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Abstract
Our work presents empirical evidence that layer
rotation, i.e. the evolution across training of the
cosine distance between each layer’s weight vec-
tor and its initialization, constitutes an impres-
sively consistent indicator of generalization per-
formance. Compared to previously studied indica-
tors of generalization, we show that layer rotation
has the additional benefit of being easily moni-
tored and controlled, as well as having a network-
independent optimum: the training procedures
during which all layers’ weights reach a cosine
distance of 1 from their initialization consistently
outperform other configurations -by up to 20%
test accuracy. Finally, our results also suggest that
the study of layer rotation can provide a unified
framework to explain the impact of weight decay
and adaptive gradient methods on generalization.

1 Introduction
In order to understand the intriguing generalization prop-
erties of deep neural networks highlighted by [23, 34, 16],
the identification of numerical indicators of generalization
performance that remain applicable across a diverse set of
training settings is critical. A well-known and extensively
studied example of such indicator is the width of the minima
the network has converged to [12, 16].

In this paper, we present empirical evidence supporting the
discovery of a novel indicator of generalization: the evolu-
tion across training of the cosine distance between each
layer’s weight vector and its initialization (denoted by
layer rotation). Indeed, we show across a diverse set of
experiments (with varying datasets, networks and training
procedures), that larger layer rotations (i.e. larger cosine
distance between final and initial weights of each layer)
consistently translate into better generalization performance.
In addition to providing an original perspective on gener-
alization, our experiments suggest that layer rotation also
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benefits from the following properties compared to alterna-
tive indicators of generalization:

• It is easily monitored and, since it only depends on the
evolution of the network’s weights, can be controlled
along the optimization through appropriate weight up-
date adjustments

• It has a network-independent optimum (all layers reach-
ing a cosine distance of 1)

• It provides a unified framework to explain the impact
of weight decay and adaptive gradient methods on
generalization.

In comparison, other indicators usually provide a metric to
optimize (e.g. the wider the minimum, the better) but no
clear optimum to be reached (what is the optimal width?),
nor a precise methodology to tune it (how to converge to
a minimum with a specific width?). By disclosing simple
guidelines to tune layer rotations and an easy-to-use control-
ling tool, our work can also help practitioners get the best
out of their network with minimal hyper-parameter tuning.

The presentation of our experimental study is structured
according to three successive steps:

1. Development of tools to monitor and control layer
rotation (Section 2);

2. Systematic study of layer rotation configurations in a
controlled setting (Section 3);

3. Study of layer rotation configurations in standard train-
ing settings, with a special focus on SGD, weight decay
and adaptive gradient methods (Section 4).

Related work is discussed in Supplementary Material.

2 Monitoring and controlling layer rotation
This section describes the tools for monitoring and control-
ling layer rotation during training, such as its relation with
generalization can be studied in Sections 3 and 4.

2.1 Monitoring with layer rotation curves

Layer rotation is defined as the evolution of the cosine dis-
tance between each layer’s weight vector and its initial-
ization during training. More precisely, let wt

l be the flat-
tened weight tensor of the lth layer at optimization step



t (t0 corresponding to initialization), then the rotation of
layer l at training step t is defined as the cosine distance
between wt0

l and wt
l .

1 In order to visualize the evolution
of layer rotation during training, we record how the cosine
distance between each layer’s current weight vector and its
initialization evolves across training steps. We denote this
visualization tool by layer rotation curves hereafter.

2.2 Controlling with Layca

The ability to control layer rotations during training would
enable a systematic study of its relation with generaliza-
tion. Therefore, we present Layca (LAYer-level Controlled
Amount of weight rotation), an algorithm where the layer-
wise learning rates directly determine the amount of rota-
tion performed by each layer’s weight vector during each
optimization step (the layer rotation rates), in a direction
specified by an optimizer (SGD being the default choice). In-
spired by techniques for optimization on manifolds [1], and
on spheres in particular, Layca applies layer-wise orthogo-
nal projection and normalization operations on SGD’s up-
dates, as detailed in Algorithm 1 in Supplementary Material.
These operations induce the following simple relation be-
tween the learning rate ρl(t) of layer l at training step t and
the angle θl(t) between wt

l and wt−1
l : ρl(t) = tan(θl(t)).

