
Reproducibility and Stability Analysis in
Metric-Based Few-Shot Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

We propose a study of the stability of several few-shot learning algorithms subject1

to variations in the hyper-parameters and optimization schemes while controlling2

the random seed. We propose a methodology for testing for statistical differences3

in model performances under several replications. To study this specific design,4

we attempt to reproduce results from three prominent papers: Matching Nets,5

Prototypical Networks, and TADAM. We analyze on the miniImagenet dataset on6

the standard classification task in the 5-ways, 5-shots learning setting at test time.7

We find that the selected implementations exhibit stability across random seed, and8

repeats.9

1 Introduction10

Concern about reproducible science has grown in the machine learning field and the scientific11

community as a whole in the past decade. It has been found that a significant proportion of published12

research could not be reproduced across multiple scientific disciplines including cancer biology [8],13

psychology [4] and machine learning [17, 25].14

In this article, we offer a principled methodology for evaluating replication of machine learning15

experiments, and apply it to prominent algorithms in the domain of few-shot learning. Notably,16

few-shot learning is a key area for applications of machine learning in widespread and data-poor17

environments [13]. Low data availability and quality arguably puts results at an even higher risk of18

uncontrollable variability. Therefore, it is imperative that we have sound statistical tools and methods19

for machine learning algorithm evaluation.20

Our contribution is three-fold:21

• We highlight major challenges faced when trying to replicate results from three metric-based22

few-shots learning articles.23

• We establish a procedure to evaluate few-shot learning algorithms through a specific design24

of experiment and a series of tests.25

• We explore and compare the performances of 3 algorithms in depth and present results on26

the miniImagenet task.27

1.1 Literature review28

Terminology We adopt a terminology for reproducible research that distinguishes the following terms:29

repeat, replicate, reproduce [10, 5]. A repeat indicates an attempt to achieve the same results by the30

same lab with the same setup. A replication is a repeat performed by researchers at an independent31

lab. Finally, a reproduction is the attempt to achieve the same results with some differences to the32

setup and at an independent lab.33

Submitted to the 2019 International Conference on Learning Representations Reproducibility Workshop

Model complexity In the past few years, the complexity of machine learning models has grown34

dramatically [18, 19]. The proliferation of deep neural network models has been accompanied by a35

general increase in model configuration complexity. Model capacity and topology, hyper-parameters,36

regularizers, and optimization regimes all contribute to model performance. Deep learning is typically37

performed with hardware accelerators (e.g. GPU, TPU). Their non-deterministic runtime behaviour38

further complicates even a simple re-run of experiments.39

It has been demonstrated in language modeling that hyper-parameter selection is a significant factor40

in model performance, and can in fact dominate architectural differences [25]. In the Reinforcement41

Learning setting, current state-of-the-art algorithms are sensitive enough to random seed alone that42

the top-N means often reported are not representative of true performance [17]. These trends have43

informed contemporary ML scholarship and will continue to influence the way applied research is44

performed.45

Producing reproducible research Recommendations in the literature are:46

• Control and measure factors of variation: hyper-parameters, regularization, random seed,47

optimization regime [17, 25, 23]48

• Significance testing and error analysis [31, 17, 25]49

• Ablation studies [23]50

• Release of hyper-parameters and the method by which they were selected [10, 17, 9]51

• Workflows and processes for consuming results from other labs as well as initial data capture52

required for reproduction [10, 9, 35]53

1.2 Motivation and scope54

Motivation The machine learning community mostly use deductive reasoning over inductive rea-55

soning for applied research. In both cases, researchers want to build a generalizable model of a56

phenomenon and study it by collecting and then analyzing measures of a specific metric on specific57

tasks.58

The scientific advances (theory, methodology, results), and produced artifacts (data, code) become59

tools for the community to use. Everyone can use the tools to create new research and produce new60

scientific advances, and use the research in applications impacting the world locally or globally. On61

top of that, being able to criticize or invalidate theories and models [12] or prove the proposed theory,62

methodology or results wrong (skepticism, [20]) is highly important.63

We argue that studying reproducibility of the results in this context can help the applied research64

community produce better research tools and develop better practices.65

Scope In this context, we have selected three few-shot learning articles using metric-based learning to66

study and compare their reported results on a specific task and a specific dataset. We use the official67

publicly available implementations provided by the authors when available, and the community68

endorsed one otherwise. We document the process to reproduce the reported results and analyze the69

results we were able to obtain by changing the hyper-parameters settings if need be.70

