
Under review as a conference paper at ICLR 2019

A PROPOSED HIERARCHY OF DEEP LEARNING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

As the pace of deep learning innovation accelerates, it becomes increasingly im-
portant to organize the space of problems by relative difficultly. Looking to other
fields for inspiration, we see analogies to the Chomsky Hierarchy in computational
linguistics and time and space complexity in theoretical computer science.
As a complement to prior theoretical work on the data and computational require-
ments of learning, this paper presents an empirical approach. We introduce a
methodology for measuring validation error scaling with data and model size and
test tasks in natural language, vision, and speech domains. We find that power-law
validation error scaling exists across a breadth of factors and that model size scales
sublinearly with data size, suggesting that simple learning theoretic models offer
insights into the scaling behavior of realistic deep learning settings, and providing
a new perspective on how to organize the space of problems.
We measure the power-law exponent—the "steepness" of the learning curve—and
propose using this metric to sort problems by degree of difficulty. There is no data
like more data, but some tasks are more effective at taking advantage of more data.
Those that are more effective are easier on the proposed scale.
Using this approach, we can observe that studied tasks in speech and vision do-
mains scale faster than those in the natural language domain, offering insight into
the observation that progress in these areas has proceeded more rapidly than in
natural language.

1 INTRODUCTION

There are so many new exciting deep learning results published every day that it is hard to see the
big picture. Many of these papers report exciting performance on a particular solution to a particular
task, but it is hard to know how well those results are likely to generalize beyond the particulars in a
particular paper. In undergraduate classes on Algorithms, we are taught how to reduce one problem
to another, so we can make claims about time and space complexity that generalize across a wide
range of problems.

It would be much easier to make sense of the deep learning literature if we could find ways to
generalize more effectively across problems. What can nets do, and what can’t they do? Which
tasks are relatively easy and which are relatively hard? Which problems require more resources?

Is it possible to come up with an organization of the deep learning literature that is somewhat sim-
ilar to the Chomsky Hierarchy, Chomsky (1957), in Table 1? The Chomsky Hierarchy makes it
clear what can (and cannot) be done within broad classes of computational resources. Finite state
machines can do many things, but they can’t solve the Halting Problem (because nothing can solve
the Halting Problem). Finite state machines also can’t solve problems that take more than constant
space and linear time such as sorting large vectors, multiplying large matrices, and more.

We would like to come up with statements about deep nets that generalize across topics. In particular,
it might be useful to view certain exciting deep nets like convolutional neural nets as (large) finite
state machines, and therefore, some of the statements mentioned above may apply to these nets.
Obviously, there are well-known ways to go beyond finite-state, such as (Sun et al. (2017b)), but
doing so is not necessarily a good thing (because doing so tends to lead to increases in computational
costs). Much of the excitement in neural nets is focused on recent progress in speech and vision,
where it may not be necessary (and even desirable) to go beyond finite state.

1

Under review as a conference paper at ICLR 2019

Table 1: Chomsky Hierarchy

Automata Languages Time Space
Finite State (FSA) Regular O(n) O(1)
Push Down (PDA) Context Free (CF) Matrix Multiply Matrix Multiply

Linear Bounded Context Sensitive (CS) Worse Worse
Turing Machines Recursively Enumerable Beyond Worse

That said, it may not be all that helpful to focus too much on time and space, since training data
appears to be more of a limiting factor on progress than time and space complexity. This paper will
propose an organization of the deep nets literature based on training data, as opposed to time and
space. The ranking of problems is intended to make it easier to generalize across tasks. If we have
a new problem, can we compare it to a bunch of known problems in a meaningful way? Can this
ranking help us estimate how easy or hard the new problem is? How do we estimate requirements
on computational resources for a new problem?

This paper will suggest a particular proposal for ranking deep net problems based on learning curves.
In general, there is no data like more data, but we find that some deep net tasks are more effective
than others in taking advantage of more data. We suggest fitting learning curves to a power law, and
then sorting tasks by empirical estimates of exponents. That is, we assume that loss, E(m), can be
modeled as a function of training set size, m, with: E(m) = αmβg . We propose sorting problems
by the exponent: βg .

Dimensionless quantities (like βg) are convenient for making comparisons across different problems.
In general, different problems use different units. For example, in computational linguistics, it makes
sense to measure the size of the training set in terms of words and/or characters, and to measure loss
in terms of perplexity, but these metrics generally do not generalize well to other problems such as
speech and vision. Since βg is dimensionless, it is more suitable for comparisons across problems
than alternatives such as m, E(m), α, where the units tend to vary from one problem to another.

βg can depend on a number of factors including task and metric. We not only see important differ-
ences in βg across tasks, but we also see differences across metrics. As we will see in Section 4.1,
βg for top-1 classification can be different from βg for top-5 classification, even on the same task.

It isn’t easy to measure βg over lots of solutions to lots of problems. It took about 50 GPU years to
estimate the βgs in this paper. We not only considered a range of different problems, but also a range
of different models (with more or less capacity), optimizers, regularizers and loss functions. We will
show examples where different solutions improve the constants, α, but we are more interested in
improvements in βg .

An interesting question for future work is why βg is different in different cases. Our estimates of βg
are similar to estimates of cross-entropy. It is common practice with cross-entropy to try a number
of different models, and return the best of those attempts. Cross-entropy is bounded by the true
entropy of the task. There is a gap between the two because there may be a better solution than the
ones that we considered. So too, with estimates of βg , it is hard to separate fundamental properties
of the problems from concerns that there may be a better solution than the ones we considered.

The main point of this paper is to start a discussion in search of a big picture that will eventually lead
to agreement on how to generalize beyond the particulars in a particular deep net paper. It would
be nice if our particular proposal is adopted, but it is more important to us that the field agree on a
satisfactory solution than that they adopt our particular proposal.

This paper is organized as follows: We begin with a review of related work measuring relationships
between data set size, model size, and error in Section 2. Section 3 describes our methodology,
and Section 4 shows learning curve results from the five tasks. Section 5 applies our proposed
organization to these tasks.

2

Under review as a conference paper at ICLR 2019

Training Data Set Size (Log-scale)

G
e
n
e
ra

liz
a
ti

o
n
 E

rr
o
r

(L
o
g
-s

ca
le

)

Power-law Region
Irreducible

Error
Region

Small Data
Region

Irreducible Error

Best Guess Error

Figure 1: There is no data like more data. More training data improves performance (left) and
reduces loss (right). The left panel is borrowed with permission from Banko and Brill (2001). Brill
has suggested firing everyone to fund data collection (personal communication), perhaps in jest,
though that comment is not in the published paper.

