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ABSTRACT

Humans learn to solve tasks of increasing complexity by building on top of pre-
viously acquired knowledge. Typically, there exists a natural progression in the
tasks that we learn – most do not require completely independent solutions, but
can be broken down into simpler subtasks. We propose to represent a solver for
each task as a neural module that calls existing modules (solvers for simpler tasks)
in a functional program-like manner. Lower modules are a black box to the calling
module, and communicate only via a query and an output. Thus, a module for a
new task learns to query existing modules and composes their outputs in order to
produce its own output. Our model effectively combines previous skill-sets, does
not suffer from forgetting, and is fully differentiable. We test our model in learning
a set of visual reasoning tasks, and demonstrate improved performances in all tasks
by learning progressively. By evaluating the reasoning process using human judges,
we show that our model is more interpretable than an attention-based baseline.

1 INTRODUCTION

Humans acquire skills and knowledge in a curriculum by building on top of previously acquired
knowledge. For example, in school we first learn simple mathematical operations such as addition
and multiplication before moving on to solving equations. Similarly, the ability to answer complex
visual questions often requires the skills to understand attributes such as color, recognize a variety
of objects, and be able to spatially relate them. Just like humans, machines may also benefit by
sequentially learning tasks in progressive complexity and composing knowledge along the way.

The process of training a machine learning model to be able to solve multiple tasks, or multi-task
learning (MTL), has been widely studied (Long et al., 2017; Ruder, 2017; Ruder et al., 2017; Rusu
et al., 2016). The dominant approach is to have a model that shares parameters (e.g., bottom layers
of a CNN) with individualized prediction heads (Caruana, 1993; Long et al., 2017). By sharing
parameters, models are able to learn better task-agnostic data representations. However, the tasks are
disconnected as their outputs are not combined to solve tasks of increasing complexity. It is desirable
if one task can learn to process the predictions from other tasks thereby reaping the benefits of MTL.

In this paper, we address the problem of MTL where tasks exhibit a natural progression in complexity.
We propose Progressive Module Networks (PMN), a framework for multi-task learning by progres-
sively designing modules on top of existing modules. Each module is a neural network that can query
modules for lower-level tasks, which in turn may query modules for even simpler tasks. The modules
communicate by learning to query other modules and process their outputs, while the internal module
processes are a blackbox. This is similar to a computer program that uses available libraries without
having to know their internal operations. Parent modules can choose which lower-level modules
they want to query via a soft gating mechanism. Examining the queries, replies, and choices a parent
module makes, we can understand the reasoning behind the module’s output.

PMN is related but different from Andreas et al. (2016) and Hu et al. (2017). PMN’s modules
are task-level modules, and they are compositional, i.e. modules build on modules which build on
modules. It allows efficient use of data by not needing to re-learn previously acquired knowledge. By
learning selective information flow between modules, interpretability arises naturally.
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We demonstrate PMN in learning a set of visual reasoning tasks such as counting, captioning, and
Visual Question Answering (VQA). PMN outperform baselines without module composition on all
tasks. We further analyze the interpretability of PMN’s reasoning process with human judges.

2 RELATED WORK

Multi-task learning. The dominant approach to multi-task learning is to have a model that shares
parameters in a soft (Duong et al., 2015; Yang & Hospedales, 2017) or hard way (Caruana, 1993).
Soft sharing refers to each task having independent weights that are constrained to be similar (e.g. via
`2 regularization (Duong et al., 2015), trace norm (Yang & Hospedales, 2017)) while hard sharing
typically means that all tasks share the base network but have independent layers on the top (Kokkinos,
2017; Misra et al., 2016). While sharing parameters helps to compute a task-agnostic representation
that is not overfit to a specific task, tasks do not directly share information or help each other.

Bilen & Vedaldi (2016) propose the Multinet architecture where tasks can interact with each other
in addition to shared image features. Multinet solves one task at each time step and appends the
encoded output of each task to existing data representation. A similar idea, Progressive Neural
Networks (PNNs) (Rusu et al., 2016) use a new neural network for each task, but are designed to
prevent catastrophic forgetting as they transfer knowledge from previous tasks by making lateral
connections to representations of previously learned tasks. Recently, Wang et al. (2017) propose
the VQA-Machine which exploits a set of existing algorithms to solve the VQA problem. Zamir
et al. (2018) learn a computational taxonomy for task transfer learning on several vision problems.
However, the major differences to this work are PMN’s compositional modular structure, ability to
directly query other modules, and the overall process of learning increasingly complex tasks.
Module networks. Pioneering work in modular structure, NMN (Andreas et al., 2016; Hu et al.,
2017) addresses VQA where questions have a compositional structure. Given an inventory of small
networks, or modules, NMN produces a layout for assembling the modules for any question. PMN is
different from NMN as it can be easily extended to new tasks using its compositional structure. It also
treats each task as modules which opens up promising ways to train models that can compartmentalize
and perform multiple tasks as they progressively improve their abilities.
Visual question answering. VQA has seen great progress in recent years: improved multimodal
pooling functions (Fukui et al., 2016; Kim et al., 2018), multi-hop attention (Yang et al., 2016),
driving attention through both bottom-up and top-down schemes (Anderson et al., 2018), and
modeling attention between words and image regions recurrently (Hudson & Manning, 2018) are
some of the important advances. There are also attempts to generate programs or sequence of modules
automatically that yield a list of interpretable steps (Hu et al., 2017; Johnson et al., 2017b) using policy
gradient optimization. Our approach treats visual reasoning as a compositional multi-task problem,
and shows that using sub-tasks compositionally can help improve performance and interpretability.

3 PROGRESSIVE MODULE NETWORKS

Most complex reasoning tasks can be broken down into a series of sequential reasoning steps. We
hypothesize that there exists a hierarchy with regards to complexity and order of execution: high level
tasks (e.g. counting) are more complex and benefit from leveraging outputs from lower level tasks
(e.g. classification). For any task, Progressive Module Networks (PMN) learn a module that requests
and uses outputs from lower modules to aid in solving the given task. This process is compositional,
i.e., lower-level modules may call modules at an even lower level. Solving a task corresponds to
executing a directed acyclic computation graph where each node represents a module (see Fig. 1).

PMN has a plug-and-play architecture where modules can be replaced by their improved versions.
This opens up promising ways to train intelligent robots that can compartmentalize and perform
multiple tasks while progressively learning from experience and improving abilities. PMN also
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chooses which lower level modules to use through a soft-gating mechanism. A natural consequence
of PMN’s modularity and gating mechanism is interpretability. While we do not need to know
the internal workings of modules, we can examine the queries and replies along with the information
about which modules were used to reason about why the parent module produced a certain output.

Formally, given a task n at level i, the task module Mn can query other modules Mk at level j such
that j < i. Each module is designed to solve a particular task (output its best prediction) given an
input and environment E . Note that E is accessible to every module and represents a broader set of
“sensory” information available to the model. For example, E may contain visual information such as
an image, and text in the form of words (i.e., question). PMN has two types of modules: (i) terminal
modules execute the simplest tasks that do not require information from other modules (Sec. 3.1); and
(ii) compositional modules that learn to efficiently communicate and exploit lower-level modules to
solve a task (Sec. 3.2). We describe the tasks studied in this paper in Sec. 3.3 and provide a detailed
example of how PMN is implemented and executed for VQA (Sec. 3.4).