We investigate how the selected scientific contributions exhibit different behaviors subject to different71

random seeds repeats and hyper-parameter changes. We also define an example of design of experi-72

ment when using repeats and fixed random seeds. We test different settings of hyper-parameters, seed73

the different pseudo random number generators and repeat the training for every hyper-parameter74

configuration multiple times. This specific setup allows us to use linear mixed models to reason about75

our research hypothesis while taking into account the reproducibility concerns.76

2 Methodology77

2.1 Experimental protocol78

Dataset We use the miniImagenet dataset proposed by Vinyals et al. [36] to perform our experiments.79

There are 100 classes divided into 3 splits comprised of 64, 16, and 20 classes for meta-train, meta-80

validation and for meta-test, respectively. Each class has 600 samples of 84 x 84 images. To construct81

2

the tasks, we sample 5 classes uniformly and 5 training samples per class uniformly. We use the82

(meta-) train, validation and test splits from Ravi and Larochelle [30].83

Models For this review we have selected three metric-based few-shot learning models: Matching84

Networks [36], Prototypical Networks [34], and TADAM [27]. These models represent the state of85

the art in the 5-shot case for 2016, 2017, and 2018, respectively.86

Replicability effort We identified the official or community-endorsed implementation for each87

model. We then aimed at replicating results using the default hyper-parameters and setting random88

seeds (see 5.1). When part of the implementation or some hyper-parameters values were missing, we89

complemented the existent to the best of our knowledge and ability, thus engaging in a reproducibility90

effort.91

Variability analysis We ran multiple experiments using hyper-parameter search and recorded model92

test accuracy in order to perform a study of the variability of state-of-the-art few-shot learning models.93

2.2 Description of intended analysis94

The first step of the procedure is to propose a set of research hypotheses. For our study we select 395

research hypothesis that we want to test:96

• H1: The results across runs of the same algorithm using the same configuration and the97

same random seed are stable98

• H2: The results across runs of the same algorithm using the same configuration but a99

different random seed are stable100

• H3: In our group of experiment rerunning the same experiment using the same hyper-101

parameters configurations and same random seed yield stable results102

The second step is to propose a design of experiment to generate the data and test our hypothesis. In103

order to do so, we perform seeded repeated runs of randomly sampled hyper-parameters configurations104

for a given implementation of an algorithm. We give more information about the sampling scheme of105

the configuration in Section 4.106

The third step of the procedure is to use statistical tools to falsify or not our set of hypothesis. To do107

so we define a statistical model suited to analyze clustered data and give more detail in the following108

section.109

2.3 Statistical tests110

To measure the difference of means between groups in the presence of noisy clustered observations,111

one can use linear mixed models [14], [7] or hierarchical Bayesian models [15]. Since we control112

almost completely the environment where the experiments are run, we can define a specific design113

to reason about statistical reproducibility while comparing the results of different runs of different114

algorithms. For each sample, we retrieve the information about the experiment name, the hyper-115

parameter configuration, the random seed used, the repeat identifier and the test accuracy on the meta116

test split.117

In our setup we have of N ×D features X corresponding to a contrast matrix in our case (one-hot118

encoded experiment vector) and N measures of the metric y. We can estimate the effects of each119

experiment with the linear regression model:120

y = Xβ + α+ ε,

where β ∈ RD is the slope vector, α ∈ R is the intercept, and ε ∼ Normal(0, I) is random noise. In121

our setup, β and α are "fixed effects": we want to measure the difference between groups with constant122

effects across our dataset (x, y). To achieve this, we maximize the likelihood y ∼ Normal(Xβ+α, I)123

to find point estimates of β and α that fit the data. With our design, we know that there is a structure in124

the data generating process and that the observations (x, y) are not i.i.d. To circumvent this modeling125

problem we can rewrite our linear model:126

3

b ∼ Normal(0, σ2I) (1)
y = Xβ + Zb+ α+ ε. (2)

Where β ∈ RP is our slope vector, α ∈ R is the intercept, and ε ∼ Normal(0, I) is the random127

noise vector. To model the clusters, we introduce Zb,where Z is the n× q model matrix for the q-128

dimensional vector-valued random-effects variable, B, whose value we are fixing at b. b is normally129

distributed with variance component parameter σ2. In this setting we can rewrite the conditional130

distribution of y given B = b such as (y|B = b) ∼ Normal(Xβ + α+ Zb, σ2W−1).131

The b are “random effects” that vary across the population. Because of equation 1, we have E[b] = 0,132

and the dependent variable mean is captured by Xβ + α when we marginalize over all the samples.133