Our controlling tool is based on a strong assumption: that
controlling the amount of rotation performed during each
individual training step (i.e. the layer rotation rate) enables
control of the cumulative amount of rotation performed
since the start of training (i.e. layer rotation). This assump-
tion is not trivial since the aggregated rotation is a priori very
dependent on the structure of the loss landscape. As will be
attested by the inspection of the layer rotation curves, our as-
sumption however appeared to be sufficiently valid, and the
control of layer rotation was effective in our experiments.

3 A systematic study of layer rotation
configurations with Layca

Section 2 provides tools to monitor and control layer ro-
tation. The purpose of this section is to use these tools to
conduct a systematic experimental study of layer rotation
configurations. We adopt SGD as default optimizer, but use
Layca (cfr. Algorithm 1) to vary the relative rotation rates
(faster rotation for first layers, last layers, or no prioritiza-
tion) and the global rotation rate value (high or low rate,
for all layers). The experiments are conducted on five dif-
ferent tasks which vary in network architecture and dataset
complexity, and are further described in Table 1.

1It is worth noting that our study focuses on weights that mul-
tiply the inputs of a layer (e.g. kernels of fully connected and
convolutional layers).

2References: VGG [26], ResNet [10], torch blog [32], Wide
ResNet [33], CIFAR-10 [18], Tiny ImageNet [5, 4]. Dropout
layers were removed from the torch blog CNN to enable perfect

3.1 Layer rotation rate configurations

Layca enables us to specify layer rotation rate configurations
by setting the layer-wise learning rates. To explore the large
space of possible layer rotation rate configurations, our study
restricts itself to two directions of variation. First, we vary
the initial global learning rate ρ(0), which affects the layer
rotation rate of all the layers. During training, the global
learning rate ρ(t) drops following a fixed decay scheme
(hence the dependence on t), as is common in the literature
(cfr. Supp. Mat. A.6). The second direction of variation
tunes the relative rotation rates between different layers.
More precisely, we apply static, layer-wise learning rate
multipliers that exponentially increase/decrease with layer
depth (which is typical of exploding/vanishing gradients).
The multipliers are parametrized by the layer index l (in
forward pass ordering) and a parameter α ∈ [−1, 1] such
that the learning rate of layer l becomes:

ρl(t) =

{
(1− α)5

(L−1−l)
L−1 ρ(t) if α > 0

(1 + α)5
l

L−1 ρ(t) if α ≤ 0
(1)

Values of α close to −1 correspond to faster rotation of first
layers, 0 corresponds to uniform rotation rates, and values
close to 1 to faster rotation of last layers. Visualization of
the layer-wise multipliers for different α values is provided
in Supplementary Material.

3.2 Study of the relation between layer rotation and
generalization

Figure 1a depicts the layer rotation curves (cfr. Section
2.1) and the corresponding test accuracies obtained with
different layer rotation rate configurations. While each con-
figuration solves the classification task on the training data
(≈ 100% training accuracy in all configurations, cfr. Supp.
Mat.), we observe huge differences in generalization ability
(differences of up to 30% test accuracy). More importantly,
these differences in generalization ability seem to be tightly
connected to differences in layer rotations. In particular,
we extract the following rule of thumb that is applicable
across the five considered tasks: the larger the layer rota-
tions, the better the generalization performance. The best
performance is consistently obtained when nearly all layers
reach the largest possible distance from their initialization:
a cosine distance of 1 (cfr. fifth column of Figure 1a).

This observation would have limited value if many configu-
rations (amongst which the best one) lead to cosine distances
of 1. However, we notice that most configurations do not. In
particular, rotating the layers weights very slightly is suffi-
cient for the network to achieve 100% training accuracy (cfr.
third column of Figure 1a)). Moreover, one could imagine
training procedures with large layer rotations that do not
generalize well, e.g. if large rotations are performed in a

classification on the training set (100% accuracy).