3.1 TERMINAL MODULES

Terminal modules are by definition at the lowest level 0. They are analogous to base cases in a
recursive function. Given an input query q, a terminal module M` generates an output o = M`(q),
where M` is implemented with a neural network. A typical example of a terminal module is an object
classifier that takes as input a visual descriptor q, and predicts the object label o.

3.2 COMPOSITIONAL MODULES

A compositional module Mn makes a sequence of calls to lower level modules which in turn make
calls to their children, in a manner similar to depth-first search (see Fig. 1). We denote the list of
modules thatMn is allowed to call by Ln = [Mm, . . . ,Ml]. Every module in Ln has level lower than
Mn. Since lower modules need not be sufficient in fully solving the new task, we optionally include
a terminal module ∆n that performs “residual” reasoning. Also, many tasks require an attention
mechanism to focus on certain parts of data. We denote Ωn as a terminal module that performs such
soft-attention. ∆n and Ωn are optionally inserted to the list Ln and treated as any other module.

The compositional aspect of PMN means that modules in Ln can have their own hierarchy of calls.
We make Ln an ordered list, where calls are being made in a sequential order, starting with the first
in the list. This way, information produced by earlier modules can be used when generating the query
for the next. For example, if one module is performing object detection, we may want to use its
output (bounding box proposals), for querying other modules such as an attribute classifier.

For this work, the list Ln, and thus the levels of tasks, are determined by hand. Relaxing this and
letting the model learn the task hierarchy itself is a challenging direction that we leave for future
work. Also, notice that the number of back-and-forth communications increases exponentially if each
module makes use of every lower-level module. Thus, in practice we restrict the list Ln to those
lower-level modules that may intuitively be needed by the task. We emphasize that Mn still (softly)
chooses between them, and thus the expert intervention only removes the lower-level modules that
are uninformative to the task.

Our compositional module Mn runs (pre-determined) Tn passes over the list Ln. It keeps track
of a state variable st at time step t ≤ Tn. This contains useful information obtained by querying
other modules. For example, st can be the hidden state of a Recurrent Neural Network. Each time
step corresponds to executing every module in Ln and updating the state variable. We describe the
module components below, and Algorithm 1 shows how the computation is performed. An example
implementation of the components and demonstration of how they are used is detailed in Sec. 3.4.
State initializer. Given a query (input) qn, the initial state s1 is produced using a state initializer In.
Importance function. For each module Mk (and ∆n, Ωn) in Ln, we compute an importance score
gkn with Gn(st). The purpose of gkn is to enable Mn to (softly) choose which modules to use. This
also enables training all module components with backpropagation. Notice that gkn is input dependent,
and thus the module Mn can effectively control which lower-level module outputs to use in state
st. Here, Gn can be implemented as an MLP followed by either a softmax over submodules, or
a sigmoid that outputs a score for each submodule. However, note that the proposed setup can be
modified to adopt hard-gating mechanism using a threshold or sampling with reinforcement learning.
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Algorithm 1 Computation performed by our Progressive Module Network, for one module Mn

1: function Mn(qn) . The environment E and module list Ln are global variables
2: s1 = In(qn) . initialize the state variable
3: for t← 1 to Tn do . Tn is the maximum time step
4: V = [] . wipe out scratch pad V

5: g1n, . . . , g
|Ln|
n = Gn(st) . compute importance scores

6: for k ← 1 to |Ln| do . Ln is the sequence of lower modules [Mm, ...,Ml]
7: qk = Qn→k(st, V,Gn(st)) . produce query for Mk

8: ok = Ln[k](qk) . call kth module Mk = Ln[k], generate output
9: vk = Rk→n(st, ok) . receive and project output

10: V.append(vk) . write vk to pad V

11: st+1 = Un(st, V, E , Gn(st)) . update module state
12: on = Ψn(s1, . . . , sTn , qn, E) . produce the output
13: return on

Query transmitter and receiver. A query for module Mk in Ln is produced using a query
transmitter, as qk = Qn→k(st, V,Gn(st)). The output ok = Mk(qk) received from Mk is modified
using a receiver function, as vk = Rk→n(st, ok). One can think of these functions as translators of
the inputs and outputs into the module’s own “language". Note that each module has a scratch pad V
to store outputs it receives from a list of lower modules Ln, i.e., vk is stored to V . Qn→k and Rk→n

stand for the query transmitter from task n to task k and receiver from task k to task n, respectively.

State update function. After every module in Ln is executed, module Mn updates its internal state
using a state update function Un as st+1 = Un(st, V, E , Gn(st)). This completes one time step of
the module’s computation. Once the state is updated, the scratch pad V is wiped clean and is ready
for new outputs. An example can be a simple gated sum of all outputs, i.e., st+1 =

∑
k g

k
n · vk.

Prediction function. After Tn steps, the final module output is produced using a prediction function
Ψn as on = Ψn(s1, . . . , sTn , qn, E). Recall that E is the environment.

All module functions: state initializer I , importance function G, query transmitter Q, receiver R,
state update function U , residual module ∆, attention module Ω, and prediction function Ψ are
implemented as neural networks or simple assignment functions (e.g. set qk = vl). Note that all
variables (e.g. ok, qk, vk, st) are continuous vectors to allow learning with standard backpropagation.
For example, the output of the relationship detection module that predicts an object bounding box is
a N dimensional soft-maxed vector (assuming there are total of N boxes or image regions in E).

Training. We train our modules sequentially, from low level to high level tasks, one at a time. The
internal weights of the lower level modules are not updated, thus preserving their performance on the
original task. The new module only learns to communicate with them via the query transmitter Q
and receiver R. We do train the weights of ∆ and Ω. We train I , G, Q, R, U , and Ψ, by allowing
gradients to pass through the lower level modules. The loss function depends on the task n.

3.3 PROGRESSIVE MODULE NETWORKS FOR VISUAL REASONING

We present an example of how PMN can be adopted for several tasks related to visual reasoning. In
particular, we consider six tasks: object classification, attribute classification, relationship detection,
object counting, image captioning, and visual question answering. Our environment E consists of: (i)
image regions: N image features X = [X1, . . . , XN ], each Xi ∈ Rd with corresponding bounding
box coordinates b = [b1, . . . , bN ] extracted from Faster R-CNN (Ren et al., 2015); and (ii) language:
vector representation of a sentence S (in our example, a question). S is computed through a Gated
Recurrent Unit (Cho et al., 2014) by feeding in word embeddings [w1, . . . , wT ] at each time step.

Below, we discuss each task and a module designed to solve it. We provide detailed implementation
and execution process of the VQA module in Sec. 3.4. For other modules, we present a brief overview
of what each module does in this section. Further implementation details of all module architectures
are in Appendix A.