The random effects component Zb captures variations in the data, it can be interpreted as an individual134

deviation from the group-level fixed effect.135

In our context, we can write the model as follows:136

metricijk = (A+ α0j + α1k) + βExperimenti + εi (3)
metricijk = A+ βExperimenti + (α0j + α1k + εi) (4)
metricijk = A+ βExperimenti + εijk (5)

Where A is the intercept, β is a vector of parameters and Experimenti is a one hot vector of137

experiments for the observation i. We can regroup all the random effects, where alpha0j is a138

random effect associated with an observation from a random seed j, and alpha1k is associated to139

an observation from a repeat k. Finally, it is possible to regroup all the nuisance parameters in140

εijk = (α0j + α1k + εi).141

2.4 Estimation of the random and fixed effects142

To estimate the parameters of the linear mixed model defined in equation 5 we use an implementation143

in R with the lme4 package [6]. The estimates for the random effects and the fixed effects estimated144

with lme4 can be augmented with the lmerTest package [22] to add corrected degrees of freedom for145

the p-values [21], [32].146

3 Experiments147

3.1 Matching networks148

Matching networks [36] is one of the first metric-based few-shot learning algorithms.149

Official implementation There is no official implementation provided by the authors. We used the150

reproduced implementation from a later article [30], which attains results comparable to the original151

article and is cited heavily by newer papers. This implementation [29] is in torch7.152

Replicability effort and challenges The technical specifications provided with this implementation153

were not compatible with our more recent hardware (Tesla P100, Tesla V100). We identified through154

experimentation the versions of Ubuntu, Cuda, and torch dependencies that worked together for our155

settings. We changed the C++ compiler flags in the torch IPC dependency to be compatible with156

those versions.157

We were able to replicate the results from [30] with the default parameters without full condi-158

tional embedding (FCE), but not the original article results. This is potentially due to different159

train/validation/test splits between those two articles. All further experiments have been run with160

FCE enabled, as this proved to be an improvement over basic embeddings according to both [36]’s161

and [30]’s authors. For more details, see Appendix A.1.162

3.2 Prototypical networks163

Prototypical Networks [34] consist of a convolutional neural network learning a non-linear mapping164

of the input into an embedding space, in which a nearest neighbor classification is performed by165

computing distances to prototype representations. We focus on their miniImagenet 5-shot results.166

4

Official implementation The authors released their code in an official GitHub repository [33],167

without parameters and data loading functions for miniImagenet. This shifted our effort to replicate168

to an intent to reproduce, as part of the implementation was missing.169

Reproducibility effort and challenges We wrote a dataloader for miniImagenet, as the code released170

by the authors did not support this dataset on which they however report results. Some training171

hyper-parameters were not specified in the article ; we found the missing values in other repositories172

reproducing the results [11, 26] and open issues discussions [24]. We were unable to reproduce the173

results from the article, obtaining 59.01% (± 0.73) accuracy at best in lieu of the expected 68.20%174

(± 0.66) when running the default configuration.175

In an effort to improve on these results, we normalized the input over miniImagenet and varied176

multiple hyper-parameters values. With these settings, we obtained a top accuracy of 62.50% (±177

0.53) (see Table 6). For more details, see Appendix A.2.178

3.3 TADAM179

TADAM [27], is the method of metric scaling and metric task conditioning that extends the original180

Prototypical Networks algorithm. Additionally they analyze the impact of varying feature extraction181

topology and the parameters defining the optimization scheme. The final architecture uses a ResNet-182

12 feature extractor [16] and a FiLM-ed multilayer task encoder [28]. Finally, they find that co-training183

the feature extractor on a supervised task improves generalization.184

Official implementation The implementation made publicly available by the authors [26] worked185

with the tensorflow-gpu (version 1.13.1) Docker image from Dockerhub [3]. The provided data186

loading code and hyper-parameters were sufficient to replicate the results reported in the paper on187

miniImagenet.188

Replicability efforts We used the default set of hyper-parameters and were able to reproduce the189

results presented in table 1 in TADAM [27].190

Challenges The co-training strategy makes controlling the random seed more difficult than naively191

setting the runtime and library random seeds. The co-training implementation involves different192

