al., 2018) have tested in whether neural networks exhibit systematic composi-
tionality (Fodor & Pylyshyn, 1988; Marcus, 1998; Fodor & Lepore, 2002; Marcus, 2018; Calvo
& Symons, 2014) in parsing symbolic data. This paper draws inspiration from and builds upon re-
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search in several areas to propose an approach towards building a learner that exhibits compositional
generalization. We hope this paper provides a point of unification among these areas through which
further connections can be strengthened.

5.1 COMPOSITIONAL GENERALIZATION

Transformations between representations: Our work introduces a learner that exhibits composi-
tional generalization in some sense by bridging deep learning and reformulation, or re-representing
a problem to make it easier to solve (Holte & Choueiry, 2003; Simon, 1969; Anderson, 1990) by
making analogies (Oh et al., 2017) to previously encountered problems. Taking inspiration from
meta-reasoning (Russell & Wefald, 1991; Hay et al., 2014; Hamrick et al., 2017; Graves, 2016) in
humans (Griffiths et al., 2015; Callaway et al., 2017; Lieder et al., 2017), CRL generalize to new
problems by composing representation transformations (analogous to the subprograms in Schmid-
huber (1990)), an approach for which recent and contemporaneous work (Schlag & Schmidhuber,
2018; Alet et al., 2018; Devin et al., 2017) provide evidence.

Meta-learning: Our modular perspective departs from recent work in meta-learning (Thrun & Pratt,
2012; Schmidhuber, 1987) which assume that the shared representation of monolithic architectures
can be shaped by the diversity of tasks in the training distribution as good initializations for future
learning (Finn et al., 2017; Nichol et al., 2018; Ravi & Larochelle, 2016; Andrychowicz et al., 2016;
Grant et al., 2018; Mishra et al., 2018; Lake et al., 2015; Frans et al., 2017; Gupta et al., 2018b;a;
Srinivas et al., 2018).

Graph-based architectures: Work in graph-based architectures have studied combinatorial gen-
eralization in the context of modeling physical systems (Battaglia et al., 2018; Chang et al., 2016;
Battaglia et al., 2016; Santoro et al., 2017; Sanchez-Gonzalez et al., 2018; van Steenkiste et al.,
2018). Whereas these works focus on factorizing representations, we focus on factorizing the com-
putations that operate on representations.

5.2 NEURAL PROGRAM INDUCTION:

Just as the motivation behind disentangled representations (Whitney et al., 2016; Kulkarni et al.,
2015; Chen et al., 2016; Thomas et al., 2017; Bengio et al., 2013; Higgins et al., 2018) is to un-
cover the latent factors of variation, the motivation behind disentangled programs is to uncover the
latent organization of a task. Compositional approaches (as opposed to memory-augmented (Graves
et al., 2014; Sukhbaatar et al., 2015; Joulin & Mikolov, 2015; Grefenstette et al., 2015; Kurach
et al., 2015; Andrychowicz et al., 2016; Graves et al., 2016) or monolithic (Zaremba & Sutskever,
2014; Kaiser & Sutskever, 2015) approaches for learning programs) to the challenge of discovering
reusable primitive transformations and their means of composition generally fall into two categories.
The first assumes pre-specified transformations and learns the structure (from dense supervision on
execution traces to sparse-rewards) (Reed & De Freitas, 2015; Cai et al., 2017; Xu et al., 2017;
Chen et al., 2017; Ganin et al., 2018; Bunel et al., 2018; Feser et al., 2016; Džeroski et al., 2001;
Zaremba et al., 2016; Schmidhuber, 1990). The second learns the transformations but pre-specifies
the structure (Andreas et al., 2016; Riedel et al., 2016; Lin & Lucey, 2017). These approaches are
respectively analogous to our hardcoded-functions and hardcoded-controller ablations in Fig. 7. The
closest works to ours from a program induction perspective are (Gaunt et al., 2016; Valkov et al.,
2018), both neurosymbolic approaches for learning differentiable programs integrated in a high-level
programming language. Our work complements theirs by casting the construction of a program as
a reinforcement learning problem, and we believe that more tightly integrating CRL with types and
combinators would be an exciting direction for future work.