Object and Attribute Classification (level 0). Object classification is concerned with naming the
object that appears in the image region, while attribute classification predicts the object’s attributes
(e.g. color). As these two tasks are fairly simple (not necessarily easy), we place Mobj and Matt as
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Figure 2: Example of PMN’s module execution trace on the VQA task. Numbers in circles indicate the order
of execution. Intensity of gray blocks represents depth of module calls. All variables including queries and
outputs stored in V are continuous vectors to allow learning with standard backpropagation (e.g., caption is
composed of a sequence of softmaxed W dimensional vectors for vocabulary size W ). For Mcap, words with
higher intensity in red are deemed more relevant by Rcap

vqa. Top: high level view of module execution process.
Bottom right: computed importance scores and populated scratch pad. Note that we perform the first softmax
operation on (Ωvqa,Mrel) to obtain an attention map and the second on (Mobj, Matt, ∆vqa, Mcnt, Mcap) to
obtain the answer. Bottom left: visualizing the query Mvqa sends to Mrel, and the received output.

terminal modules at level 0. Mobj consists of an MLP that takes as input a visual descriptor for a
bounding box bi, i.e., qobj = Xi, and produces oobj = Mobj(qobj), the penultimate vector prior to
classification. Attribute module Matt has a similar structure. These are the only modules for which
we do not use actual output labels, as we obtained better results for higher level tasks empirically.

Image Captioning (level 1). In image captioning, one needs to produce a natural language descrip-
tion of the image. We design our module Mcap as a compositional module that uses information
from Lcap = [Ωcap,Mobj,Matt,∆cap]. We implement the state update function as a two-layer GRU
network with st corresponding to the hidden states. Similar to Anderson et al. (2018), at each time
step, the attention module Ωcap attends over image regions X using the hidden state of the first layer.
The attention map m is added to the scratch pad V . The query transmitters produce a query (image
vector at the attended location) using m to obtain nouns Mobj and adjectives Matt. The residual
module ∆cap processes other image-related semantic information. The outputs from modules in
Lcap are projected to a common vector space (same dimensions) by the receivers and stored in the
scratch pad. Based on their importance score, the gated sum of the outputs is used to update the state.
The natural language sentence ocap is obtained by predicting a word at each time step using a fully
connected layer on the hidden state of the second GRU layer.

Relationship Detection (level 1). In this task the model is expected to produce triplets in the
form of “subject - relationship - object” (Lu et al., 2016). We re-purpose this task as one that
involves finding the relevant item (region) in an image that is related to a given input through a given
relationship. The input to the module is qrel = [bi, r] where bi is a one-hot encoding of the input box
and r is a one-hot encoding of the relationship category (e.g. above, behind). The module produces
orel = bout corresponding to the box for the subject/object related to the input bi through r. We
place Mrel on the first level as it may use object and attribute information that can be useful to infer
relationships, i.e., Lrel = [Mobj,Matt,∆rel]. We train the module using the cross-entropy loss.

Object Counting (level 2). Our next task is counting the number of objects in the image. Given a
vector representation of a natural language question (e.g. how many cats are in this image?), the goal
of this module is to produce a numerical count. The counting task is at a higher-level since it may
also require us to understand relationships between objects. For example, “how many cats are on
the blue chair?”, requires counting cats on top of the blue chair. We thus place Mcnt on the second
level and provide it access to Lcnt = [Ωcnt,Mrel]. The attention module Ωcnt finds relevant objects
by using the input question vector. Mcnt may also query Mrel if the question requires relational
reasoning. To answer “how many cats are on the blue chair”, we can expect the query transmitter
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Qcnt→rel to produce a query qrel = [bi, r] for the relationship module Mrel that includes the chair
bounding box bi and relationship “on top of” r so that Mrel outputs boxes that contain cats on the
chair. Note that both Ωcnt and Mrel produce attention maps on the boxes. The state update function
softly chooses a useful attention map by calculating softmax on the importance scores of Ωcnt and
Mrel. For prediction function Ψcnt, we adopt the counting algorithm by Zhang et al. (2018), which
builds a graph representation from attention maps to count objects. Mcnt returns ocnt which is the
count vector corresponding to softmaxed one-hot encoding of the count (with maximum count ∈ Z).

Visual Question Answering (level 3). VQA is our final and most complex task. Given a vec-
tor representation of a natural language question, qvqa, the VQA module Mvqa uses Lvqa =
[Ωvqa,Mrel,Mobj,Matt,∆vqa,Mcnt,Mcap]. Similar to Mcnt, Mvqa makes use of Ωvqa and
Mrel to get an attention map. The produced attention map is fed to the downstream modules
[Mobj,Matt,∆vqa] using the query transmitters. Mvqa also queries Mcnt which produces a count
vector. For the last entry Mcap in Lvqa, the receiver attends over the words of the entire caption pro-
duced by Mcap to find relevant answers. The received outputs are used depending on the importance
scores. Finally, Ψvqa produces an output vector based on qvqa and all states st.

3.4 EXAMPLE: Mvqa FOR VISUAL QUESTION ANSWERING

We give a detailed example of how PMN is implemented for the VQA task. The entire execution
process is depicted in Fig. 2, and the general algorithm is tabulated in Alg. 1.

The input qvqa is a vector representing a natural language question (i.e. the sentence vector S ∈ E).
The state variable st is represented by a tuple (qtvqa, k

t−1) where qtvqa represents query to ask at time
t and kt−1 represents knowledge gathered at time t− 1. The state initializer Ivqa is composed of a
GRU with hidden state dimension 512. The first input to GRU is qvqa, and Ivqa sets s1 = (q1

vqa, 0)

where q1
vqa is the first hidden state of the GRU and 0 is a zero vector (no knowledge at first).

For t in Tvqa = 2, Mvqa does the following seven operations:

(1) The importance function Gvqa is executed. It is implemented as a linear layer R512 → R7 (for
the seven modules in Lvqa) that takes st, specifically qtvqa ∈ st as input.

(2) Qvqa→Ω passes qtvqa to the attention module Ωvqa which attends over the image regions X with
qtvqa as the key vector. Ωvqa is implemented as an MLP that computes a dot-product soft-attention
similar to Yang et al. (2016). The returned attention map vΩ is added to the scratch pad V .

(3) Qvqa→rel produces an input tuple [b, r] for Mrel. The input object box b is produced by a MLP
that does soft attention on image boxes, and the relationship category r is produced through a
MLP with qtvqa as input. Mrel is called with [b, r] and the returned map vrel is added to V .

(4) Qvqa→obj, Qvqa→att, and Qvqa→∆ first compute a joint attention map m as summation of
(vΩ, vrel) weighted by the softmaxed importance scores of (Ωvqa,Mrel), and they pass the sum
of visual features X weighted by m to the corresponding modules. ∆vqa is implemented as an
MLP. The receivers project the outputs into 512 dimensional vectors vobj, vatt, and v∆ through a
sequence of linear layers, batch norm, and tanh() nonlinearities. They are added to V .

(5) Qvqa→cnt passes qtvqa to Mcnt which returns ocnt. Rcnt→vqa projects the count vector ocnt into
a 512 dimensional vector vcnt through the same sequence of layers as above. vcnt is added to V .