Tensorflow managed sessions creating different graphs multiple times during the training is funciton-193

ally incompatible with the Adam optimizer. Although the TADAM implementation permits usage194

of Adam, we were not able to easily modify the training regime in such a way that would make the195

algorithm train properly.196

3.4 TADAM Prototypical197

In addition to the Prototypical Networks experiment above, we attempt to repeat results from a198

baseline implementation for the TADAM research project [27] wherein the authors successfully199

reproduced the original reported results.200

Official implementation201

The official implementation is available on GitHub as part of TADAM and can be enabled by202

specifying configuration flags and hyper-parameters corresponding to Prototypical Networks. The203

implementation is in Tensorflow and differs quite a bit from the original in PyTorch.204

Repeatability efforts205

We attempt to repeat the original experiment and achieve the same results as reported for the baseline206

of prototypical networks in TADAM [27].207

The correct hyper-parameters and flags used to define the runtime behaviour corresponding to208

Prototypical Networks were found after contacting the original authors, and by comparing the original209

paper and implementation to the TADAM implementation.210

We achieved 68.09% (± 0.23) test accuracy vs the original reported 68.9 (± 0.3).211

5

Table 1: Random effects ANOVA

npar logLik AIC LRT Df Pr(>Chisq)
15 1813.832 -3597.664 NA NA NA

(1 | seeds) 14 1813.832 -3599.664 0 1 1
(1 | repeats) 14 1813.832 -3599.664 0 1 1

Table 2: Means comparisons

Estimate Std. Error lower upper Pr(>|t|)
m-net-adam -0.010969 0.005554 -0.021866759 -0.0000707299 4.853417e-02
m-net-sgd 0.006967 0.005423 -0.003674030 0.0176081909 1.991716e-01
protonet-adam 0.00278 0.009015 -0.0149106977 0.020466783 7.580161e-01
protonet-sgd -0.001042 0.008971 -0.0186452120 0.016560948 9.075433e-01
tadam-adam -0.020189 0.008699 -0.0372574009 -0.003119772 2.048393e-02
tadam-sgd -0.000014 0.005410 -0.0106336415 0.010605801 9.979483e-01

4 Analysis of experiments212

We use the hyper-parameters configurations reported in table 3 to launch our seeded repeated random213

searches. We also seed the random search to be able to repeat the same experiment twice with the214

exact same hyper-parameters configuration. We sample 5 hyper-parameters configurations, for each215

configuration we use 5 different random seeds, we repeat the training 5 times for each random seed.216

This amounts to 125 configurations per experiment. Overall, we run 12 experiments for a total of217

1074 configurations.218

From those configurations, we fit the linear mixed model defined in equation 5. Our goal is to quantify219

the variability in the error linked to the seeds alpha0j , quantify the variability in the error linked to220

the repeat alpha1k and estimate the differences in performances between the different experiments221

and algorithms.222

We first perform likelihood ratio tests for each random effect added to the model, this confirm that223

adding any of them doesn’t significantly change the likelihood in table 1. We can’t reject H1 and224

H2 and confirm that the implementations performances do not vary significantly for the conditions225

we defined. To verify H3 we first need to test if a difference exists between all the experiments. We226

can use an ANOVA with a correction for the degrees of freedom for the number of comparisons227

performed [21]. Table 4 confirms that there is significant difference in the experiments accuracy228

means. The last part of our analysis compares the means of reruns of the same experiments. In table229

2 we compute the means difference and provide standard errors and a 95% confidence interval of our230

estimators. Among all the comparisons, only 2 are statistically significant. Indeed, the difference231

between the 2 different runs of Matching Networks with the adam optimizer and TADAM with the232

adam optimizer have statistically significant means. In that sense we reject H3 and confirm that233

rerunning the same experiment using the same hyper-parameters configurations and same random234

seed can yield non-stable results.235

5 Notes on randomness236

5.1 Determinism237

To make the behavior of each model as deterministic as possible, we set the random seeds for every238

library used in the implementation. For Prototypical Networks, this includes seeding the random,239

numpy, torch and torch.cuda python modules, as well as the PYTHONHASSEED environment240

variable ; for Matching Networks the torch, math, cutorch LUA modules ; for TADAM and the241