5.3 SELF-ORGANIZING LEARNERS

Lifelong Learning: CRL draws inspiration from work (Schmidhuber, 1987; Dechter et al., 2013;
Schmidhuber, 2009; 2012; Ellis et al., 2018) on learners that learn to design their own primitives
and subprograms for solving an increasingly large number of tasks. The simultaneous optimization
over the the continuous function parameters and their discrete compositional structure in CRL is
inspired by the interplay between abstract and concrete knowledge that is hypothesized to character-
ize cognitive development: abstract structural priors serve as a scaffolding within which concrete,
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domain-specific learning takes place (Spelke, 1990; Pinker, 1994), but domain-specific learning
about the continuous semantics of the world can also provide feedback to update the more discrete
structural priors (Gopnik & Wellman, 2012; Carey, 2015).

Hierarchy: Several works have investigated the conditions in which hierarchy is useful for humans
(Botvinick et al., 2009; Solway et al., 2014; Sanborn et al., 2018); our experiments show that the
hierarchical structure of CRL is more useful than the flat structure of monolothic architectures for
compositional generalization. Learning both the controller and modules relates CRL to the hier-
archical reinforcement learning literature (Barto & Mahadevan, 2003), where recent work (Bacon
et al., 2017; Kulkarni et al., 2016; Frans et al., 2017; Vezhnevets et al., 2017; Nachum et al., 2018)
attempting to learn both lower-level policies as well as a higher-level policy that invokes them.

Modularity: Our idea of selecting different weights at different steps of computation is related to the
fast-weights literature (Schmidhuber, 1992; Ba et al., 2016), but those works are motivated by learn-
ing context-dependent associative memory (Hopfield, 1982; Willshaw et al., 1969; Kohonen, 1972;
Anderson & Hinton, 2014; Ha et al., 2016) rather than composing representation transformations,
with the exception of (Schlag & Schmidhuber, 2017). CRL can be viewed as a recurrent mixture
of experts (Jacobs et al., 1991), where each expert is a module, similar to other recent and contem-
poraneous work (Hinton et al., 2018; Rosenbaum et al., 2018; Kirsch et al., 2018; Fernando et al.,
2017) that route through a choices of layers of a fixed-depth architecture for multi-task learning.
The closest work to ours from an implementation perspective is Rosenbaum et al. (2018). However,
these works do not address the problem of generalizing to more complex tasks because they do not
allow for variable-length compositions of the modules. Parascandolo et al. (2017) focuses on a com-
plementary direction to ours; whereas they focus on learning causal mechanisms for a single step,
we focus on learning how to compose modules. We believe composing together causal mechanisms
would be an exciting direction for future work.

6 DISCUSSION

This paper sought to tackle the question of how to build machines that leverage prior experience
to solve more complex problems than they have seen. This paper makes three steps towards
the solution. First, we formalized the compositional problem graph as a language for studying
compositionally-structured problems of different complexity that can be applied on various problems
in machine learning. Second, we introduced the compositional generalization evaluation scheme for
measuring how readily old knowledge can be reused and hence built upon. Third, we presented the
compositional recursive learner, a domain-general framework for learning a set of reusable primitive
transformations and their means of composition that reflect the structural properties of the problem
distribution. In doing so we leveraged tools from reinforcement learning to solve a program induc-
tion problem.

There are several directions for improvement. One is to stabilize the simultaneous optimization
between discrete composition and continuous parameters; currently this is tricky to tune. Others
are to generate computation graphs beyond a linear chain of functions, and to infer the number of
functions required for a family of problems. A major challenge would be to discover the subproblem
decomposition without a curriculum and without domain-specific constraints on the model class of
the modules.