Table 1: Summary of the tasks used for our experiments2

Name Architecture Dataset

C10-CNN1 VGG-style 25 layers deep CNN CIFAR-10
C100-resnet ResNet-32 CIFAR-100
tiny-CNN VGG-style 11 layers deep CNN Tiny ImageNet
C10-CNN2 deep CNN from torch blog CIFAR-10 + data augm.
C100-WRN Wide ResNet 28-10 with 0.3 dropout CIFAR-100 + data augm.

random direction. It is indeed necessary that the rotations
performed coincide with improvements in the training error.
In particular, configurations with too high layer rotation
rates can prevent training from happening, thereby escaping
the scope of our rule of thumb (cfr. Figure 3).

4 A study of layer rotation in standard
training settings

Section 3 uses Layca to study the relation between layer
rotations and generalization in a controlled setting. This
section investigates the layer rotation configurations that
naturally emerge when using SGD, weight decay or adaptive
gradient methods for training. First of all, these experiments
will provide supplementary evidence for the rule of thumb
proposed in Section 3. Second, we’ll see that studying
training methods from the perspective of layer rotation can
provide useful insights to explain their behaviour.

The experiments are performed on the five tasks of Table 1.
The learning rate parameter is tuned independently for each
training setting through grid search over 10 logarithmically
spaced values (3−7, 3−6, ..., 32), except for C10-CNN2 and
C100-WRN where learning rates are taken from their origi-
nal implementations when using SGD + weight decay, and
from [29] when using adaptive gradient methods for training.
The test accuracies obtained in standard settings are com-
pared to the best results obtained with Layca, as provided in
the 5th column of Figure 1a.

4.1 Analysis of SGD and weight decay

Figure 1b (1st line) depicts the layer rotation curves and the
corresponding test accuracies generated by SGD for each of
the five tasks. We observe that the curves are far from the
ideal scenario disclosed in Section 3, where the majority of
the layers’ weights reached a cosine distance of 1 from their
initialization. Moreover, in accordance with our rules of
thumb, SGD reaches a considerably lower test performance
than Layca. Extensive tuning of the learning rate did not
help SGD to solve its two systematic problems: 1) layer
rotations are not uniform and 2) the layers’ weights stop
rotating before reaching a cosine distance of 1.

Several papers have recently shown that, in batch normal-
ized networks, the regularization effect of weight decay

was caused by an increase of the effective learning rate
[28, 13, 35]. More generally, reducing the norm of weights
increases the amount of rotation induced by a given training
step. It is thus interesting to see how weight decay affects
layer rotations, and if its impact on generalization is coher-
ent with our rule of thumb. Figure 1b (2nd line) displays,
for the 5 tasks, the layer rotation curves generated by SGD
when combined with weight decay (in this case, equivalent
to L2-regularization). We observe that SGD’s problems
are solved: all layers’ weights are rotated synchronously
and reach a cosine distance of 1 from their initialization.
Moreover the observations confirm our rule of thumb: the
resulting test performances are on par with the ones obtained
with Layca.

4.2 Analysis of adaptive gradient methods

The recent years have seen the rise of adaptive gradient
methods in the context of machine learning (e.g. RMSProp
[27], Adagrad [6], Adam [17]). Initially introduced for
improving training speed, [29] observed that these methods
also had a considerable impact on generalization. Since
these methods affect the rate at which individual parameters
change, they might also influence layer rotations. We will
thus verify if their influence on generalization is coherent
with our rule of thumb.