TADAM Prototypical Networks implementation the random_ops TensorFlow module and the numpy242

python module.243

As a control, we fixed the value of the seed to 7654 and ran 10 times the same experiment with default244

parameters. Only the Prototypical Networks implementation has a fully deterministic behavior (see245

Table 5).246

6

Table 3: Experiments hyper-parameter search space for Adam and SGD optimizers

Algorithms TADAM Proto nets Matching nets
Learning rate U(0.1, 0.02) N (0.005, 0.0012) logU(0.0001, 0.1)
LR decay rate N (10, 1) 0.5 logU(0.00001, 0.01)
LR decay period (batch) 2500 U(500, 2000) 1
Query shots per class U{16, 64} 15 U{5, 30}
Pre-train batch size U{32, 64} - -

N-Way 5 5 5
N-Shot / support set 5 5 5
Number of tasks per batch 2 1 1
Batch size 100 100 500
Early stop (epochs) - 20
Training steps (batches) 21K 10K 75K
Test episodes 500 600 600

Table 4: Linear Mixed Model fixed effects results

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
experiments 12.94413 1.176739 11 18.92112 642.001 6.497355e-22

5.2 Other sources of randomness247

There are additional sources of variability between different implementations, which need to be248

addressed to perform a proper comparison. They do not, however, affect different runs with different249

seeds for a given implementation, except for inherent differences due to parallelism on CPU and250

GPU.251

Some implementations:252

• call a random number generator at an execution point placed before the episodes data253

generation, hence changing the state of the random number generator,254

• generate the episodes data in advance, others generate it for each episode on the fly: different255

states of random number generator are involved in the data generation process,256

• start training at different states of the random number generator: random number sequences257

for training algorithms differ,258

• use various languages, various libraries and different versions of those, which can have259

different algorithms for random number generation.260

6 Discussion261

Fostering reproducible research is not as easy as putting code on GitHub. There are often undocu-262

mented sources of variation be it dataloaders, hyper-parameters, or proper description and availability263

of dependencies.264

The trend of large-scale compute-intensive ML experiments has caused concern in the community265

about the ability of smaller and/or non-industrial labs to replicate. Inability to exactly re-run an266

experiment does not preclude reproducibility and should not discourage research in the field. In some267

high-energy physics experiments, there are fundamental limitations to independent experimental268

setup on instruments [10]. As machine learning practitioners, we are well-equipped to build tools to269

automate or streamline the important process of proper experiment management.270

Table 5: Control analysis accuracy for a set seed.

- Matching Nets Proto-networks TADAM Proto nets*
Accuracy 50.76 (± 0.54) 56.23 (± 0.00) 71.96 (± 2.06) 66.68 (± 0.18)

7

The current trend of releasing code with papers is a fantastic step in the right direction for the271

community. International conferences started encouraging reproducibility in the recent years [2]. The272

Papers with Code project [1] is a good way to organize and track these code releases. It can provide273

visibility for papers with high quality reliable implementations, and therefore offers an incentive to274

the community.275

We encourage researchers to publish not just the core implementation of their papers, but also de-276

scriptions of their actual operational environments including OS version, libraries version, GPU/TPU277

models, etc. Linux containers and tooling like Docker with Dockerfile or Singularity make this an278

achievable goal for many research teams. Additionally it is important to document and report the279

method by which hyper-parameters were selected and performance significance testing to analyze280

their effects [17]. Release of this data can allow other researchers to replicate analysis of algorithm281

characteristics without having to perform a compute-expensive search.282

References283

[1] Papers with code. URL https://paperswithcode.com/.284

[2] ICLR Reproducibility Challenge, 2019. URL https://reproducibility-challenge.285

github.io/iclr_2019/.286

[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu287

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for288

large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and289

Implementation ({OSDI} 16), pp. 265–283, 2016.290

[4] Peter R. Attridge, Elizabeth N Bartmess, Leah Beyan, Grace Binion, Benjamin T. Brown, Olivia291

Devitt, Laura Dewitte, David G. Dobolyi, and Sarah L. Thomas. Estimating the reproducibility292

of psychological science. Science, 349, 2015.293

[5] Lorena A. Barba. Terminologies for reproducible research. CoRR, abs/1802.03311, 2018.294