Griffiths et al. (2019) argued that the efficient use cognitive resources in humans may also explain
their ability to generalize, and this paper provides evidence that reasoning about what computation
to execute by making analogies to previously seen problems achieves significantly higher compo-
sitional generalization than non-compositional monolithic learners. Encapsulating computational
modules grounded in the subproblem structure also may pave a way for improving interpretability
of neural networks by allowing the modules to be unit-tested against the subproblems we desire
them to capture. Because problems in supervised, unsupervised, and reinforcement learning can all
be expressed under the framework of transformations between representations in the compositional
problem graph, we hope that our work motivates further research for tackling the compositional gen-
eralization problem in many other domains to accelerate the long-range generalization capabilities
that are characteristic of general-purpose learning machines.
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Adam Liška, Germán Kruszewski, and Marco Baroni. Memorize or generalize? searching for a
compositional rnn in a haystack. arXiv preprint arXiv:1802.06467, 2018.

David Lopez-Paz et al. Gradient episodic memory for continual learning. In Advances in Neural
Information Processing Systems, pp. 6467–6476, 2017.

Joao Loula, Marco Baroni, and Brenden M Lake. Rearranging the familiar: Testing compositional
generalization in recurrent networks. arXiv preprint arXiv:1807.07545, 2018.

Gary F Marcus. Rethinking eliminative connectionism. Cognitive psychology, 37(3):243–282, 1998.

15



Published as a conference paper at ICLR 2019

Gary F Marcus. The algebraic mind: Integrating connectionism and cognitive science. MIT press,
2018.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. 2018.

Ofir Nachum, Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforcement
learning. arXiv preprint arXiv:1805.08296, 2018.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Vi-
sual reinforcement learning with imagined goals. In Advances in Neural Information Processing
Systems, pp. 9209–9220, 2018.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. CoRR,
abs/1803.02999, 2018.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with
multi-task deep reinforcement learning. arXiv preprint arXiv:1706.05064, 2017.

Giambattista Parascandolo, Mateo Rojas-Carulla, Niki Kilbertus, and Bernhard Schölkopf. Learning
independent causal mechanisms. arXiv preprint arXiv:1712.00961, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

S Pinker. Baby born talkingdescribes heaven. The language instinct: How the mind creates lan-
guage, pp. 265–301, 1994.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint
arXiv:1511.06279, 2015.

Sebastian Riedel, Matko Bosnjak, and Tim Rocktäschel. Programming with a differentiable forth
interpreter. CoRR, abs/1605.06640, 2016.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection of
non-linear functions for multi-task learning. International Conference on Learning Representa-
tions, 2018.

Stuart Russell and Eric Wefald. Principles of metareasoning. Artificial intelligence, 49(1-3):361–
395, 1991.

S Sanborn, D Bourgin, M Chang, and T Griffiths. Representational efficiency outweighs action
efficiency in human program induction. In Proceedings of the 40th annual Cognitive Science
Society, July 2018.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. arXiv preprint arXiv:1806.01242, 2018.

Adam Santoro, David Raposo, David GT Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. arXiv
preprint arXiv:1706.01427, 2017.

Imanol Schlag and Jürgen Schmidhuber. Gated fast weights for on-the-fly neural program genera-
tion. In NIPS Metalearning Workshop, 2017.

Imanol Schlag and Jürgen Schmidhuber. Learning to reason with third order tensor products. In
Advances in Neural Information Processing Systems, pp. 10003–10014, 2018.

16



Published as a conference paper at ICLR 2019

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Jürgen Schmidhuber. Towards compositional learning with dynamic neural networks. Inst. für
Informatik, 1990.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Jürgen Schmidhuber. Ultimate cognition à la gödel. Cognitive Computation, 1(2):177–193, 2009.
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A DATA

Numerical arithmetic (Sec. D.1): The dataset contains arithmetic expressions of k terms where the
terms are integers ∈ [0, 9] and the operators are ∈ {+,×,−}. The number of possible problems
is (10k)(3k−1). The learner sees 5810/(2.04 · 1014) = 2.85 · 10−11 of the training distribution.
The number of possible problems in the extrapolation set is (1020)(319) = 1.16 · 1029. An input
expression is a sequence of one-hot vectors of size 13.