2 RELATED WORK

Empirical Studies: Figure 1 compares a well known result from (Banko and Brill (2001)) (left)
with a cartoon sketch of a power law (right). Banko and Brill (2001) test a language modeling
problem (confusion set disambiguation) trained using subsets of a billion-word corpus of text. Their
results show that there is no data like more data. Performance on this disambiguation task improves
with the size of the training set, roughly consistent with a power law. They note that some learning
methods are slightly better at one operating point, and others are slight better at another operating
point. But those small differences are dominated by a more important trend. A rising tide lifts all
boats; more data improves performance for all methods. More data is more important than relatively
small differences between methods.

Power-law-like learning curves have been reported by a number of researchers for a number of
applications. Jelinek refers to Banko and Brill (2001) and Lamel et al. (2002) in his speech accepting
the Zampolli prize at LREC-2004.1 Amodei et al. (2016) show an improvement in WER (word error
rate) for a Deep Speech 2 model with more and more training data; Sun et al. (2017a) report similar
improvements for object detection and semantic segmentation tasks.

The cartoon on the right of Figure 1 shows a similar power-law pattern for loss (as opposed to
accuracy). More training data improves performance (left) and reduces loss (right). The cartoon on
the right splits the learning curve into three regions. We are most interested in the middle region
where the power-law assumption is more appropriate. The power-law assumption is less appropriate
at the extremes where there is too much (or too little) training data. It is common in practice to have
too little training data, but it is harder to find realistic examples with too much training data. In this
study, we have been able to construct toy problems where the power law assumption breaks down
with extremely large training set sizes, but we have failed to find that extreme case in real world
examples in the wild.

Theoretical Analysis: There is a considerable literature deriving theoretical bounds on the gener-
alization gap between expected and empirical error. At least five lines of work derive bounds that
follow power laws on the number of training samples:

1. Hypothesis space bounds in PAC learning (Haussler (1988)) using Vapnik–Chervonenkis
(VC) dimension (Ehrenfeucht et al. (1989); Blumer et al. (1989); Haussler et al. (1996)),

2. Rademacher complexity in (Bartlett and Mendelson (2002) and Mohri et al. (2012)),
3. the stability approach in (Bousquet and Elisseeff (2002)) considers the dependence of the

learned model on the training dataset, as well as how much individual changes to the train-
ing dataset can affect the learned model,

1http://www.lrec-conf.org/lrec2004/doc/jelinek.pdf

3

http://www.lrec-conf.org/lrec2004/doc/jelinek.pdf

Under review as a conference paper at ICLR 2019

4. the robustness approach in (Xu and Mannor (2012)) measures how much the error can vary
with the input space,

5. (Amari et al. (1992) and Amari (1993)) derive bounds using statistical mechanics.

Kawaguchi et al. (2017) provides a clear survey of much of this prior work.

We follow the tradition in much of this literature of introducing a power law assumption. In spite of
the complex nature of real tasks, the reliable observation of power-law learning curves in our exper-
iments suggests that deep learning exhibits the same scaling phenomena as those that are simple to
analyze theoretically.

Model Capacity Required to Fit Data: This work will assume that both loss and model capacity
obey power laws. Prior studies propose various measures of model capacity based on a model’s
organization and parameterization, and these measures hint at the model size required to fit a training
set. Vapnik and Chervonenkis defined the VC dimension of a model as the cardinality of the largest
set of data points that a model can shatter (Vapnik (1998)). Follow-on work uses data complexity
measures to estimate the structure of model families that might fit the data (Bartlett and Mendelson
(2002)). Recent work explores applying these concepts to deep nets (Harvey et al. (2017); Dziugaite
and Roy (2017); Collins et al. (2017)).

Prior work to empirically estimate model scaling with training set size is very sparse. In our experi-
ments, we find power-laws produce good fits, i.e. s(m) ∝ αmβp , where s(m) is the required model
size to fit a training set of size m, and βp ∈ [0.5, 1]. When applying this approach to the data in
Banko and Brill (2001), we find that the Winnow and memory-based models grow with the same
power-law exponent to larger data sets, βp ≈ 0.72.

3 METHODOLOGY

Ideally we are interested in learning curves that depict the relationship between the expected error of
models in the wild and the amount of training data. However, expected error in a real setting cannot
be measured. So we follow the common practice of approximating it with empirical error computed
on a held-out validation set (this choice explained further in Appendix B), and plot this instead.
We divide a training set into independent shards of different sizes, perform a hyper-parameter grid
search over optimizer parameters and model sizes to find the best model for each shard, and plot the
validation error of that model.

We ensure that the training set is randomly shuffled so that shards will have a similar data distribu-
tion. We use the same validation set for all models, and size it empirically such that measurements
have low variance. Depending the task, error metrics include cross-entropy, Lp norms, and classifi-
cation error (see Appendix A for more details). We search over different model sizes by varying the
hidden dimension, but do not make other changes to the architecture except where noted. We use
early stopping for regularization in all cases.

4 LEARNING CURVE RESULTS

We present empirical results characterizing learning curves for machine translation, language mod-
eling, image classification, and speech recognition tasks. We focus our discussion on image recog-
nition and word language modeling to highlight example tasks that learn relatively fast and slow
with data. The other tasks and experiments are described in more detail in Appendix C.

4.1 IMAGE CLASSIFICATION

We begin with image classification, a well-studied task that aims to identify objects in high-
dimensional image data. Image classification is used in applications such as object recognition,
image captioning, and tagging video content. Image classification shows clear power-law learn-
ing curves and model size scaling relationships. We also show that accuracy plateaus near random
guessing on very small training sets.