[6] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. Fitting linear mixed-effects295

models using lme4. arXiv preprint arXiv:1406.5823, 2014.296

[7] Douglas M Bates and Saikat DebRoy. Linear mixed models and penalized least squares. Journal297

of Multivariate Analysis, 91(1):1–17, 2004.298

[8] C. Glenn Begley and Lee M. Ellis. Raise standards for preclinical cancer research. Nature, 483299

(7391):531–533, Mar 2012. doi: 10.1038/483531a. URL http://dx.doi.org/10.1038/300

483531a.301

[9] Małgorzata Cebrat and Florian Hartl. Building a reproducible machine learning pipeline. CoRR,302

abs/1810.04570, 2018.303

[10] Xiaoli Chen, Sünje Dallmeier-Tiessen, Robin Dasler, Sebastian Feger, Pamfilos Fokianos,304

Jose Benito Gonzalez, Harri Hirvonsalo, Dinos Kousidis, Artemis Lavasa, Salvatore Mele, et al.305

Open is not enough. Nature Physics, pp. 1, 2018.306

[11] Yinbo Chen. A re-implementation of "Prototypical Networks for Few-shot Learning". URL307

https://github.com/cyvius96/prototypical-network-pytorch.308

[12] Amy Courtney and Michael Courtney. Comments regarding" on the nature of science". arXiv309

preprint arXiv:0812.4932, 2008.310

[13] Li Fei-fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE311

Transaction on Pattern Analysis and Machine Intelligence, 28:2006, 2006.312

[14] Ronald A Fisher. Xv.—the correlation between relatives on the supposition of mendelian313

inheritance. Earth and Environmental Science Transactions of the Royal Society of Edinburgh,314

52(2):399–433, 1919.315

[15] Andrew Gelman and Jennifer Hill. Data analysis using regression and multilevel/hierarchical316

models. Cambridge university press, 2006.317

8

https://paperswithcode.com/
https://reproducibility-challenge.github.io/iclr_2019/
https://reproducibility-challenge.github.io/iclr_2019/
https://reproducibility-challenge.github.io/iclr_2019/
http://dx.doi.org/10.1038/483531a
http://dx.doi.org/10.1038/483531a
http://dx.doi.org/10.1038/483531a
https://github.com/cyvius96/prototypical-network-pytorch

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image318

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,319

pp. 770–778, 2016.320

[17] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David321

Meger. Deep reinforcement learning that matters. In AAAI, 2018.322

[18] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias323

Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural324

networks for mobile vision applications. CoRR, abs/1704.04861, 2017.325

[19] Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le,326

and Zhifeng Chen. Gpipe: Efficient training of giant neural networks using pipeline parallelism.327

arXiv preprint arXiv:1811.06965, 2018.328

[20] Byron K Jennings. On the nature of science. arXiv preprint physics/0607241, 2006.329

[21] Michael G Kenward and James H Roger. Small sample inference for fixed effects from restricted330

maximum likelihood. Biometrics, pp. 983–997, 1997.331

[22] Alexandra Kuznetsova, Per B Brockhoff, and Rune Haubo Bojesen Christensen. lmertest332

package: tests in linear mixed effects models. Journal of Statistical Software, 82(13), 2017.333

[23] Zachary C Lipton and Jacob Steinhardt. Troubling trends in machine learning scholarship.334

arXiv preprint arXiv:1807.03341, 2018.335

[24] Yanbin Liu. Open issue on the Prototypical Networks repository. URL https://github.336

com/jakesnell/prototypical-networks/issues/2.337

[25] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural338

language models. CoRR, abs/1707.05589, 2018.339

[26] Boris Oreshkin. Official code for "TADAM". URL https://github.com/ElementAI/340

TADAM.341

[27] Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task dependent adaptive342

metric for improved few-shot learning. Advances in Neural Information Processing Systems,343

2018.344

[28] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film:345

Visual reasoning with a general conditioning layer. In Thirty-Second AAAI Conference on346

Artificial Intelligence, 2018.347

[29] Sachin Ravi. Code for "Optimization as a model for few-shot learning". URL https://348

github.com/twitter/meta-learning-lstm.349

[30] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. International350

Conference on Learning Representations, 2017.351

[31] Nils Reimers and Iryna Gurevych. Reporting score distributions makes a difference: Perfor-352

mance study of lstm-networks for sequence tagging. In EMNLP, 2017.353

[32] Franklin E Satterthwaite. An approximate distribution of estimates of variance components.354