# Terms Prob. Space # Train Samples Frac. of Prob. Space

2 (102)(31) = 3 · 102 210 7 · 10−1

3 (103)(32) = 9 · 103 700 7.78 · 10−2

4 (104)(33) = 2.7 · 105 700 2.6 · 10−3

5 (105)(34) = 8.1 · 106 700 8.64 · 10−5

6 (106)(35) = 2.43 · 108 700 2.88 · 10−6

7 (107)(36) = 7.29 · 109 700 9.60 · 10−8

8 (108)(37) = 2.19 · 1011 700 3.20 · 10−9

9 (109)(38) = 6.56 · 1012 700 1.07 · 10−10

10 (1010)(39) = 1.97 · 1014 700 3.56 · 10−12

Total 2.04 · 1014 5810 2.85 · 10−11

Table 1: Numerical Arithmetic Dataset

Multilingual arithmetic (Sec. 4.1): The dataset contains arithmetic expressions of k terms where
the terms are integers ∈ [0, 9] and the operators are ∈ {+, ·,−}, expressed in five different lan-
guages. With 5 choices for the source language and target language, the number of possible prob-
lems is (10k)(3k−1)(52). In training, each source language is seen with 4 target languages and each
target language is seen with 4 source languages: 20 pairs are seen in training and 5 pairs are held out
for testing. The learner sees 46200/(1.68 ·108) = 2.76 ·10−4 of the training distribution. The entire
space of possible problems in the extrapolation set is (1010)(39)(52) = 4.92 · 1015 out of which we
draw samples from the 5 held-out language pairs

(
(1010)(39)(5) = 9.84 · 1014 possible

)
. An input

expression is a sequence of one-hot vectors of size 13 × 5 + 1 = 66 where the single additional
element is a STOP token (for training the RNN).

# Terms Prob. Space Train Prob. Space # Train Samples Frac. of Train Dist. Frac. of Prob. Space

2 (102)(31)(25) = 7.5 · 103 (102)(31)(20) = 6 · 103 210 · 20 = 4.2 · 103 7 · 10−1 5.6 · 10−1

3 (103)(32)(25) = 2.25 · 105 (103)(32)(20) = 1.8 · 105 700 · 20 = 1.4 · 104 7.78 · 10−2 6.22 · 10−2

4 (104)(33)(25) = 6.75 · 106 (104)(33)(20) = 5.4 · 106 700 · 20 = 1.4 · 104 2.6 · 10−3 2.07 · 10−3

5 (105)(34)(25) = 2.02 · 108 (105)(34)(20) = 1.62 · 108 700 · 20 = 1.4 · 104 8.64 · 10−5 6.91 · 10−5

Total 2.09 · 108 1.68 · 108 46200 2.76 · 10−4 2.21 · 10−4

Table 2: Multilingual Arithmetic Dataset

Spatially transformed MNIST (Sec. 4.2): The generative process for transforming the standard
MNIST dataset to the input the learner observes is described as follows. We first center the 28x28
MNIST image in a 42x42 black background. We have three types of transformations to apply to the
image: scale, rotate, and translate. We can scale big or small (by a factor of 0.6 each way). We can
rotate left or right (by 45 degrees each direction). We can translate left, right, up, and down, but the
degree to which we translate depends on the size of the object: we translate the digit to the edge
of the image, so smaller digits get translated more than large digits. Large digits are translated by
20% of the image width, unscaled digits are translated by 29% of the image width, and small digits
are translated by 38% of the image width. In total there are 2 + 2 + 4 × 3 = 16 individual trans-
formation operations used in the generative process. Because some transformation combinations
are commutative, we defined an ordering with which we will apply the generative transformations:
scale then rotate then translate. For length-2 compositions of generative transformations, there are
scale-small-then-translate (1× 4), scale-big-then-translate (1× 4), rotate-then-translate (2× 4), and
scale-then-rotate (2×2). We randomly choose 16 of these 20 for training, 2 for validation, 2 for test,
as shown in Figure 4 (center). For length-3 compositions of generative transformations, there are
scale-small-then-rotate-then-translate (1×2×4) and scale-big-then-rotate-then-translate (1×2×4).
All 16 were held out for evaluation.
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B LEARNER DETAILS

All learners are implemented in PyTorch (Paszke et al., 2017) and the code is available at https:
//github.com/mbchang/crl.