We test ResNets (He et al. (2016); Wu et al. (2016)), which are popular architectures for ImageNet
classification (Russakovsky et al. (2015)). ResNets are deep networks built from blocks containing

4

Under review as a conference paper at ICLR 2019

21 23 25 27 29

Training Data Set Size, Images per Class (Log-scale)

0.09

0.16

0.29

0.54

1.00

1.85

3.42

6.33

11.71

M
in

im
u
m

 V
a
lid

a
ti

o
n
 L

o
ss

 (
Lo

g
-s

ca
le

)

Xentropy

Top-1

Top-5

Xentropy Trend

Top-1 Trend

Top-5 Trend

εxentropy(m) = 14.0 m-0.35

εtop-1(m) = 2.24 m-0.31

εtop-5(m) = 3.29 m-0.52

21 23 25 27 29

Training Data Set Size, Images per Class (Log-scale)

2.6

4.2

6.7

10.8

17.4

28.0

45.1

72.7

117.0

M
o
d
e
l
N

u
m

 P
a
ra

m
s,

 M
ill

io
n
s

(L
o
g
-s

ca
le

)

ResNets

ResNets Trend

s(m) = 2.76 m0.57

Figure 2: Learning curve (left) and model size (right) results and trends for ResNet image classifi-
cation. Note the transition from the small data regime dominated by best guessing to the power-law
scaling around 32,000 training images.

convolutions, nonlinearities, and pooling layers. They have residual connections from the inputs
to outputs of most blocks that permit the network to bypass layers. We train and validate ResNets
on various shard sizes of ImageNet, ranging from 1 image per class (0.08% of images) up to 800
images per class (62%). ImageNet has 1,000 different object classes as outputs.

We start with five known variants of ResNets with depths 18, 34, 50, 101, and 152 layers. We first
scale the model sizes by changing the number of layers ranging from 10 to 200. To provide even
finer-grained model size control, we also change the number of convolution filters using a scaling
factor. We scale filter counts proportionally across all convolution blocks with scaling factors 0.0625
to 1.5. We test models with parameter counts ranging from 89K to 121M. We use a Nesterov
Momentum optimizer targeting classification cross-entropy loss. We remove weight regularization.

Figure 2 (left) shows that various loss calculations follow the power-law learning curves. We report
average validation cross-entropy, top-1, and top-5 classification errors. For small training sets—
less than roughly 25 images per class—these error metrics are roughly equal to the model random
guessing (i.e., greater than −log(1/1, 000) ≈ 6.9 for cross-entropy, and near 1 − (1/1, 000) =
99.9% classification error for top-1 and top-5). Models are unable to extract enough information
from these small training sets to make many accurate classifications on the validation set. This is an
example of the "small data region" explained in Section 1.

As long as the training set is large enough, we observe that generalization improves on a power-law,
but the power-law exponent is different for each of the reported metrics, as mentioned in Section 1.
The top-1 classification error exponent is βg = −0.309, the exponent for top-5 classification error is
βg = −0.522, and the validation cross-entropy exponent is βg = −0.35. Figure 2 (right) shows that
model size growth is well fit by a power-law. The best-fit ResNet models grow following a sublinear
curve with exponent βp = 0.573.

4.2 LANGUAGE MODELING

Language models (LMs) aim to predict probability distributions for the next character, word, or
other textual grams conditioned on a previous sequence of input text. LMs are very important
model features for domains such as speech recognition and machine translation, helping to identify
most probable sequences of grams. LMs have low-dimensional input and output spaces, and can be
trained with very large labeled sets.

LM learning curves and model size scaling relationships are very robust, and the power-law expo-
nents tend to be small (βg ∈ [−0.09,−0.06]). These small exponents indicate that current language
models will require significantly more data to significantly improve accuracy. The models that give
the best validation error grow sublinearly in the training set size (βp ≈ 0.7).

5

Under review as a conference paper at ICLR 2019

220 221 222 223 224 225 226 227 228

Training Data Set Size, Millions of Words (Log-scale)

3.39

3.73

4.12

4.54

5.00

M
in

im
u
m

 V
a
lid

a
ti

o
n
 L

o
ss

 (
Lo

g
-s

ca
le

)

2-Layer LSTMs

4-Layer LSTMs

Depth-5 RHNs

2-Layer LSTMs Trend

4-Layer LSTMs Trend

Depth-5 RHNs Trend

ε(m) = 11.9 m-0.066

ε(m) = 12.0 m-0.066

ε(m) = 11.7 m-0.065

220 221 222 223 224 225 226 227 228

Training Data Set Size, Millions of Words (Log-scale)

1.0

1.9

3.6

7.0

13

25

49

93

177

M
o
d
e
l
N

u
m

 P
a
ra

m
s,

 M
ill

io
n
s

(L
o
g
-s

ca
le

)

s(m) = 2.12e-4 m0.68

s(m) = 5.08e-5 m0.781

2-Layer LSTMs

4-Layer LSTMs

Depth-5 RHNs

2-Layer LSTMs Trend

4-Layer LSTMs Trend

Depth-5 RHNs Trend

s(m) = 8.08e-5 m0.70

Figure 3: Learning curve (left) and model size (right) results and trends for word language models.
Note that all models exhibit the same βg regardless of depth or cell type (LSTM vs RHN).

4.2.1 WORD LANGUAGE MODELS

We train LSTM-based word LMs as described in Jozefowicz et al. (2016) with some small changes.
To reduce the computational requirements of the models, we restrict the vocabulary to the top 10,000
most frequent words in the Billion Word Dataset (Chelba et al. (2013)). The networks are 2- or 4-
layer LSTMs with the same number of hidden weights in each layer, and we scale the number of
layer weights to modulate the model size and find the best fit model for each training shard size. We
also compare LSTMs against Recurrent Highway Networks (RHNs) described in Zilly et al. (2017).
Specifically, we train single-layer, depth 5 RHNs to see if the different network organizations show
different generalization trends. We use a stochastic gradient descent optimizer (SGD) with per-
sequence cross-entropy loss, and we report per-predicted-word average cross-entropy loss. We do
not use dropout. We train the models on shards ranging from 0.1% up to 40% of the Billion Word
Dataset.

Figure 3 shows the learning curve and model size results for LSTM and RHN word language mod-
els. First, the loss scaling relationships are smooth power-law functions of the data set size with
almost exactly the same exponents: βg = −0.0656± 1%. Larger models are more computationally
expensive, and we have more difficulty optimizing to fit the larger training sets given our compute
resources. The best tuned models settle at or just above the power-law trend, and we believe that
further hyperparameter search is likely to yield a model on the trend.

Strikingly, although these model architectures differ appreciably, they all show the same learning
curve profile characterized by the power-law exponent. Increasing the LSTMs depth from 2 to
4 layers decreases the networks’ accuracy by about 1.5%, but both model architectures see the
same relative loss improvement as we increase training set size. RHNs have significantly different
recurrence structure than LSTMs, but show nearly identical learning curves.