Biometrics bulletin, 2(6):110–114, 1946.355

[33] Jake Snell. Official code for "Prototypical Networks for Few-shot Learning". URL https:356

//github.com/jakesnell/prototypical-networks.357

[34] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning.358

Advances in Neural Information Processing Systems, 2017.359

[35] Rachael Tatman. A practical taxonomy of reproducibility for machine learning research. 2018.360

[36] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu, and Daan Wierstra.361

Matching networks for one shot learning. Advances in Neural Information Processing Systems,362

2016.363

9

https://github.com/jakesnell/prototypical-networks/issues/2
https://github.com/jakesnell/prototypical-networks/issues/2
https://github.com/jakesnell/prototypical-networks/issues/2
https://github.com/ElementAI/TADAM
https://github.com/ElementAI/TADAM
https://github.com/ElementAI/TADAM
https://github.com/twitter/meta-learning-lstm
https://github.com/twitter/meta-learning-lstm
https://github.com/twitter/meta-learning-lstm
https://github.com/jakesnell/prototypical-networks
https://github.com/jakesnell/prototypical-networks
https://github.com/jakesnell/prototypical-networks

A Notes on repeatability and reproducibility364

A.1 Matching networks365

Matching networks [36] first embed images into feature space with CNN, then adjusts and re-arranges366

the resulting vectors using bidirectional LSTM. Images from a support set are used for adjusting, and367

are coupled with the target image at query time. The query image class is chosen using K-nearest368

neighbours amongst the target image vector and the support image vectors. The authors were also the369

first to use the same scheme for training and testing, which improved the results of few shots learning.370

Official implementation The authors did not provide an official implementation of their algorithm.371

However, [30] provided their reimplementation [29] which attains results comparable to the original372

article and is cited heavily by newer papers. This latest article also introduces proper new splits for373

miniImagenet, which have become a defacto standard for other experiments (see [27, 34])374

Challenges The implementation of [29] is written in torch7. Although the authors provide a list375

of dependencies, the fact that torch7 is not actively supported, it provided additional challenges to376

run the code and reproduce results on a current operational environment. It took a lot of time and377

experimentation to find a combination of operation system, Cuda and dependency versions that works378

together and on current hardware: Cuda 8.0 is needed to run on the current hardware (Tesla P100,379

Tesla V100); Ubuntu 16.04 was needed instead of 14.04 to minimize manual installation and build380

from sources as much as possible (for Cuda 8.0 and libraries for integration); torch7, torch-autograd,381

torch-dataset installed from sources; some minor code changes were needed to work with newer382

torch-autograd versions; torch-ipc needed to be installed from particular git commit (as newer version383

introduced breaking changes), however C++ compiler flag for C++ standard needed to be changed to384

C++11 to be compatible with Cuda 8.0; "moses" library version <2.* (1.6.1.1) needed to be used as385

as 2.* version has different format for callbacks.386

Several issues remained with the code: Cuda kernel recompilation is triggered on GPUs with compute387

capability 7.0 or higher when using Cuda 8, which required 16+Gb of memory for jobs and slowed388

startup time; though the code uses GPU, GPU utilization is low (less than 50%), while CPU utilisation389

remained high (3 to 4 cores are occupied during training); as different versions of libraries were390

chosen through experimentation, the code occasionally crashes with memory corruption, double391

resource de-allocation or Cuda drivers shutdown too early. We also found no way to set the code392

to run deterministically, as setting the random seeds of ’torch’, ’lua math’ and ’cutorch’ did not393

eliminate randomness during training.394

Replicability effort We ran the code with adaptations as described in A.1 Challenges inside a docker395

container on a kubernetes GPU cluster. We also made some code modifications to integrate it with396

our monitoring system, added early stopping and additional varying parameters like number of filters397

in CNN layers, LR decay rate and random seed. For the default parameters for matching networks398

without full conditional embedding (FCE) we got results better than those reported in Table 1 of the399