(6) Mvqa callsMcap andRcap→vqa receives natural language caption of the image. It converts words
in the caption into vectors [w1, . . . , wT ] through an embedding layer. The embedding layer is
initialized with 300 dimensional GloVe vectors (Pennington et al., 2014) and fine-tuned. It does
softmax attention operation over [w1, . . . , wT ] through a MLP with qtvqa ∈ st as the key vector,
resulting in word probabilities p1, . . . , pT . The sentence representation

∑T
i pi · wi is projected

into a 512 dimensional vector vcap using the same sequence as vcnt. vcap is added to V .

(7) The state update function Uvqa first does softmax operation over the importance scores of (Mobj,
Matt, ∆vqa, Mcnt, Mcap). We define an intermediate knowledge vector kt as the summation
of (vobj, vatt, δvqa, vcnt, vcap) weighted by the softmaxed importance scores. Uvqa passes kt as
input to the GRU initialized by Ivqa, and we get qt+1

vqa the new hidden state of the GRU. The new
state st+1 is set to (qt+1

vqa , k
t). This process allows the GRU to compute new question and state

vectors based on what has been asked and seen.
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After Tvqa steps, the prediction function Ψvqa computes the final output based on the initial question
vector qvqa and all knowledge vectors kt ∈ st. Here, qvqa and kt are fused with gated-tanh layers
and fed through a final classification layer similar to Anderson et al. (2018), and the logits for all
time steps are added. The resulting logit is the final output ovqa that corresponds to an answer in the
vocabulary of the VQA task. Note that the exact form of each module can be different. While we
leave a more general architecture across tasks as future work, we stress that one of PMN’s strengths
is that once a module is trained, it can be used as a blackbox by the higher-level modules. Details of
other modules’ architectures are provided in Appendix A.

4 EXPERIMENTS

We present experiments demonstrating the impact of progressive learning of modules. We also
analyze and evaluate the reasoning process of PMN as it is naturally interpretable. We conduct
experiments on three datasets (see Appendix B.1 for details): Visual Genome (VG) (Krishna et al.,
2016), VQA 2.0 (Goyal et al., 2017), MS-COCO (Lin et al., 2014). These datasets contain natural
images and are thus more complex in visual appearance and language diversity than CLEVR (Johnson
et al., 2017a) that contains synthetic scenes. Neural module networks (Andreas et al., 2016; Hu et al.,
2017) show excellent performance on CLEVR but their performance on natural images is quite below
the state-of-the-art. For all datasets, we extract bounding boxes and their feature representations
using a pretrained model from Anderson et al. (2018).

4.1 PROGRESSIVE LEARNING OF TASKS AND MODULES

Object and Attribute Classification. We train these modules with annotated bounding boxes from
the VG dataset. We follow Anderson et al. (2018) and use 1,600 and 400 most commonly occurring
object and attribute classes, respectively. Each extracted box is associated with the ground truth
label of the object with greatest overlap. It is ignored if there are no ground truth boxes with IoU >
0.5. This way, each box is annotated with one object label and zero or more attribute labels. Mobj

achieves 54.9% top-1 accuracy and 86.1% top-5 accuracy. We report mean average precision (mAP)
for attribute classification which is a multi-label classification problem. Matt achieves 0.14 mAP and
0.49 weighted mAP. mAP is defined as the mean over all classes, and weighted mAP is weighted by
the number of instances for each class. As there are a lot of redundant classes (e.g. car, cars, vehicle)
and boxes have sparse attribute annotations, the accuracy may seem artificially low.

Image Captioning. We report results on MS-COCO for image captioning. We use the standard
split from the 2014 captioning challenge to avoid data contamination with VQA 2.0 or VG. This split
contains 30% less data compared to that proposed in Karpathy & Fei-Fei (2015) that most current
works adopt. We report performance using the CIDEr (Vedantam et al., 2015) metric. A baseline
(non-compositional module) achieves a strong CIDEr score of 108. Using the object and attribute
modules we are able to obtain 109 CIDEr. While this is not a large improvement, we suspect a reason
for this is the limited vocabulary. The MS-COCO dataset has a fixed set of 80 object categories and
does not benefit by using knowledge from modules that are trained on more diverse data. We believe
the benefits of PMN would be clearer on a diverse captioning dataset with many more object classes.
Also, including high-level modules such as Mvqa would be an interesting direction for future work.

Table 1: Performance of Mrel

Model Composition Acc. (%)
BASE OBJ ATT Object Subject

Mrel0 3 - - 51.0 55.9
Mrel1 3 Mobj Matt 53.4 57.8

Table 2: Accuracy for Mcnt

Model Composition Acc. (%)BASE OBJ ATT REL

Mcnt0 3 - - - 45.4
Mcnt1 3 Mobj Matt - 47.4
Mcnt2 3 Mobj Matt Mrel1 50.0

Relationship Detection. We use top 20 commonly occurring
relationship categories, which are defined by a set of words
with similar meaning (e.g. in, inside, standing in). Relation-
ship tuples in the form of “subject - relationship - object” are
extracted from Visual Genome (Krishna et al., 2016; Lu et al.,
2016). We train and validate the relationship detection module
using 200K/38K train/val tuples that have both subject and ob-
ject boxes overlapping with the ground truth boxes (IoU > 0.7).
Table 1 shows improvement in performance when using mod-
ules. Even though accuracy is relatively low, model errors are
reasonable, qualitatively. This is partially attributed to multiple
correct answers although there is only one ground truth answer.

Object Counting. We extract questions starting with ‘how
many’ from VQA 2.0 which results in a training set of∼50K questions. We additionally create∼89K
synthetic questions based on the VG dataset by counting the object boxes and forming ‘how many’
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Table 3: Model ablation for VQA. We
report mean±std computed over three
runs. Steady increase indicates that in-
formation from modules helps, and that
PMN makes use of lower modules ef-
fectively. The base model Mvqa0 does
not use any lower level modules other
than the residual and attention modules.

Model Composition Accuracy (%)BASE OBJ ATT REL CNT CAP

Mvqa0 3 - - - - - 62.05±0.11
Mvqa1

3 Mobj Matt - - - 63.38±0.05
Mvqa2

3 Mobj Matt Mrel1
- - 63.64±0.07

Mvqa3 3 Mobj Matt - Mcnt1 - 64.06±0.05
Mvqa4

3 Mobj Matt Mrel1
Mcnt2

- 64.36±0.06
Mvqa5

3 Mobj Matt Mrel1
Mcnt2

Mcap1
64.68±0.04

Table 4: Comparing VQA accuracy of PMN with state-of-the-art models. Rows with Ens 3denote ensemble
models. test-dev is development test set and test-std is standard test set for VQA 2.0.