Model size results show that best-fit models grow sublinearly in the training shard size. Specifically,
the best-fit 2-layer LSTM and depth-5 RHNs model sizes grow roughly with βp = 0.69. The 4-
layer LSTMs show slightly worse scaling with βp = 0.89, suggesting they make less effective use
of extra parameters on larger data sets. Despite the model size scaling differences, for a given model
architecture, we can accurately predict the model size that will best fit increasingly larger data sets.

These results underscore the importance of continued data and computational scaling for the natural
language domain.

6

Under review as a conference paper at ICLR 2019

Figure 4: Violin plots of learning curves for neural machine translation. For each training data shard
size, the violin plot shows the distribution of validation errors for 30 repetitions of the experiment.
Note that overall the variance is small relative to the reduction in validation error, and that the
variance is reduced with more training data and also with larger models.

4.3 SENSITIVITY OF RESULTS

Given that we present empirical measurements of scaling, it would be valuable to estimate the basic
statistics of our scaling model parameters (αg, βg, γg, αp, βp). However, our experiments collec-
tively used about 50 years of GPU time, so generating each sample is extremely expensive. For
example, computing confidence intervals for each parameter using 30 samples would require 1500
GPU years of compute time, and we don’t have that many resources. In this section, we perform
additional experiments requiring about two months of training time to study the repeatably of our
results for one domain.

Figure 4 uses a violin plot to show the distribution of validation errors across 30 repetitions of
the machine translation experiment with 8M and 67M parameters with different seeds for weight
initialization and shard creation, for each training data shard size. We find that overall the variance
is small relative to the reduction in validation error for each shard, and that the variance is reduced
with more training data and also with larger models (similar to the observations in Choromanska
et al. (2014)). This suggests that our results are repeatable and will become even more stable for
larger datasets.

7

Under review as a conference paper at ICLR 2019

4.4 SUMMARY OF RESULTS

Our results are summarized in Table 2, illustrating how βg (and βp) can be used to make comparisons
across a wide range of diverse tasks. Less is more. Smaller βgs are better. In general, there is no
data like more data, but some tasks are more effective than others in taking advantage of more data.
Note that speech and vision have better βgs than other tasks mentioned in Table 2. It is probably not
an accident that the field is relatively excited about the tasks with better βgs.

The tasks with better βgs also tend to have better βps. That is, there appears to be a relationship
between parameter requirements (βp) and generalization/effectiveness in taking advantage of more
data (βg). βp is particularly worrisome for Language Modeling on characters; ideally, nets ought to
be learning models that are considerably smaller than the training set (βp � 1), but with βp = 0.89,
there are almost as many parameters as training samples.

Task Learning Curve βg Model Size βp
Language Modeling (Words) −0.066 0.68
Language Modeling (Characters) −0.092 0.89
Machine Translation −0.128 0.68
Speech Recognition −0.291 0.54
Image Classification −0.309 0.57

Table 2: The proposed hierarchy: a ranking of deep learning tasks sorted by βg . In general, there
is no data like more data, but some tasks are more effective than others in taking advantage of more
data. Note that speech & vision have better βgs than language modeling. This may help explain why
there is relatively more excitement about deep nets in speech and vision (vs. language modeling).

5 DISCUSSION

It is interesting that the order produced by sorting applications by βg is aligned with the observation
that progress in computer vision and speech recognition has proceeded relatively quickly. We note
that both of these tasks use relatively high dimensional input data. Studied speech and vision tasks
learn faster with additional training data. Clearly, there appears to be scope for all of these tasks to
further improve accuracy by training on more data, but these results suggest that the computational
and data requirements for language modeling in particular will be more challenging.

We are left with the open question of whether or not it is possible for learning algorithms to improve
βg or βp. In our results we noted that βg appeared stable across changes in neural network architec-
ture, regularization method, and optimization algorithm. It changed between tasks such as language
modeling vs. image classification and between metrics such as top-1 vs. top-5 classification error.
We hypothesize that it is bounded by properties of the task setup and data distribution, and challenge
future work to precisely determine the factors that affect it. Regarding βp, simply memorizing the
dataset would yield βp = 1.0, and it is interesting to note that all studied algorithms improve on this.
There may be scope in future work to further improve on it beyond the models that we have studied.

There is also clearly scope for a more detailed organization of tasks within important domains. We
can already see that machine translation has a smaller βg than language modeling in spite of both
working with low dimensional natural language data. We expect future work to use this methodology
to guide efforts on the most valuable tasks that can be improved the most quickly.

6 CONCLUSION

The Chomsky Hierarchy in computational linguistics and time and space complexity in theoretical
computer science have been instrumental in guiding work on open problems. We have measured the
power-law exponent (βg) —the "steepness" of the learning curve—and propose using this metric
to rank problems by degree of difficulty. There is no data like more data, but some tasks are more
effective at taking advantage of more data. We find that the problems that the field is most excited
about in speech and vision have better βgs than problems that the field is less excited about (such as
language modeling). When applied to an even wider set of problems, we hope that such a hierarchy
can serve as a guide to the data and computational requirements of open problems.

8

Under review as a conference paper at ICLR 2019

REFERENCES

S. Amari. A Universal Theorem on Learning Curves. Neural Networks, 6:161–166, 1993.

S. Amari, N. Fujita, and S. Shinomoto. Four Types of Learning Curves. Neural Computation, 4(4):605–618,
1992.

D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates,
G. Diamos, et al. Deep Speech 2: End-to-End Speech Recognition in English and Mandarin. In Proceedings
of The International Conference on Machine Learning (ICML), pages 173–182, 2016.

D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio. End-to-end Attention-based Large Vocabu-
lary Speech Recognition. arXiv preprint arXiv:1508.04395v2, 2016.

M. Banko and E. Brill. Scaling to Very Very Large Corpora for Natural Language Disambiguation. In Pro-
ceedings of Association of Computational Linguistics (ACL), January 2001.

P. L. Bartlett and S. Mendelson. Rademacher and Gaussian Complexities: Risk Bounds and Structural Results.
In Journal of Machine Learning Research 3, pages 463–482, November 2002.