Figure 1c (1st line) provides the layer rotation curves and
test accuracies obtained when using adaptive gradient meth-
ods to train the 5 tasks described in Table 1. We observe
an overall worse generalization ability compared to Layca’s
optimal configuration and small and/or non-uniform layer
rotations. We also observe that the layer rotations of adap-
tive gradient methods are considerably different from the
ones induced by SGD (cfr. Figure 1b). For example, adap-
tive gradient methods seem to induce larger rotations of the
last layers’ weights, while SGD usually favors rotation of
the first layers’ weights. Could these differences explain the
impact of parameter-level adaptivity on generalization in
deep learning? In Figure 1c (2nd line), we show that when
Layca is used on top of adaptive methods (to control layer
rotation), adaptive methods can reach test accuracies on par
with SGD + weight decay. Our observations thus offer a
novel perspective on adaptive gradient methods’ poor gen-
eralization properties, and provide supplementary evidence
for our rule of thumb.



(a)

(b)

(c)

Figure 1: Analysis of the layer rotation curves and test accuracies (η) induced by different training settings on the five tasks of
Table 1. ∆η is computed with respect to Layca’s best configuration (last column of (a)). Colour code and axes are provided
in the upper right. Training accuracies are provided in Supplementary Material (≈ 100% in all configurations). Overall, the
visualizations unveil large differences in generalization ability across configurations which seem to follow a simple
yet consistent rule of thumb: the larger the layer rotation for each layer, the better the generalization performance.
(a) Layca training with layer-wise learning rates parametrized by α and ρ(0) (cfr. Section 3.1). (b) SGD training without
(1st line) or with (2nd line) weight decay, all with gridsearch-optimized learning rates. (c) Training with adaptive gradient
methods (RMSProp, Adam, Adagrad, RMSProp+L2 and Adam+L2 respectively for each task/column) without (1st line)
and with (2nd line) control of layer rotation by Layca, all with gridsearch-optimized learning rates.
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A Supplementary Material

A.1 Code

Code to reproduce all the training procedures and figures
of this paper is available at https://github.com/
anonymousDLresearch/Layer-rotation or at
https://github.com/Simoncarbo.

A.2 Related work

After the intriguing generalization properties of deep neural
networks were highlighted by [23, 34, 16], several works
have tried to identify aspects of training which could predict
generalization performance in a consistent and general way.

A first line of work tries to identify the characteristics of
trained models that correlate with good generalization prop-
erties. Different complexity metrics have been proposed:
norm-based metrics are studied in [2, 24, 19], sensitivity-
based metrics in [31, 25] and sharpness-based metrics in
[12, 16]. These three approaches are compared and further
studied in [22]. Other works proposed complexity metrics
that explicitly use the decomposition of deep neural net-
works in layers. Such decomposition is also key to our work
and has already been very successful when analysing the
training difficulties of deep neural networks [3, 11, 8]. In
[20], the similarity of hidden representations resulting from
training with different initializations is used as an indica-
tor of generalization. In [21], sensitivity to perturbation of
hidden representations is studied.

While the works described above help us understand the
characteristics of models that generalize well, they don’t
explicitly disclose how the training procedure itself leads
to such characteristics. A second line of work studies indi-
cators of generalization that characterize the whole training
trajectory instead of solely focusing on its endpoint. The
sharpness metric is revisited in [15] and [7] analyses stiff-
ness. While the presence of noise is believed to affect gen-
eralization, the mechanisms at play are poorly understood
[9, 30] and a clear metric to quantify its influence on gen-
eralization is still lacking. [14] studies the evolution of the
euclidean distance between the model’s weight vector and
its initialization in the context of large batch training. This
metric is the most similar to layer rotation, and also has the
particularity of being both easy to monitor and to control.
Our work differs by the used distance metric (layer-level
cosine distance instead of model-level euclidean distance)
and by performing a more extensive study that extends the
context of large-batch training.

A.3 Pseudocode for the Layca algorithm

Cfr. Algorithm 1.

https://github.com/anonymousDLresearch/Layer-rotation
https://github.com/anonymousDLresearch/Layer-rotation
https://github.com/Simoncarbo


Algorithm 1 Layca, an algorithm that enables control over the amount of weight rotation per step for each layer through its
learning rate parameter (cfr. Section 2.2).