Model Ens VQA 2.0 val VQA 2.0 test-dev VQA 2.0 test-std
Yes/No Number Other All Yes/No Number Other All Yes/No Number Other All

Andreas et al. (2016) - 73.38 33.23 39.93 51.62 - - - - - - - -
Yang et al. (2016) - 68.89 34.55 43.80 52.20 - - - - - - - -
Teney et al. (2018) - 80.07 42.87 55.81 63.15 81.82 44.21 56.05 65.32 82.20 43.90 56.26 65.67
Teney et al. (2018) 3 - - - - 86.08 48.99 60.80 69.87 86.60 48.64 61.15 70.34
Yu et al. (2018) - - - - - 84.27 49.56 59.89 68.76 - - - -
Yu et al. (2018) 3 - - - - - - - - 86.65 51.13 61.75 70.92
Zhang et al. (2018) - - 49.36 - 65.42 83.14 51.62 58.97 68.09 83.56 51.39 59.11 68.41
Kim et al. (2018)* - - - - 66.04 85.43 54.04 60.52 70.04 85.82 53.71 60.69 70.35
Kim et al. (2018)* 3 - - - - 86.68 54.94 62.08 71.40 87.22 54.37 62.45 71.84
Jiang et al. (2018)* 3 - - - - 87.82 51.54 63.41 72.12 87.82 51.59 63.43 72.25

baseline Mvqa0 - 80.28 43.06 53.21 62.05 - - - - - - - -
PMN Mvqa5 - 82.48 48.15 55.53 64.68 84.07 52.12 57.99 68.07 - - - -
PMN Mvqa5 3 - - - - 85.74 54.39 60.60 70.25 86.34 54.26 60.80 70.68

questions. This synthetic data helps to increase the accuracy by ∼1% for all module variants. Since
the number of questions that have relational reasoning and counting (e.g. how many people are sitting
on the sofa? how many plates on table?) is limited, we also sample relational synthetic questions
from VG. These questions are used only to improve the parameters of query transmitter Qcnt→rel for
the relationship module. Table 2 shows a large improvement (4.6%) of the compositional module
over the non-modular baseline. When training for the next task (VQA), unlike other modules whose
parameters are fixed, we fine-tune the counting module because counting module expects the same
form of input - embedding of natural language question. The performance of counting module
depends crucially on the quality of attention map over bounding boxes. By employing more questions
from the whole VQA dataset, we obtain a better attention map, and the performance of counting
module increases from 50.0% (c.f . Table 2) to 55.8% with finetuning (see Appx B.2 for more details).

Visual Question Answering. We present ablation studies on the val set of VQA 2.0 in Table 3. As
seen, PMN strongly benefits from utilizing different modules achieving a performance improvement
of 2.6% over the baseline. Note that all results here are without additional questions from the VG
data. We also compare performance of PMN for the VQA task with state-of-the-art models in Table 4.
Models are trained on the train split for results on VQA val, while for test-dev and test-std, models
are trained on both the train and val splits. Although we start with a much lower baseline performance
of 62.05% on the val set (vs. 65.42% (Zhang et al., 2018), 63.15% (Teney et al., 2018), 66.04% (Kim
et al., 2018)), PMN’s performance is on par with these models. Note that entries with * are parallel
works to ours. Also, as Jiang et al. (2018) showed, the performance depends strongly on engineering
choices such as learning rate scheduling and ensembling models with different architectures.

Plug-and-play architecture. The query-answer communication within PMN results in a plug-
and-play architecture where modules can be replaced by their improved versions. Instead of using
generated captions fromMcap, when we feed in the ground-truth captions to trained Mvqa5

in Table 3
(with 64.68% acc.), it achieves 65.43%. We also tried training and validatingMvqa5

with ground-truth
captions, and this achieved 67.84%. These results shows how PMN can be continually improved.

Three additional experiments on VQA. (1) To verify that the gain is not from the increased model
capacity, we trained a baseline with the number of parameters approximately matching that of the full
PMN model. This baseline with more capacity also achieves 62.0%, thus confirming our claim. (2)
We evaluated the impact of the additional data available. We convert the subj-obj-rel triplets used for
the relationship detection task to additional QAs (e.g. Q: what is on top of the desk?, A: laptop) and
train the Mvqa1

model (Table 3). This results in an accuracy of 63.05%, not only lower than Mvqa2

(63.64%) that uses the relationship module via PMN, but also lower than Mvqa1
at 63.38%. This

suggests that while additional data may change the question distribution and reduce performance,
PMN is robust and benefits from a separate relationship module. (3) Lastly, we conducted another
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experiment to show that PMN does make efficient use of the lower level modules. We give equal
importance scores to all modules in Mvqa5

model (Table 3) (thus, fixed computation path), achieving
63.65% accuracy. While this is higher than the baseline at 62.05%, it is lower than Mvqa5

at 64.68%
which softly chooses which sub-modules to use.

4.2 INTERPRETABILITY ANALYSIS

Visualizing the model’s reasoning process. We present a qualitative analysis of the answering
process. In Fig. 2, Mvqa makes query qrel = [bi, r] to Mrel where bi corresponds to the blue box
‘bird’ and r corresponds to ‘on top of’ relationship. Mvqa correctly chooses (i.e. higher importance
score) to use Mrel rather than its own output produced by Ωvqa since the question requires relational
reasoning. With the attended green box obtained from Mrel, Mvqa mostly uses the object and
captioning modules to produce the final answer. More examples are presented in Appendix C.

Table 5: Average human judg-
ments from 0 to 4. 3 indicates
that model got final answer right,
and 7 for wrong.

Correct? # Q Human Rating
PMN Baseline PMN Baseline

3 3 715 3.13 2.86
3 7 584 2.78 1.40
7 3 162 1.73 2.47
7 7 139 1.95 1.66

All images 1600 2.54 2.24

Judging Answering Quality. The modular structure and gating
mechanism of PMN makes it easy to interpret the reasoning behind
the outputs. We conduct a human evaluation with Amazon Me-
chanical Turk on 1,600 randomly chosen questions. Each worker is
asked to rate the explanation generated by the baseline model and
the PMN like a teacher grades student exams in the scale of 0 (very
bad), 1 (bad), 2 (satisfactory), 3 (good), 4 (very good). The base-
line explanation is composed of the bounding box it attends to and
the final answer. For PMN, we form a rule-based natural language
explanation based on the prominent modules used. An example is
shown in Fig. 3. Each question is assessed by three human workers.
Incorrect reasoning steps are penalized, so if PMN produces wrong reasoning steps, it could get a
low score. On the other hand, the baseline model often scores well on simple questions that do not
need complex reasoning (e.g. what color is the cat?).

Q: what is behind the men?

• I first find the BLUE box, and then from 
that, I look at the GREEN box.

• The object 'tree' would be useful in 
answering the question.

• In conclusion, I think the answer is trees.

Q: what color is the curvy wire?

• I look at the RED box. 
• The object properties white long electrical 

would be useful in answering the question. 
• In conclusion, I think the answer is white.

Figure 3: Example of PMN’s reasoning pro-
cesses. Top: it correctly first find a person
and then uses relationship module to find the
tree behind him. Bottom: it finds the wire
and then use attribute module to correctly in-
fer its attributes - white, long, electrical - and
then outputs the correct answer.

We report results in Table 5, and show more examples in
Appendix D. Human evaluators tend to give low scores
to wrong answers and high scores to correct answers re-
gardless of explanations, but PMN always scores higher if
both PMN and baseline gets a question correct or wrong.
Interestingly, a correct answer from PMN gets 1.38 points
higher than wrong baseline, but a correct baseline scores
only 0.74 higher than a wrong PMN answer. This shows
that PMN gets partial marks even when it gets an answer
wrong since the reasoning steps are partially correct.