B.1 ARITHMETIC

Baseline: The RNN is implemented as a sequence-to-sequence (Sutskever et al., 2014) gated recur-
rent unit (GRU) (Cho et al., 2014).

CRL Controller: The controller consists of a policy network and a value function, each imple-
mented as GRUs that read in the input expression. The value function outputs a value estimate for
the current expression. For the numerical arithmetic task, the policy network first selects a reducer
and then conditioned on that choice selects the location in the input expression to apply the reducer.
For the multilingual arithmetic task, the policy first samples whether to halt, reduce, or translate,
and then conditioned on that choice (if it doesn’t halt) it samples the reducer (along with an index to
apply it) or the translator.

CRL Modules: The reducers are initialized as a two-layer feedforward network with ReLU non-
linearities (Nair & Hinton, 2010). The translators are a linear weight matrices.

B.2 IMAGE TRANSFORMATIONS

Baselines: The CNN is a variant of an all-convolutional network (Springenberg et al., 2014). This
was also used as the pre-trained image classifier. The affine-STN predicts all 6 learnable affine
parameters as in Jaderberg et al. (2015).

CRL Controller: The controller consists of a policy network and a value function, each imple-
mented with the same architecture as the CNN baseline.

CRL Modules: The rotate-STN’s localization network is constrained to output the sine and cosine
of a rotation angle, the scale-STN’s localization network is constrained to output the scaling factor,
and the translate-STN’s localization network is constrained to output spatial translations

C EXPERIMENT DETAILS

C.1 MULTILINGUAL ARITHMETIC

Training procedure: The training procedure for the controller follows the standard Proximal Policy
Optimization training procedure, where the learner samples a set of episodes, pushes them to a replay
buffer, and every k episodes updates the controller based on the episodes collected. Independently,
every k′ episodes we consolidate those k′ episodes into a batch and use it to train the modules. We
found via a grid search k = 1024 and k′ = 256. Through an informal search whose heuristic was
performance on the training set, we settled on updating the curriculum of CRL every 105 episodes
and updating the curriculum of the RNN every 5 · 104 episodes.

Domain-specific details: In the case that HALT is called to early, CRL treats it as a no-op. Similarly,
if a reduction operator is called when there is only one token in the expression, the learner also treats
it as a no-op. There are other ways around this domain-specific nuance, such as to always halt
whenever HALT is called but only do backpropagation from the loss if the expression has been fully
reduced (otherwise it wouldn’t make sense to compute a loss on an expression that has not been
fully reduced). The way we interpret these “invalid actions” is analogous to a standard practice in
reinforcement learning of keeping an agent in the same state if it walks into a wall of a maze.

Symmetry breaking: We believe that the random initialization of the modules and the controller
breaks the symmetry between the modules. For episodes 0 through k the controller still has the same
random initial weights, and for episodes 0 through k′ the modules still have the same random initial
weights. Because of the initial randomness, the initial controller will select certain modules more
than others for certain inputs; similarly initially certain modules will perform better than others for
certain inputs. Therefore, after k episodes, the controller’s parameters will update in a direction
that will make choosing the modules that luckily performed better for certain inputs more likely;
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similarly, after k′ episodes, the modules’ parameters will update in a direction that will make them
better for the inputs they have been given. So gradually, modules that initially were slightly better
at certain inputs will become more specialized towards those inputs and they will also get selected
more for those inputs.

Training objective: The objective of the composition of modules is to minimize the negative log
likelihood of the correct answer to the arithmetic problem. The objective of the controller is to
maximize reward. It receives a reward of 1 if the token with maximum log likelihood is that of the
correct answer, 0 if not, and −0.01 for every computation step it takes. The step penalty was found
by a scale search over {−1,−0.1,−0.01,−0.001} and−0.01 was a penalty that we found balanced
accuracy and computation time to a reasonable degree during training. There is no explicit feedback
on what the transformations should be and on how they are composed.