[30] : 53.57% vs 51.09± 0.71%. All further experiments have been run with FCE enabled, as this400

proved to be an improvement over basic embedding according to [36, 30].401

A.2 Prototypical Networks402

In Prototypical Networks [34], the authors introduce an inductive bias in the form of prototype403

representations of each class. The model consists of a convolutional neural network learning a404

non-linear mapping of the input into an embedding space, in which a nearest neighbor classification405

can be performed by computing distances to those prototype representations. The classification relies406

on the squared Euclidean distance as a similarity measure, as the authors experimentally find that it407

outperforms the cosine distance for their settings. The article reports results on both the Omniglot408

and the miniImagenet datasets, for 5-shots and 1-shot experiments.409

Official implementation The authors released their code in an official GitHub repository [33]. The410

available implementation only contains parameters and data loading functions for the Omniglot411

dataset and not miniImagenet. The repository is not currently maintained, with the last commit412

being in June 2018, with open issues dating back February 2018 un-addressed. The oldest and most413

commented-on issue asks the authors for a release of the detailed configuration [24] in a collective414

effort to reproduce the results.415

10

Table 6: Top-3 accuracies over 600 test episodes for Prototypical Networks using Adam, using the default
configuration (top), adding normalization (middle), and combining normalization with hyper-parameters search
(bottom).

Accuracy (IC 0.95) Learning rate LR decay period Random seed
59.01 (± 0.73) 0.001 20 8765
58.97 (± 0.70) 0.001 20 54321
58.93 (± 0.69) 0.001 20 5678

60.59 (± 0.66) 0.001 20 5678
59.41 (± 0.61) 0.001 20 7654
58.78 (± 0.68) 0.001 20 9876

62.50 (± 0.53) 0.005050 6 54321
62.21 (± 0.54) 0.003107 12 12345
62.03 (± 0.54) 0.005050 6 34567

Replicability effort We replicated the experimental conditions from the original article using a416

docker container. We used the original version for each technical component when specified (e.g.417

PyTorch 0.4, python 3.6) and the latest otherwise (e.g. cuda 9.1). Extending the released code418

base, we wrote a dataloader for miniImagenet using the data splits from [30], as mentioned in the419

original article. We used the set of hyper-parameters from the article when specified, and modified420

the implementation default set accordingly. We did set all random seeds as described in section 5.1.421

Some minor modifications were made to facilitate our large-scale analysis, such as passing the CUDA422

device as an argument or exporting the results to our monitoring system.423

Challenges Despite the article reporting results on the miniImagenet dataset, the code released by the424

authors did not support that dataset. Considerable effort was needed to reproduce the experimental425

procedure. We did not expect this, as an official repository was made available for replicability426

purposes. Some training hyper-parameters were not specified in the article ; we found the missing427

values in other repositories reproducing the results [11, 27] and open issues discussions [24].428

We were unable to reproduce the results from the article, obtaining 59.01% (± 0.73) accuracy (see 6)429

in lieu of the expected 68.20% (± 0.66) when running the default configuration:430

• Hyper-parameters 64 filters in the hidden and output layers, 10,000 epochs, patience of431

200 epochs, learning rate of 10−3, Adam optimizer, train/validation/test split from [30],432

PyTorch default BatchNorm2D epsilon of 10−5 and momentum of 0.1, learning rate linear433

decay gamma of 0.5 every 2,000 episodes434

• Training few-shot setting 100 episodes, 20 ways, 5 shots, 15 query points435

• Testing few-shot setting 600 episodes, 5 ways, 5 shots, 15 query points436

Critically, while running the default configuration, we observed that the validation loss stopped437

improving during the first 20 epochs, i.e. 2,000 episodes. Therefore, the learning rate schedule438

appears to be ineffective and the patience of 200 epochs over-estimated.439

In an effort to improve on these results from the default configuration, we normalized the input over440

miniImagenet (mean: 112.74, standard deviation: 68.72). Normalizing increased the accuracy to441

60.59% (± 0.66) (see Table 6).442

We also varied multiple hyper-parameters values (see Table 3) and the optimizer, repeating the443

experiments using several random seeds. We obtained our best accuracy of 62.50% (± 0.53) using444

Adam, with a learning rate of 0.005050 decaying every 6 epochs, a random seed of 54321, and all445

other hyper-parameters set to their default value.446

11

	Introduction
	Literature review
	Motivation and scope

	Methodology
	Experimental protocol
	Description of intended analysis
	Statistical tests
	Estimation of the random and fixed effects

	Experiments
	Matching networks
	Prototypical networks
	TADAM
	TADAM Prototypical

	Analysis of experiments
	Notes on randomness
	Determinism
	Other sources of randomness

	Discussion
	Notes on repeatability and reproducibility
	Matching networks
	Prototypical Networks