E. Battenberg, J. Chen, R. Child, A. Coates, Y. Gaur, Y. Li, H. Liu, S. Satheesh, D. Seetapun, A. Sri-
ram, and Z. Zhu. Exploring Neural Transducers for End-to-end Speech Recognition. arXiv preprint
arXiv:1707.07413, 2017.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-Chervonenkis
Dimension. Journal of the ACM (JACM), 36(4):929–965, October 1989.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of machine learning research, 2(Mar):
499–526, 2002.

C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robinson. One Billion Word Benchmark
for Measuring Progress in Statistical Language Modeling. arXiv preprint arXiv:1312.3005, 2013.

N. Chomsky. Syntactic structures. Mouton, 1957.

A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss surface of multilayer networks.
CoRR, abs/1412.0233, 2014. URL http://arxiv.org/abs/1412.0233.

J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio. Attention-based Models for Speech
Recognition. In Advances in Neural Information Processing Systems (NIPS), pages 577–585, 2015.

J. Collins, J. Sohl-Dickstein, and D. Sussillo. Capacity and Trainability in Recurrent Neural Networks. In
Proceedings of The International Conference on Learning Representations (ICLR), 2017.

G. K. Dziugaite and D. M. Roy. Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural
Networks with Many More Parameters than Training Data. In Proceedings of The International Conference
on Machine Learning (ICML), 2017.

A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A General Lower Bound on the Number of Examples
Needed for Learning. Information and Computation, 82:247–261, 1989. Workshop on Computing Learning
Theory, 1988.

A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. Connectionist Temporal Classification: Labelling Un-
segmented Sequence Data with Recurrent Neural Networks. In Proceedings of the International Conference
on Machine Learning (ICML), 2006.

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta,
A. Coates, et al. Deep Speech: Scaling Up End-to-End Speech Recognition. arXiv preprint arXiv:1412.5567,
2014.

N. Harvey, C. Liaw, and A. Mehrabian. Nearly-tight VC-dimension Bounds for Piecewise Linear Neural
Networks. In Proceedings of Machine Learning Research, volume 65, pages 1––12, 2017.

D. Haussler. Quantifying Inductive Bias: AI Learning Algorithms and Valiant’s Learning Framework. Artificial
Intelligence, 36(2):177–221, 1988.

D. Haussler, M. Kearns, H. S. Seung, and N. Tishby. Rigorous Learning Curve Bounds from Statistical Me-
chanics. Machine Learning, 25(2):195–236, November 1996.

9

http://arxiv.org/abs/1412.0233

Under review as a conference paper at ICLR 2019

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, June 2016.

R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Exploring the Limits of Language Modeling.
arXiv preprint arXiv:1602.02410v2, 2016.

K. Kawaguchi, L. P. Kaelbling, and Y. Bengio. Generalization in Deep Learning. arXiv preprint
arXiv:1710.05468v1, October 2017.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. Opennmt: Open-source toolkit for neural machine
translation. In Proceedings of the Association for Computational Linguistics (ACL), 2017.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen, C. Moran,
R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst. Moses: Open Source Toolkit for Statistical
Machine Translation. In Proceedings of the Association of Computational Linguistics, Interactive Poster
and Demonstration Sessions, pages 177–180, 2007.

L. Lamel, J.-L. Gauvain, and G. Adda. Lightly supervised and unsupervised acoustic model training. Computer
Speech & Language, 16:115–129, 2002.

M. Luong, E. Brevdo, and R. Zhao. Neural Machine Translation (seq2seq) Tutorial.
https://github.com/tensorflow/nmt, 2017.

T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural machine translation.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1412–1421, 2015.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press, 2012.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bern-
stein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. arXiv preprint
arXiv:1409.0575, January 2015.

R. Sennrich, B. Haddow, and A. Birch. Neural Machine Translation of Rare Words with Subword Units. arXiv
preprint arXiv:1508.07909, 2016a.

R. Sennrich, B. Haddow, and A. Birch. Edinburgh Neural Machine Translation Systems for WMT 16. arXiv
preprint arXiv:1606.02891, 2016b.

C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting Unreasonable Effectiveness of Data in Deep Learn-
ing Era. In Proceedings of the International Conference on Computer Vision (ICCV), 2017a.

G.-Z. Sun, C. L. Giles, H.-H. Chen, and Y.-C. Lee. The neural network pushdown automaton: Model, stack
and learning simulations. arXiv preprint arXiv:1711.05738, 2017b.

V. Vapnik. An Overview of Statistical Learning Theory. In IEEE Transactions on Neural Networks, volume 10,
pages 988–999, September 1998.

Y. Wu et al. Tensorpack. https://github.com/tensorpack/, 2016.

H. Xu and S. Mannor. Robustness and generalization. Machine learning, 86(3):391–423, 2012.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding Deep Learning Requires Rethinking
Generalization. arXiv preprint arXiv:1611.03530v2, 2017.

J. G. Zilly, R. K. Srivastava, J. Koutník, and J. Schmidhuber. Recurrent Highway Networks. In Proceedings of
The International Conference on Machine Learning (ICML), 2017.

10

https://github.com/tensorpack/

Under review as a conference paper at ICLR 2019

A DETAIL ON TESTED MACHINE LEARNING TASKS

To encourage further investigation, this section reports precise definitions of input and output spaces,
optimized and reported loss functions for each machine learning domain, and other information
that may be relevant to predicting learning curves and model size scaling. Additionally, to show
the breadth of our testing, Table 3 summarizes the different domains, model architecture features,
optimization and loss functions we tested.

Table 3: Breadth of domains, model features, optimizers, loss functions tested

Loss
Domain Model Model Features Optimizer Function Exponent (βg)
Machine LSTM Encoder-decoder with attention, Adam Token −0.128
Translation with and without dropout Error
Word LMs LSTM GEMMs, σ+tanh non-linearities SGD Xentropy −0.066

RHN GEMMs, σ+tanh non-linearities SGD Xentropy −0.070
Char LMs RHN GEMMs, σ+tanh non-linearities SGD, Adam Xentropy −0.094
Image ResNet Feed-forward, CONV blocks, Nesterov Classify −0.309
Classification pooling and skip connections Momentum Error

X-entropy −0.350
Speech DS2 Bi-LSTM, CTC loss Adam CER −0.299
Recognition Attention Bi-LSTM, CONVs, attention layer Adam CER −0.296

A.1 NEURAL MACHINE TRANSLATION

Given input and output vocabularies, VS and VT , NMT models learn a mapping DS → DT where
D· = V ∗· (Kleene star). In this work, we use a word-piece vocabulary shared between the source
and target languages. After applying pre-processing methods2 adopted in many recent models, there
are 36545 sub-word tokens. We include UNK and PAD tokens for unknown words and minibatch
padding for the source domain (German, |VS | = 36547); for the target domain (English), UNK,
PAD, SOS (start-of-sequence), and EOS (end-of-sequence) are included (|VT | = 36549). The Ger-
man and English sentences in newstest2016 were on average 27 and 25 tokens long with the longest
sequences having 101 and 94 tokens respectively.