Low Data Regime. PMN benefits from re-using mod-
ules and only needs to learn the communication be-
tween them. This allows us to achieve good per-
formance even when using a fraction of the training
data. Table 6 presents the absolute gain in accuracy
PMN achieves. For this experiment, we use Lvqa =
[Ωvqa,Mrel,Mobj,Matt,∆vqa,Mcap] (because of overlapping questions from Mcnt). When the
amount of data is really small (1%), PMN does not help because there is not enough data to learn to
communicate with lower modules. The maximum gain is obtained when using 10% of data. It shows
that PMN can help in situations where there is not a huge amount of training data since it can exploit
previously learned knowledge. The gain remains constant at about 2% from then on.

Table 6: Absolute gain in accuracy when us-
ing a fraction of the training data.

Fraction of VQA training data (in %) 1 5 10 25 50 100

Absolute accuracy gain (in %) -0.49 2.21 4.01 2.66 1.79 2.04

5 CONCLUSION AND DISCUSSION

In this work, we proposed Progressive Module Networks (PMN) that train task modules in a com-
positional manner, by exploiting previously learned lower-level task modules. PMN can produce
queries to call other modules and make use of the returned information to solve the current task.
Given experts in specific tasks, the parent module only needs to learn how to effectively communicate
with them. It can also choose which lower level modules to use. Thus, PMN is data efficient and
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provides a more interpretable reasoning processes. Also, since there is no need to know about the
inner workings of the children modules, it opens up promising ways to train intelligent robots that can
compartmentalize and perform multiple tasks as they progressively improve their abilities. Moreover,
one task can benefit from unrelated tasks unlike conventional multi-task learning algorithms.

PMN as it stands has few limitations with respect to hand-designed structures and the need for addi-
tional supervision. Nevertheless, PMN is an important step towards more interpretable, compositional
multi-task models. Some of the questions to be solved in the future include: 1) learning module
lists automatically; 2) choosing few modules (hard attention) to reduce overhead; 3) more generic
structure of module components across tasks; and 4) joint training of all modules.

Acknowledgments. Partially supported by the DARPA Explainable AI (XAI) program, Samsung
and NSERC. We also thank NVIDIA for their donation of GPUs.
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APPENDICES

A MODULE ARCHITECTURES

We discuss the detailed architecure of each module. We first describe the shared environment and
soft attention mechanism architecture.

Environment. The sensory input that form our environment E consists of: (i) image regions: N
image regions X = [X1, . . . , XN ], each Xi ∈ Rd with corresponding bounding box coordinates b =
[b1, . . . , bN ] extracted from Faster R-CNN (Ren et al., 2015); and (ii) language: vector representation
of a sentence S (in our example, a question). S is computed through a one layer GRU by feeding
in the embedding of each word [w1, . . . , wT ] at each time step. For (i), we use a pretrained model
from Anderson et al. (2018) to extract features and bounding boxes.

Soft attention. For all parts that use soft-attention mechanism, an MLP is emloyed. Given some
key vector k and a set of data to be attended {d1, . . . , dN}, we compute

attention_map = (z(f(k) · g(d1)), . . . , z(f(k) · g(dN ))) (1)

where f and g are a sequence of linear layer followed by ReLU activation function that project k and
di into the same dimension, and z is a linear layer that projects the joint representation into a single
number. Note that we do not specify softmax function here because sigmoid is used for some cases.

A.1 OBJECT AND ATTRIBUTE CLASSIFICATION (LEVEL 0)

The input to both modules Mobj,Matt is a visual descriptor for a bounding box bi in the image,
i.e., qobj = Xi. Mobj and Matt projects the visual feature Xi to a 300-dimensional vector through a
single layer neural network followed by tanh() non-linearity. We expect this vector to represent the
name and attributes of the box bi.

A.2 IMAGE CAPTIONING (LEVEL 1)

Mcap takes zero vector as the model input and produces natural language sentence as the output based
on the environment E (detected image regions in an image). It has Lcap = [Ωcap,Mobj,Matt,∆cap]
and goes through maximum of Tcap = 16 time steps or until it reaches the end of sentence token.
Mcap is implemented similarly to the captioning model in Anderson et al. (2018). We employ two
layered GRU (Cho et al., 2014) as the recurrent state update function Ucap where st = (ht1, h

t
2) with

hidden states of the first and second layers of Ucap. Each layer has 1000-d hidden states.

The state initializer Icap sets the initial hidden state of Ucap, or the model state st, as a zero vector.
For t in Tcap = 16, Mcap does the following four operations:

(1) The importance function Gcap is executed. It is implemented as a linear layer R1000 → R4 (for
the four modules in Lcap) that takes st, specifically ht1 ∈ st as input.

(2) Qcap→Ω passes ht1 to the attention module Ωcap which attends over the image regions X with ht1
as the key vector. Ωcap is implemented as a soft-attention mechanism so that it produces attention
probabilities pi (via softmax) for each image feature Xi ∈ E . The returned attention map vΩ is
added to the scratch pad V .

(3) Qcap→obj and Qcap→att pass the sum of visual features X weighted by vΩ ∈ V to the corre-
sponding modules. ∆cap is implemented as an MLP. The receivers project the outputs into 1000
dimensional vectors vobj, vatt, and v∆ through a sequence of linear layers, batch norm, and
tanh() nonlinearities. They are added to V .

(4) As stated above, Ucap is a two-layered GRU. At time t, the first layer takes input the average
visual features from the environment E , 1

N

∑
iXi, embedding vector of previous word wt−1,

and ht2. For time t = 1, beginning-of-sentence embedding and zero vector are inputs for w1 and
h1

1, respectively. The second layer is fed ht1 as well as the information from other modules,

ρ =
∑

(softmax(gobj, gatt, g∆) · (vobj, vatt, v∆)) (2)

which is a gated summation of outputs in V with softmaxed importance scores. We now have a
new state st+1 = (ht+1

1 , ht+1
2 ).
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The output of Mcap, ocap, is a sequence of words produced through Ψcap which is a linear layer
projecting each ht2 in st to the output word vocabulary.

A.3 RELATIONSHIP DETECTION (LEVEL 1)

Relationship detection task requires one to produce triplets in the form of “subject - relationship
- object” (Lu et al., 2016). We re-purpose this task as one that involves finding the relevant item
(region) in an image that is related to a given input through a given relationship. The input to the
module is qrel = [bi, r] where bi is a one-hot encoded input bounding box (whose i-th entry is
1 and others 0) and r is a one-hot encoded relationship category (e.g. above, behind). Mrel has
Lrel = [Mobj,Matt,∆rel] and goes through Trel = N steps where N is the number of bounding
boxes (image regions in the environment). So at time step t, the module looks at the t-th box. Mrel

uses Mobj and Matt just as feature extractors for each bounding box. Therefore, it does not have a
complex structure.

The state initializer Irel projects r to a 512 dimensional vector with an embedding layer, and the
resulting vector is set as the first state s1.

For t in Trel = N , Mrel does the following three operations:

(1) Qrel→obj and Qrel→att pass the image vector corresponding to the bounding box bt to Mobj

and Matt. Robj→rel and Ratt→rel are identity functions, i.e., we do not modify the object and
attribute vectors. The outputs vobj and vatt are added to V .