C.2 IMAGE TRANSFORMATIONS

Training procedure: The training procedure is similar to the mulitlingual arithmetic case. We up-
date the policy every 256 episodes and the modules everye 64 episodes. We observed that directly
training for large translations was unstable, so to overcome this we used a curriculum. The curricu-
lum began without any translation, then increased the direction of translation by 1% of the image
width every 3 · 104 episodes until the amount of translation matched 20% of the image width for
large digits, 29% of the image width for unscaled digits, and 38% of the image width for small
digits. Unlike in the multilingual arithmetic case, during later stages of the curriculum we do not
continue training on earlier stages of the curriculum.

Domain-specific details: In the bounded-horizon setup, we manually halt CRL according to the
length of the generative transformation combinations of the task: if the digit was generated by
applying two transformations, then we halt CRL’s controller after it selects two modules. Therefore,
we did not use a step-penalty in this experiment.

Symmetry breaking: The transformation parameters were initialized to output an identity trans-
formation, although the the localization network were randomly initialized across modules, which
breaks the symmetry among the modules.

Training objective: The objective is to classify a transformed MNIST digit correctly based on the
negative log likelihood of the correct classification from a pre-trained classifier. The objective of the
controller is to maximize reward. It receives a reward of 1 for a correct classification and 0 if not.
There is no explicit feedback on what the transformations should be and on how they are composed.

D ADDITIONAL EXPERIMENTS

D.1 NUMERICAL MATH

The input is a numerical arithmetic expression (e.g. 3 + 4 × 7) and the desired output (e.g. 1)
is the evaluation of the expression modulo 10. In our experiments we train on a curriculum of
length-2 expressions to length-10 expressions, adding new expressions to an expanding dataset over
the course of training. The first challenge is to learn from this limited data (only 6510 training
expressions) to generalize well to unseen length-10 expressions in the test set (≈ 214 possible). The
second challenge is to extrapolate from this limited data to length-20 expressions (≈ 1029 possible).
We compare with an RNN architecture (Chung et al., 2014) directly trained to map input to output.

Though the RNN eventually generalizes to different 10-length expressions and extrapolates to 20-
length expressions (yellow in Fig. 7) with 10 times more data as CRL, it completely overfits when
given the same amount of data (gray). In contrast, CRL (red) does not overfit, generalizing signifi-
cantly better to both the 10-length and 20-length test sets. We believe that the modular disentangled
structure in CRL biases it to cleave the problem distribution at its joints, yielding this 10-fold reduc-
tion in sample complexity relative to the RNN.

We found that the controller naturally learned windows centered around operators (e.g. 2 + 3 rather
than ×4−), suggesting that it has discovered semantic role of these primitive two-term expressions
by pattern-matching common structure across arithmetic expressions of different lengths. Note that
CRL’s extrapolation accuracy here is not perfect compared to (Cai et al., 2017); however CRL

20



Published as a conference paper at ICLR 2019

(a) Training (length 10) (b) Testing (length 10) (c) Testing (length 20)

Figure 7: Numerical math task. We compare our learner with the RNN baseline. As a sanity check, we
also compare with a version of our learner which has a hardcoded controller (HCC) and a learner which has
hardcoded modules (HCF) (in which case the controller is restricted to select windows of 3 with an operator in
the middle). All models perform well on the training set. Only our method and its HCC, HCF modifications
generalize to the testing and extrapolation set. The RNN requires 10 times more data to generalize to the testing
and extrapolation set. For (b, c) we only show accuracy on the expressions with the maximum length of those
added so far to the curriculum. “1e3” and “1e4” correspond to the order of magnitude of the number of samples
in the dataset, of which 70% are used for training. 10, 50, and 90 percentiles are shown over 6 runs.

(a) Pathological Train (b) Pathological Test (c) Different numbers of modules

Figure 8: Variations: The minimum number of reducers and translators that can solve the multilingual math
problems is 1 and m respectively, where m is the number of languages. This is on an extrapolation task, which
has more terms and different language pairs. (a, b): Four reducers and zero translators (red) is a pathological
choice of modules that causes CRL to overfit, but it does not when translators are provided. (c) In the non-
pathological cases, regardless of the number of modules, the learner metareasons about the resources it has to
customize its computation to the problem. 10, 50, and 90 percentiles are shown over 6 runs.

achieves such high extrapolation accuracy with only sparse supervision, without the step-by-step
supervision on execution traces, the stack-based model of execution, and hardcoded transformations.