During training, we minimize cross entropy loss (i.e. the conditional probability of the target sen-
tence given the source sentence). We report per-token error rate and bits-per-token. Because our
reported metrics are per-token measure of the target language, the dataset size is given by the num-
ber of English tokens in the training set.

A.2 LANGUAGE MODELING

A.2.1 WORD LANGUAGE MODELS

During training for world language models, we unroll sequences out to length 80 for backpropaga-
tion. We also use continuous minibatching: At end of one sentence in the data set, we concatenate
an end-of-sentence designator, followed by the next sentence from the data set.

Let C be the language’s vocabulary. Then, |C| = 10, 004 after we include special symbols like the
unknown token. The input space is I =

⋃
Ci where i is the number of words previously seen in a

sequence. We use continuous minibatching, so the effective history length, i, can be very long. The
output space is O = C.

Rather than perplexity, we use normalized cross-entropy loss: − 1
N

∑
i ln pwi

, where pwi
is the

model’s predicted probability of seeing the ith token. N is either the number of sequences in a batch
for training optimization or N is the number of predicted words in the validation set.

2clean-up and byte pair encoding uses Tensorflow NMT WMT scripts

11

https://github.com/tensorflow/nmt/blob/master/nmt/scripts/wmt16_en_de.sh

Under review as a conference paper at ICLR 2019

A.2.2 CHARACTER LANGUAGE MODELS

For character language models, we unroll sequences out to length 150 characters. Unlike word lan-
guage models, we use non-continuous minibatching, so some sequences end at an end-of-sentence
token. Sequences longer than 150 characters are truncated.

Let C be the language’s vocabulary of alphanumeric characters and symbols. Then, |C| = 98 after
we include special symbols like the end-of-sentence token. Similar to word language models, the
input space is I =

⋃
Ci where i is the number of characters previously seen in a sequence. Since

we use non-continuous minibatching, so the effective history length, i, is at most 150. The output
space is O = C.

Similar to word language models, we use normalized cross-entropy loss: − 1
N

∑
i ln pwi

, where pwi

is the model’s predicted probability of seeing the ith token. N is either the number of sequences in
a batch for training optimization or N is the number of predicted characters in the validation set.

A.3 IMAGE CLASSIFICATION

ImageNet images were initially scaled proportionally so that the shortest dimension of the image
is 256 pixels. During training, these images are cropped to 224x224 as input to the CNN. Input
images are 224x224 pixels by 3 color channels of 8 bits each. Thus, the total input space size is
|I| = 224 ∗ 224 ∗ 3 ∗ 256 ≈ 38.5M . The output space is 1,000 different object classes that might
be contained in the image. For training, we also augment the dataset by modifying the brightness,
contrast, saturation, and lighting. In addition, we also flip the image horizontally. 3

We optimize for classification cross-entropy loss on each training image, and we report average
validation cross-entropy, top-1, and top-5 classification error. Each loss calculation still follows the
power-law. However, we note that top-k classification error (k > 1) is not a distance metric; It uses
set containment, which is not symmetric. Alternatively, it is a product of distance metrics, which is
not necessarily a distance metric.

A.4 SPEECH RECOGNITION

The audio input to speech recognition models can be represented as the sequence x = (x1, .., xt)
of length t. Each xi is an audio spectrogram over a small time window. Each predicted output is a
character, encoded as a one-hot vector, yi, representing the most probable text token at sequence step
i. Output sequences are of the form y = (y1, ..., yu). Models predict the conditional distribution
p(y|x) using an encoder-decoder form. Thus, p(y|x) = Decode(Encode(x), y).

A.4.1 DEEP SPEECH 2

In DS2 model, the encoder is represented by a stack of recurrent layers with LSTM cells and the
decoder is the connectionist temporal classification (CTC) (Graves et al. (2006)). The CTC loss
function computes the conditional probability by marginalizing all possible alignments and it as-
sumes conditional independence between output predictions at different time steps given aligned
inputs. An extra blank label, which can be interpreted as no label, is introduced to map h and y
to the same length (i.e., an alignment or path). a is obtained by inserting (t′ - u) blanks into y. A
mapping B : a → y is defined between a and y, which can be done by removing all blanks and
repeating letters in a.

PCTC(y|x) =
∑

a∈B−1(y)

P (a|h) (1)

=
∑

a∈B−1(y)

t′∏
t=1

P (at|ht) (2)

P (at|ht) = softmax(at, ht) (3)

3Training and data augmentation is performed using ResNet implementation in TensorPack

12

https://github.com/ppwwyyxx/tensorpack/blob/master/examples/ResNet/imagenet-resnet.py

Under review as a conference paper at ICLR 2019

A.4.2 ATTENTION MODEL

Similar to the DS2 model, the attention model uses a stack of recurrent layers with GRU cells as
the encoder. The decoder consists of an attention layer followed by a recurrent layer. The attention
mechanism aligns the input sequence to the output sequence. The attention mechanism removes the
conditional independence assumption in output sequence that the DS2 model makes. More model,
attention mechanism, and loss function details can be found in Battenberg et al. (2017).

B USING VALIDATION ERROR

This section provides intuition about why learning curves that plot validation error against training
data set size are relevant for deep learning.

Let X be an input space and Y be an output space. Let Loss be a loss function.

Let m be the number of training samples. Let Tm = ((x1, y1), ..., (xm, ym)) ∼ P be a sequence of
training samples that is drawn independently from true distribution P , and V ∼ P be a validation
set drawn independently from the same distribution P .

Let M = DL_ALG(Sm), where DL_ALG is a learning algorithm that yields a trained model
MDL_ALG(Sm) : X → Y , such as a deep neural network trained with stochastic gradient descent
on training set Sm.