(2) ∆rel projects the coordinate of the current box bt to a 512 dimensional vector. This resulting v∆

is added to V .

(3) Urel concatenates the visual feature Xt with vobj, vatt, v∆ from V . The concatenated vector is
fed through a MLP resulting in 512 dimensional vector. This corresponds to the new state st+1.

After N steps, the prediction function Ψrel does the following operations:
The first state s1 which contains relationship information is multiplied element-wise with si+1 (Note:
si+1 corresponds to the input box bi). Let such a vector be l. It produces an attention map bout over
all bounding boxes in b. The inputs to the attention function are s2, . . . , sTrel (i.e. all image regions)
and the key vector l. orel = bout is the output of Mrel which represents an attention map indicating
the bounding box that contains the related object.

A.4 COUNTING (LEVEL 2)

Given a vector representation of a natural language question (e.g. how many cats are in this image?),
the goal of this module is to produce a count. The input qcnt = S ∈ E is a vector representing a natural
language question. When training Mcnt, qcnt is computed through a one layer GRU with hidden size
of 512 dimensions. The input to the GRU at each time step is the embedding of each word from the
question. Word embeddings are initialized with 300 dimensional GloVe word vectors (Pennington
et al., 2014) and fine-tuned thereafter. Similar to visual features obtained through CNN, the question
vector is treated as an environment variable. Mcnt has Lcnt = [Ωcnt,Mrel] and goes through only
one time step.

The state initializer Icnt is a simple function that just sets s1 = qcnt.

For t in Tcnt = 1, Mcnt does the following four operations:

(1) The importance function Gcnt is executed. It is implemented as a linear layer R512 → R2 (for
the two modules in Lcnt) that takes st as input.

(2) Qcnt→Ω passes st to the attention module Ωcnt which attends over the image regions X with st
as the key vector. Ωcnt is implemented as an MLP that computes a dot-product soft-attention
similar to Yang et al. (2016). The returned attention map vΩ is added to the scratch pad V .

(3) Qcnt→rel produces an input tuple [b, r] for Mrel. The input object box b is produced by a MLP
that does soft attention on image boxes, and the relationship category r is produced through a
MLP with st as input. Mrel is called with [b, r] and the returned map vrel is added to V .
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(4) Ucnt first computes probabilities of using vΩ or vrel by doing a softmax over the importance
scores. vΩ and vrel are weighted and summed with the softmax probabilities resulting in the new
state s2 containing the attention map. Thus, the state update function chooses the map from Mrel

if the given question involves in relational reasoning.

The prediction function Ψcnt returns a count vector. The count vector is computed through the
counting algorithm by Zhang et al. (2018), which builds a graph representation from attention maps
to count objects. The method uses s2 through a sigmoid and bounding box coordinates b as inputs.
Zhang et al. (2018) is a fully differentiable algorithm and the resulting count vector corresponds to
one-hot encoding of a number. We let the range of count be 0 to 12 ∈ Z. Please refer to Zhang et al.
(2018) for details of the counting algorithm.

A.5 VISUAL QUESTION ANSWERING (LEVEL 3)

The description for the VQA task (Sec. 3.4) is included here again for completeness. The input
qvqa is a vector representing a natural language question (i.e. the sentence vector S ∈ E). The state
variable st is represented by a tuple (qtvqa, k

t−1) where qtvqa represents query to ask at time t and
kt−1 represents knowledge gathered at time t− 1. The state initializer Ivqa is composed of a GRU
with hidden state dimension 512. The first input to GRU is qvqa, and Ivqa sets s1 = (q1

vqa, 0) where
q1
vqa is the first hidden state of the GRU and 0 is a zero vector (no knowledge at first).

For t in Tvqa = 2, Mvqa does the following seven operations:

(1) The importance function Gvqa is executed. It is implemented as a linear layer R512 → R7 (for
the seven modules in Lvqa) that takes st, specifically qtvqa ∈ st as input.

(2) Qvqa→Ω passes qtvqa to the attention module Ωvqa which attends over the image regions X with
qtvqa as the key vector. Ωvqa is implemented as an MLP that computes a dot-product soft-attention
similar to Yang et al. (2016). The returned attention map vΩ is added to the scratch pad V .

(3) Qvqa→rel produces an input tuple [b, r] for Mrel. The input object box b is produced by a MLP
that does soft attention on image boxes, and the relationship category r is produced through a
MLP with qtvqa as input. Mrel is called with [b, r] and the returned map vrel is added to V .

(4) Qvqa→obj, Qvqa→att, and Qvqa→∆ first compute a joint attention map m as summation of
(vΩ, vrel) weighted by the softmaxed importance scores of (Ωvqa,Mrel), and they pass the sum
of visual features X weighted by m to the corresponding modules. ∆vqa is implemented as an
MLP. The receivers project the outputs into 512 dimensional vectors vobj, vatt, and v∆ through a
sequence of linear layers, batch norm, and tanh() nonlinearities. They are added to V .

(5) Qvqa→cnt passes qtvqa to Mcnt which returns ocnt. Rcnt→vqa projects the count vector ocnt into
a 512 dimensional vector vcnt through the same sequence of layers as above. vcnt is added to V .

(6) Mvqa callsMcap andRcap→vqa receives natural language caption of the image. It converts words
in the caption into vectors [w1, . . . , wT ] through an embedding layer. The embedding layer is
initialized with 300 dimensional GloVe vectors (Pennington et al., 2014) and fine-tuned. It does
softmax attention operation over [w1, . . . , wT ] through a MLP with qtvqa ∈ st as the key vector,
resulting in word probabilities p1, . . . , pT . The sentence representation

∑T
i pi · wi is projected

into a 512 dimensional vector vcap using the same sequence as vcnt. vcap is added to V .
(7) The state update function Uvqa first does softmax operation over the importance scores of (Mobj,

Matt, ∆vqa, Mcnt, Mcap). We define an intermediate knowledge vector kt as the summation
of (vobj, vatt, δvqa, vcnt, vcap) weighted by the softmaxed importance scores. Uvqa passes kt as
input to the GRU initialized by Ivqa, and we get qt+1

vqa the new hidden state of the GRU. The new
state st+1 is set to (qt+1

vqa , k
t). This process allows the GRU to compute new question and state

vectors based on what has been asked and seen.

After Tvqa steps, the prediction function Ψvqa computes the final output based on the initial question
vector qvqa and all knowledge vectors kt ∈ st. Here, qvqa and kt are fused with gated-tanh layers
and fed through a final classification layer similar to Anderson et al. (2018), and the logits for all
time steps are added. The resulting logit is the final output ovqa that corresponds to an answer in the
vocabulary of the VQA task.
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B ADDITIONAL EXPERIMENTAL DETAILS

In this section, we provide more details about datasets and module training.

B.1 DATASETS

We extract bounding boxes and their visual representations using a pretrained model from Anderson
et al. (2018)which is a Faster-RCNN (Ren et al., 2015) based on ResNet-101 (He et al., 2016). It
produces 10 to 100 boxes with 2048-d feature vectors for each region. To accelerate training, we
remove overlapping bounding boxes that are most likely duplicates (area overlap IoU > 0.7) and keep
only the 36 most confident boxes (when available).