D.2 VARIATIONS

Here we study the effect of varying the number of modules available to our learner. Fig. 8a, 8b
highlights a particular pathological choice of modules that causes CRL to overfit. If CRL uses four
reducers and zero translators (red), it is not surprising that it fails to generalize to the test set: recall
that each source language is only seen with four target languages during training with one held out;
each reducer can just learn to reduce to one of the four target languages. What is interesting though
is that when we add five translators to the four reducers (blue), we see certain runs achieve 100%
generalization, even though CRL need not use the translators at all in order to fit the training set.
That the blue training curve is slightly faster than the red offers a possible explanation: it may be
harder to find a program where each reducer can reduce any source language to their specialized
target language, and easier to find programs that involve steps of re-representation (through these
translators), where the solution to a new problem is found merely by re-representing that problem
into a problem that learner is more familiar with. The four-reducers-five-translators could have
overfitted completely like the four-reducers-zero-translators case, but it consistently does not.

We find that when we vary the number of reducers (1 or 3) and the number of translators in (5 or
8) in Fig. 8c, the extrapolation performance is consistent across the choices of different numbers of
modules, suggesting that CRL is quite robust to the number of modules in non-pathological cases.
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D.3 HOW FAR CAN WE PUSH EXTRAPOLATION?

Figure 9: Extrapolation

Figure 9 shows the extrapolation accuracy from 6 to 100 terms af-
ter training on a curriculum from 2 to 5 terms (46200 examples)
on the multilingual arithmetic task (Sec. 4.1). The number of pos-
sible 100-term problems is (10100)(399)(52) = 4.29 · 10148 and
CRL achieves about 60% accuracy on these problems; a random
guess would be 10%.

D.4 EXECUTION TRACES: FUNCTION SELECTION

(a) Validation (length 5) (b) Test (length 5) (c) Test (length 10)

Figure 10: Multilingual Arithmetic Execution Traces

Fig. 10 compares the execution traces of CRL on different language pairs from training of (a,b)
length 5 and of (c) length 10. We observe that in many cases the controller chooses to take an
additional step to translate the fully reduced answer into an answer in the target language, which
shows that it composes together in a novel way knowledge of how to solve a arithmetic problem
with knowledge of how to translate between languages.

D.5 EXECUTION TRACES: EXAMPLES

Here are two randomly selected execution traces from the numerical arithmetic extrapolation task
(train on 10 terms, extrapolate to 20 terms), where CRL’s accuracy hovers around 80%. These
expressions are derived from the internal representations of CRL, which are softmax distributions
over the vocabulary (except for the first expression, which is one-hot because it is the input). The
expressions here show the maximum value for each internal representation.

This is a successful execution. The input is 6*1*3-4+6*0*0+1-7-3+3+3*4+1+1+3+3+6+2+7
and the correct answer is 3. Notice that the order in which controller applies its modules does not
strictly follow the order of operations but respects the rules of order of operations: for example, it
may decide to perform addition (A) before multiplication (B) if it doesn’t affect the final answer.