E(M) := Ex,y∼P [Loss(M(x), y)] (4)

Let E(M) be the expected risk, i.e. the expectation of evaluating the trained model MDL_ALG(Sm)

on the true distribution P .

Ê(M) :=
1

m

m∑
i=0

Loss(M(xi), yi), with{(xi, yi)}mi=0 = Sm (5)

Let Ê(M) be the empirical risk.

In an empirical risk minimization setting, we are concerned with the generalization gap, i.e.
E(MDL_ALG(Sm))− ÊSm

(MDL_ALG(Sm)).

ÊV (M) :=
1

n

n∑
i=0

Loss(M(xi), yi), with{(xi, yi)}ni=0 = V (6)

Let ÊV be the empirical risk on a held out validation set.

In practical deep learning settings, it is common to use ÊV to approximate E(MDL_ALG(Sm)). This
is a good approximation for sufficiently large validation sets if M is independent of V.

We use hyperparameter search including early stopping and model size selection to find models
with the best validation error ÊV for each Sm. We assume that the limited number of evaluations
performed does not introduce a significant dependence on V, which is aligned with best practices.
In some cases, we use a completely different V for hyperparameter search.

In this setting, we rely on ÊV being a good approximation of E(MDL_ALG(Sm)).

However, we still may need to contend with error due to optimization or error due to approximation.

Regarding these errors, it is well known that deep neural networks have sufficient capacity to overfit
on many natural datasets, and reduce training error to zero, e.g. as studied in Zhang et al. (2017).
Indeed for all of our studied tasks, we find that it is possible to train deep neural network models to
reduce the training error below the validation error, resulting in overfitting.

13

Under review as a conference paper at ICLR 2019

222220 221 223 224 225 226 227

Training Data Set Size, Number of Tokens (Log-scale)

0.41

0.44

0.48

0.51

0.54

0.58

0.62

0.67

M
in

im
u
m

 T
e
st

 L
o
ss

 (
Lo

g
-s

ca
le

)

208 Hidden

512 Hidden

208 Hidden Trend

512 Hidden Trend

ε208(m) = 41.2 m-0.36 + 0.39

ε512(m) = 21.5 m-0.30 + 0.32

219 220 221 222 223 224 225 226 227

Training Data Set Size, Number of Tokens (Log-scale)

0.36

0.39

0.42

0.46

0.50

0.55

0.60

0.65

0.71

M
in

im
u
m

 T
e
st

 L
o
ss

 (
Lo

g
-s

ca
le

)

Token Error Rate

Token Error Rate Trend

ε(m) = 3.87 m-0.13

Figure 5: Neural machine translation learning curves. Left: the learning curves for separate models
follow E(m) = αmβg + γ. Right: composite learning curve of best-fit model at each data set size.

So in this work we choose to characterize how ÊV scales with m, and how the model size scales
with m. Such a characterization is of practical importance because it matches widely used DL
methodology and allows interpretation and comparison of the relative difficulty of different tasks.

C OTHER TASKS

C.1 NEURAL MACHINE TRANSLATION

One of our studied tasks is neural machine translation (NMT). Translation converts text input in
one natural language to output text in another language. Relative to other tasks, NMT has low-
dimensional input and output spaces, and can be trained with large labeled data sets. Our results
show learning curve character similar to theoretical predictions, with a moderate exponent (i.e.,
βg ≈ −0.128).

To test NMT, we train a sequence-to-sequence model with global attention (Luong et al. (2015)) on
the 2016 Conference on Machine Translation (WMT’16) German-to-English data set. We use a pub-
licly available implementation of this architecture in OpenNMT (Klein et al. (2017)). The encoder
contains two layers of bidirectional LSTMs, and the decoder contains the attention layer and stack
of LSTM layers. To simplify training this model, we remove ensembling and data augmentation
techniques (Sennrich et al. (2016b)).

To scale model sizes, we tie LSTM input and hidden state sizes together, and change them so that
the total parameter count varies roughly linearly with a single scale factor parameter. We use Adam
to optimize per-sequence cross-entropy loss and report the per-token classification error. We select
models using the newstest2015 validation set, and we use the other newstest development sets from
2009 to 2013 for evaluation. Results presented here are with dropout rate of 0.2, though we tested
without dropout and found similar learning curve exponents.

We clean and tokenize the data set using Moses (Koehn et al. (2007)) as described by Luong et al.
(2017). We use the byte-pair encoding (BPE) method described by Sennrich et al. (2016a) to build
a shared word-piece vocabulary between English and German. After preprocessing, the training
set includes 4.5 million training sequences with roughly 130 million tokens in each language. We
uniformly randomly shuffle the training data and sample training shards as described in Section 3.

Prior work predicts that as a model runs out of capacity on larger data sets, the error should plateau,
resulting in a power-law + constant, E(m) ∼ αmβg + γ, where γ is the error when the model
family has exhausted its capacity. Note the addition γ term compared to the model used in other
experiments.

Indeed, we find that learning curves for a single model family can be closely represented by a power-
law + constant. We start by training fixed size models on each of the training shards. The left plot

14

Under review as a conference paper at ICLR 2019

219 221 223 225 227

Training Data Set Size, Number of Chars (Log-scale)

ε(m) = 5.37 m-0.094

0.86

0.93

1.00

1.08

1.17

1.26

1.36

1.47

1.59

M
in

im
u
m

 V
a
lid

a
ti

o
n
 L

o
ss

 (
Lo

g
-s

ca
le

)

Depth-10 RHNs, SGD

Depth-10 RHNs, Adam

Depth-10 RHNs, SGD Trend

Depth-10 RHNs, Adam Trend

ε(m) = 5.25 m-0.095

219 221 223 225 227

Training Data Set Size, Number of Chars (Log-scale)

0.1

0.4

1.0

2.8

7.8

21.7

60.6

169.1

471.7

M
o
d

e
l
N

u
m

 P
a
ra

m
s,

 M
ill

io
n
s

(L
o
g

-s
ca

le
)

Depth-10 RHNs, SGD

Depth-10 RHNs, Adam

Depth-10 RHNs, SGD Trend

Depth-10 RHNs, Adam Trend

s(m) = 1.35e-5 m0.92

s(m) = 1.43e-6 m0.89

Figure 6: Learning curve (left) and model size (right) results and trends for character language
models. Note the difference in absolute accuracy and model size, but same βg and βp between SGD
and Adam optimizers.

in Figure 5 shows the learning curves for two different model sizes with 208 or 512 hidden nodes
per LSTM layer (17M and 48M parameters, respectively). Learning curves with βg = −0.360 and
−0.300, respectively, fit the empirical results with less than 0.6% relative root mean square error.