Require: o, an optimizer (SGD is the default choice)
Require: T , the number of training steps
L is the number of layers in the network
for l=0 to L-1 do

Require: ρl(t), a layer’s learning rate schedule
Require: wl

0, the initial multiplicative weights of layer l
end for
t← 0
while t < T do

s0t , ..., s
L−1
t = getStep(o, w0

t , ..., w
L−1
t ) (get the updates of the selected optimizer)

for l=0 to L-1 do
slt ← slt −

(slt·w
l
t)w

l
t

wl
t·wl

t
(project step on space orthogonal to wl

t)

slt ←
slt‖w

l
t‖2

‖slt‖2
(rotation-based normalization)

wl
t+1 ← wl

t + ρl(t)s
l
t (perform update)

wl
t+1 ← wl

t+1
‖wl

0‖2
‖wl

t+1‖2
(project weights back on sphere)

end for
t← t+ 1

end while

A.4 Visualizing the α parameter.

The α parameter is used in Section 3 to characterize the
layer prioritization schemes used during training. While the
specific parametrization is provided in Equation 1, Figure 2
provides a graphical illustration of it.

A.5 Test accuracies for supplementary α and ρ(0)
configurations

Cfr. Figure 3.

A.6 Learning rate decay schemes

Our work uses standard learning rate decay schemes, as
follows:

• C10-CNN1: 100 epochs and a reduction of the learning
rate by a factor 5 at epochs 80, 90 and 97

• C100-resnet: 100 epochs and a reduction of the learn-
ing rate by a factor 10 at epochs 70, 90 and 97

• tiny-CNN: 80 epochs and a reduction of the learning
rate by a factor 5 at epoch 70

• C10-CNN2: 250 epochs and a reduction of the learning
rate by a factor 5 at epochs 100, 170, 220

• C100-WRN: 250 epochs and a reduction of the learn-
ing rate by a factor 5 at epochs 100, 170, 220

The only exceptions are C10-CNN2 and C100-WRN train-
ing with SGD+weight decay and with adaptive methods,
where the learning rate decay schemes are the ones used in
their original implementation or in [29].

A.7 Training errors associated to the layer rotation
curves.

In Figures 1a, 1b and 1c, the test accuracies corresponding to
each layer rotation curves visualization are provided. While
it is briefly mentioned that training accuracy is close to
perfect in most cases, Tables 2, 3 and 4 provide the exact
values for completeness.
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Figure 2: Visualization of the prioritization schemes as parametrized by α (cfr. Section 3). The colours of the lines represent
the absolute value of α. Illustration is separated for prioritization of the first layers (negative α values) and of the last layers
(positive α values). The layer-wise learning rate multipliers (y-axis) depend on the layer’s location in the network (x-axis),
which is represented by the layer index l (in forward pass ordering) divided by the number of layers L.
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Figure 3: Provides test accuracies for a larger set of α and ρ(0) values than the ones presented in 1a, for the first three tasks
of Table 1.

Table 2: Train accuracies associated to Figure 1a

α = 0.6 α = −0.6 ρ(0) = 3−5 ρ(0) = 3−4 Best

C10-CNN1 100% 99.99% 100% 100% 99.99%

C100-resnet 82.09% 99.54% 99.87% 99.99% 99.75%

tiny-CNN 99.98% 99.95% 99.97% 99.97% 98.91%

C10-CNN2 100% 99.94% 99.99% 99.99% 99.97%

C100-WRN 99.88% 99.91% 99.97% 99.99% 99.96%

Table 3: Train accuracies associated to Figure 1b

C10-CNN1 C100-resnet tiny-CNN C10-CNN2 C100-WRN

SGD 100% 100% 100% 100% 100%

SGD + L2 100% 100% 100% 100% 100%

Table 4: Train accuracies associated to Figure 1c

C10-CNN1 C100-resnet tiny-CNN C10-CNN2 C100-WRN

Adaptive methods 100% 100% 100% 100% 99.9%

Adaptive + Layca 100% 99.7% 99.2% 100% 100%
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