MS-COCO contains ∼100K images with annotated bounding boxes and captions. It is a widely
used dataset used for benchmarking several vision tasks such as captioning and object detection.

Visual Genome is collected to relate image concepts to image regions. It has over 108K images with
annotated bounding boxes containing 1.7M visual question answering pairs, 3.8M object instances,
2.8M attributes and 1.5M relationships between two boxes. Since the dataset contains MS-COCO
images, we ensure that we do not train on any MS-COCO validation or test images.

VQA 2.0 is the most popular visual question-answering dataset, with 1M questions on 200K natural
images. Questions in this dataset require reasoning about objects, actions, attributes, spatial relations,
counting, and other inferred properties; making it an ideal dataset for our visual-reasoning PMN.

B.2 TRAINING

Here, we give training details of each module. We train our modules sequentially, from low level to
high level tasks, one at a time. When training a higher level module, internal weights of the lower
level modules are not updated, thus preserving their performance on the original task. We do train the
weights of the residual module ∆ and the attention module Ω. We train I , G, Q, R, U , and Ψ, by
allowing gradients to pass through the lower level modules. Thus, while the existing lower modules
are held fixed, the new module learns to communicate with them via the query transmitter Q and
receiver R.

Object and attribute classification. Mobj is trained to minimize the cross-entropy loss for predicting
object class by including an additional linear layer on top of the module output. Matt also include an
additional linear layer on top of the module output, and is trained to minimize the binary cross-entropy
loss for predicting attribute classes since one detected image region can contain zero or more attribute
classes. We make use of 780K/195K train/val object instances paired with attributes from the Visual
Genome dataset. They are trained with the Adam optimizer at learning rate of 0.0005 with batch size
32 for 20 epochs.

Image captioning. Mcap is trained using cross-entropy loss at each time step (maximum likelihood).
Parameters are updated using the Adam optimizer at learning rate of 0.0005 with batch size 64 for 20
epochs. We use the standard split of MS-COCO captioning dataset.

Relationship detection. Mrel is trained using cross-entropy loss on “subject - relationship - object”
pairs with Adam optimizer with learning rate of 0.0005 with batch size 128 for 20 epochs. The pairs
are extracted from the Visual Genome dataset that have both subject and object boxes overlapping
with the ground truth boxes (IoU > 0.7), resulting in 200K/38K train/val tuples.

Counting. Mcnt is trained using cross-entropy loss on questions starting with ‘how many’ from
the VQA 2.0 dataset. We use Adam optimizer with learning rate of 0.0001 with batch size 128 for
20 epochs. As stated in the experiments section, we additionally create ∼89K synthetic questions
to increase our training set by counting the object boxes and forming ‘how many’ questions from
the VG dataset (e.g. (Q: how many dogs are in this picture?, A:3) from an image containing three
bounding boxes of dog). We also sample relational synthetic questions from each training image from
VG that are used to train only the module communication parameters when the relationship module is
included. We use the same 200K/38K split from the relationship detection task by concatenating ‘how
many’+subject+relationship’ or ‘how many’+relationship+object (e.g. how many plates on table?,
how many behind door?). The module communication parameters for Mrel in this case are Qcnt→rel
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which compute a relationship category and the input image region to be passed to Mrel. To be clear,
we supervise qrel = [bi, r] to be sent to Mrel by reducing cross entropy loss on bi and r.

Visual Question Answering. Mvqa is trained using binary cross-entropy loss on ovqa with Adam
optimizer with learning rate of 0.0005 with batch size 128 for 7 epochs. We empirically found binary
cross-entropy loss to work better than cross-entropy which was also reported by Anderson et al.
(2018). Unlike other modules whose parameters are fixed, we fine-tune only the counting module
because counting module expects the same form of input - embedding of natural language question.
The performance of counting module depends crucially on the quality of attention map over bounding
boxes. By employing more questions from the whole VQA dataset, we obtain a better attention map,
and the performance of counting module increases from 50.0% to 55.8% with finetuning. Since
Mvqa and Mcnt expect the same form of input, the weights of attention modules Ω{vqa,cnt} and query
transmitters for the relationship module Q{vqa,cnt}→rel are shared.
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C PMN EXECUTION ILLUSTRATED

We provide more examples of the execution traces of PMN on the visual question answering task
in Figure 4. Each row in the figure corresponds to different examples. For each row in the figure,
the left column shows the environment E , the middle column shows the final answer & visualizes
step 3 in the execution process, and the right column shows computed importance scores along with
populated scratch pad.
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Figure 4: Example of PMN’s module execution trace on the VQA task. Numbers in circles indicate the order of
execution. Intensity of gray blocks represents depth of module calls. All variables including queries and outputs
stored in V are vectorized to allow gradients to flow (e.g., caption is composed of a sequence of softmaxed W
dimensional vectors for vocabulary size W ). For Mcap, words with higher intensity in red are deemed more
relevant by Rcap

vqa.
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D EXAMPLES OF PMN’S REASONING

We provide more examples of the human evaluation experiment on interpretability of PMN compared
with the baseline model in Figure 5.

PMN (ours) BaselineQuestion

• I look at the RED box. 
• The object 'bird' would be useful in 

answering the question. 
• The object properties small black 

gray would be useful in answering 
the question. 

• In conclusion, I think the answer is 
pigeon.

• I look at the RED box. 
• In conclusion, I think the answer is: 

crow



What type of bird is this?

• I look at the RED box. 
• The object 'keyboard' would be 

useful in answering the question. 
• In conclusion, I think the answer is 

keyboard.

• I look at the RED box. 
• In conclusion, I think the answer is: 

keyboard




What is in the center of 
the screen?

• I first find the BLUE box, and then 
from that, I look at the GREEN box. 

• The object 'table' would be useful in 
answering the question. 

• In conclusion, I think the answer is 
table.

• I look at the RED box. 
• In conclusion, I think the answer is: 

stand




What is the television 
standing on?

• I look at the RED box. 
• The object properties black white 

gray would be useful in answering 
the question. 

• In conclusion, I think the answer is 
black.

• I look at the RED box.
• In conclusion, I think the answer is: 

black



What color is the tile?

• I look at the PURPLE boxes. 
• I will try to count them: 2.
• In conclusion, I think the answer is 2.

• I look at the RED box. 
• In conclusion, I think the answer is: 1

 

How many screens are 
here?

• I look at the RED box. 
• The object properties brown white 

gray would be useful in answering 
the question. 

• In conclusion, I think the answer is 
gray.

• I look at the RED box.
• In conclusion, I think the answer is: 

brown


What color is the cat?



• I first find the BLUE box, and then 
from that, I look at the GREEN box.

• The object 'trees' would be useful in 
answering the question. 

• In conclusion, I think the answer is 
trees.

• I look at the RED box.
• In conclusion, I think the answer is: 

mountain



What is behind the trees?



• I look at the RED box. 
• The object properties black large 

white would be useful in answering 
the question. 

• In conclusion, I think the answer is 
time.

• I look at the RED box.
• In conclusion, I think the answer is: 

1:30
What is the clock saying?




Figure 5: Example of PMN’s reasoning processes compared with the baseline given the question on the left.
3and 7 denote correct and wrong answers, respectively.
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