The right plot in Figure 5 shows the composite learning curve for the best model at each shard size.
Note the lack of a γ term in this model. The best-fit results form a longer power-law region. We
find that βg is even smaller than the single-model learning curves; if we project forward, βg would
be approximately −0.128.

We also note that as training set sizes grow, optimization becomes more difficult and computational
requirements limit the turn around time for experiments, so the empirical error tends away from
the power-law trend. This divergence is common across domains, and we expect to need a more
exhaustive hyperparameter search to find results closer to the existing power-law.

C.2 CHARACTER LANGUAGE MODELS

To test character-level language modeling, we train RHNs of depth 10, which we found to achieve
high accuracy on the Billion Word data set. We scale the number of layer weights to modulate the
model size and find the best fit model for each training shard size. We use SGD, optimizing for
per-predicted-character cross-entropy loss, which we report on the validation set. We also compare
SGD against the Adam optimizer to test their effects. The input and output vocabulary includes all
alphanumeric characters and common symbols for total size 98. We train the models on shards of
0.01% up to 4% of the Billion Word data set.

Results for character LMs appear substantially similar to word LMs. Figure 6 plots the validation
and model size scaling results for character LMs. As with word LMs, validation error improves
on a power-law as training data size increases, though the exponent is βg = −0.0936 for the SGD
optimizer and βg = −0.0954 for the Adam optimizer. These power-law exponents are very similar
despite the significant optimizer differences—Adam appears to just shift the learning curve down by
∼ 5% relative.

Like word LMs, character LMs also learn significantly more slowly than predicted by theoretical
results. Though word and character LMs have some major differences, their learning curve expo-
nent differences indicate that character LMs are able to learn relationships between characters with
successively fewer samples than word LMs are able to learn relationships between words.

Character LMs also show sublinear model size growth as data set size increases. Specifically, βp =
0.78 for SGD optimized models and βp = 0.92 for Adam optimized. Character LMs with the
SGD optimizer see similar improvements from increased model size as word LMs, while the Adam
optimized models see poorer scaling and require significantly more parameters (∼ 8–11×). Still,
their learning and model size curves appear predictable.

15

Under review as a conference paper at ICLR 2019

8 16 32 64 128 256 512 1024 2048
Training Data Set Size, Hours of Audio (Log-scale)

0.11

0.14

0.18

0.23

0.29

0.37

0.48

0.61

0.78

M
in

im
u
m

 V
a
lid

a
ti

o
n
 L

o
ss

 (
Lo

g
-s

ca
le

)

DS2

Attention

DS2 Trend

Attention Trend

ε(m) = 1.36 m-0.30

ε(m) = 0.95 m-0.30

8 16 32 64 128 256 512 1024 2048
Training Data Set Size, Hours of Audio (Log-scale)

0.10

0.13

0.16

0.19

0.23

0.29

0.36

0.44

0.54

M
in

im
u
m

 V
a
lid

a
ti

o
n
 L

o
ss

 (
Lo

g
-s

ca
le

)

1.7M

6M

87M

Best-fit

Best-fit Trend

Figure 7: Learning curves for DS2 and attention speech models (left), and learning curves for var-
ious DS2 model sizes, 1.7M to 87M parameters (right). Note the similar βg despite of significant
difference in training loss (CTC vs CE) and model architecture (CNN+RNN vs RNN+Attention).

C.3 SPEECH RECOGNITION

Speech recognition techniques convert acoustic speech signals into text or commands. Speech recog-
nition is used in diverse applications such as voice-powered machine controls and conversational
user interfaces. Recent research has shifted from hand-engineered speech recognition pipelines
over to end-to-end deep learning based methods that show promising results (Hannun et al. (2014);
Chorowski et al. (2015); Amodei et al. (2016)). Speech input data is medium-dimensionality time-
series data.

To test trends in speech recognition, we train two recent models: a variant of Deep Speech 2 (DS2)
and an attention-based model. Our DS2 model (Amodei et al. (2016)) consists of two 2D con-
volution layers followed by four bidirectional LSTM recurrent layers. We use Adam to optimize
connectionist temporal classification loss (CTC, Graves et al. (2006)). We compare DS2 against a
hybrid attention model similar to those described by Battenberg et al. (2017). The model has an
encoder comprised of three bidirectional LSTM layers with two intermediate max-pooling layers,
and a hybrid attention decoder. We use Adam to optimize output sequence average cross-entropy
loss. For both models, we remove regularization (weight decay and noise).

The inputs to these models are a sequence of log-spectrograms of power normalized audio clips,
calculated on 20 ms windows. Outputs are the English alphabet along with the blank symbol. We do
not include language models for output sequence beam search, and we report per-predicted-output
character error rate on the validation set. We train on shards of labeled data set comprising 11,940
hours of speech containing 8 million utterances Amodei et al. (2016).

To vary the number of parameters in both the DS2 and attention models, we vary the number of
weights in all LSTM layers, so that separate layers have the same number of weights. In the attention
model, we also proportionally scale number of weights in the attention LSTM and decoder cells. For
the DS2 model, model sizes range between 300K to 193M parameters, and for the attention based
models, sizes range from 95K to 156M parameters.

Figure 7 (left) shows that both DS2 and attention based speech models experience the same power-
law learning curve improvements. Although these models have significantly different encoders and
decoders, they see the same relative improvements in character error rate as training set size increases
with βg = −0.299 ± 0.7%. Consistent with prior work (Bahdanau et al. (2016); Battenberg et al.
(2017)), larger attention models trained on larger data sets tend to be easier to optimize than DS2
models, whose validation error tends away from the power-law trend on larger data sets.

16

	Introduction
	Related Work
	Methodology
	Learning Curve Results
	Image Classification
	Language Modeling
	Word Language Models

	Sensitivity of Results
	Summary of Results

	Discussion
	Conclusion
	Detail on Tested Machine Learning Tasks
	Neural Machine Translation
	Language Modeling
	Word Language Models
	Character Language Models

	Image Classification
	Speech Recognition
	Deep Speech 2
	Attention Model

	Using Validation Error
	Other Tasks
	Neural Machine Translation
	Character Language Models
	Speech Recognition