6*1*3-4+6*0*0+1-7-3+3+3*4+1+1+3+3+6+2+7 # 3 * 4 = 2
6*1*3-4+6*0*0+1-7-3+3+2+1+1+3+3+6+2+7 # 3 + 2 = 5
6*1*3-4+6*0*0+1-7-3+5+1+1+3+3+6+2+7 # 1 - 7 = 4
6*1*3-4+6*0*0+4-3+5+1+1+3+3+6+2+7 # 0 * 0 = 0
6*1*3-4+6*0+4-3+5+1+1+3+3+6+2+7 # 4 - 3 = 1
6*1*3-4+6*0+1+5+1+1+3+3+6+2+7 # 1 + 3 = 4
6*1*3-4+6*0+1+5+1+4+3+6+2+7 # 5 + 1 = 6
6*1*3-4+6*0+1+6+4+3+6+2+7 # 1 + 6 = 7
6*1*3-4+6*0+7+4+3+6+2+7 # 2 + 7 = 9
6*1*3-4+6*0+7+4+3+6+9 # 3 + 6 = 9
6*1*3-4+6*0+7+4+9+9 # 6 * 0 = 0 -------------------------------------------
6*1*3-4+0+7+4+9+9 # tried to HALT everything above this line is extrapolation
6*1*3-4+0+7+4+9+9 # 9 + 9 = 8 (A)
6*1*3-4+0+7+4+8 # 1 * 3 = 3 (B)
6*3-4+0+7+4+8 # 0 + 7 = 7
6*3-4+7+4+8 # 6 * 3 = 8
8-4+7+4+8 # 8 - 4 = 4
4+7+4+8 # 4 + 7 = 1
1+4+8 # 1 + 4 = 5
5+8 # 5 + 8 = 3
3 # HALT
END
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This is an unsuccessful execution trace.
The input is 5+6-4+5*7*3*3*8*0*1-4+6-3*5*3+6-0+0-4-6 and the correct answer is 0.
Notice that it tends to follow of order of operations by doing multiplication first, although it does
make mistakes (D), which in this case was the reason for its incorrect answer. Note that CRL never
receives explicit feedback about its mistakes on what its modules learn to do or the order in which it
applies them; it only receives a sparse reward signal at the very end. Although (C) was a calculation
mistake, it turns out that it does not matter because the subexpression would be multiplied by 0
anyways.

5+6-4+5*7*3*3*8*0*1-4+6-3*5*3+6-0+0-4-6 # 3 * 8 = 4
5+6-4+5*7*3*4*0*1-4+6-3*5*3+6-0+0-4-6 # 0 - 4 = 6
5+6-4+5*7*3*4*0*1-4+6-3*5*3+6-0+6-6 # 5 * 7 = 5
5+6-4+5*3*4*0*1-4+6-3*5*3+6-0+6-6 # 3 * 4 = 4 (mistake) (C)
5+6-4+5*4*0*1-4+6-3*5*3+6-0+6-6 # tried to HALT
5+6-4+5*4*0*1-4+6-3*5*3+6-0+6-6 # 5 * 4 = 0
5+6-4+0*0*1-4+6-3*5*3+6-0+6-6 # 6 - 6 = 0
5+6-4+0*0*1-4+6-3*5*3+6-0+0 # 6 - 3 = 3 (D: order of operations mistake)
5+6-4+0*0*1-4+3*5*3+6-0+0 # tried to HALT
5+6-4+0*0*1-4+3*5*3+6-0+0 # tried to HALT
5+6-4+0*0*1-4+3*5*3+6-0+0 # tried to HALT
5+6-4+0*0*1-4+3*5*3+6+0 # 3 * 5 = 5
5+6-4+0*0*1-4+5*3+6+0 # 0 * 1 = 0
5+6-4+0*1-4+5*3+6+0 # 5 * 3 = 5 -------------------------------------------
5+6-4+0*1-4+5+6+0 # 0 * 1 = 0 everything above this line is extrapolation
5+6-4+0-4+5+6+0 # tried to HALT
5+6-4+0-4+5+6+0 # tried to HALT
5+6-4+0-4+5+6+0 # tried to HALT
5+6-4+0-4+5+6+0 # tried to HALT
5+6-4+0-4+5+6+0 # tried to HALT
5+6-4+0-4+5+6+0 # tried to HALT
5+6-4+0-4+5+6+0 # tried to HALT
5+6-4+0-4+5+6+0 # 6 + 0 = 0
5+6-4+0-4+5+6 # 5 + 6 = 1
5+6-4+0-4+1 # 0 - 4 = 6
5+6-4+6+1 # 5 + 6 = 1
1-4+6+1 # 1 - 4 = 7
7+6+1 # 7 + 6 = 3
3+1 # 3 + 1 = 4
4 # HALT
END
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