
Under review as a conference paper at ICLR 2020

PRUNING DEPTHWISE SEPARABLE CONVOLUTIONS
FOR EXTRA EFFICIENCY GAIN OF LIGHTWEIGHT
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep convolutional neural networks are good at accuracy while bad at efficiency.
To improve the inference speed, two kinds of directions are developed, lightweight
model designing and network weight pruning. Lightweight models have been pro-
posed to improve the speed with good enough accuracy. It is, however, not trivial if
we can further speed up these “compact” models by weight pruning. In this paper,
we present a technique to gradually prune the depthwise separable convolution
networks, such as MobileNet, for improving the speed of this kind of “dense” net-
work. When pruning depthwise separable convolutions, we need to consider more
structural constraints to ensure the speedup of inference. Instead of pruning the
model with the desired ratio in one stage, the proposed multi-stage gradual prun-
ing approach can stably prune the filters with a finer pruning ratio. Our method
achieves 1.68 times speedup with neglectable accuracy drop for MobileNetV2.

1 INTRODUCTION

Convolution neural networks (CNNs) have become an effective and well-developed technique that
achieves state-of-the-art performance on many tasks. However, to gain better accuracy, the architec-
tures of CNNs tend to be larger or deeper, which makes the CNN models infeasible to be realized
on resource-limited devices such as home robots and mobile phones.

To overcome this problem, a significant direction in recent studies is to design new lightweight archi-
tectures that consume less floating-point operations. Among these researches, depthwise separable
convolution (Howard et al. (2017)) becomes a promising design strategy for reducing the model
size and complexity of CNNs, where the standard convolution operation of CNN is decomposed
into a depthwise convolution layer followed by several 1 × 1 convolution layers for simplifying
the CNN structure. The resulted CNN models such as MobileNetsV1 (Howard et al. (2017)) and
MobileNetV2 (Sandler et al. (2018)) have been widely used in real applications. The depthwise sep-
arable convolution structure has also become a popular choice in recent neural architecture search
(NAS) studies such as Liu et al. (2018), Cai et al. (2019), and Tan et al. (2019).

From another viewpoint, a CNN model often contains much redundancy among their weights after
training (Han et al. (2015), Liu et al. (2017)). Hence, a useful strategy to compress CNN models
is to remove the superfluous weights or filters of their convolutional kernels (He et al. (2017), Li
et al. (2017), Zhu & Gupta (2018), Ding et al. (2019)), so that the model sizes can be reduced
and the inference speeds can be increased. Once the unnecessary weights or filters are pruned, the
CNN models can be fine-tuned or distilled (Hinton et al. (2015)) for restoring the performance via
re-training.

Although the technique of pruning redundant filters has been shown highly effective for compress-
ing standard convolution operations of CNNs, it has not been well applied to depthwise separable
convolutions yet. The reasons could be as follows. First, depthwise separable convolution is of-
ten performed once per layer. As it is the only operation regarding the spatial context of the input
feature map in the layer, reducing it would cause considerable performance degradation. Second,
unlike standard convolutional kernels, pruning the depthwise separable convolution involves more
sophisticated constraints on both the input and output feature maps in a layer.

1

Under review as a conference paper at ICLR 2020

To address these issues, we solve the structural constraint over the depthwise separable convolu-
tions. Based on the constraints derived for pruning, we then introduce a method to further remove
the redundancy of lightweight structures built up with depthwise separable convolution layers. Our
approach is applicable to the tasks where architectures factorization using depthwise separable con-
volutions (such as MobileNets) for the deployment of embedded devices; this is helpful to earn extra
gains of the inference efficiency of CNN models. The characteristics are summarized as follows.

• We derive the constraints required on layer-wised I/O when deleting filters in a channel-wise
group convolution, since depthwise separable operations are often realized as group convolutions
(Ciresan et al. (2011), Chetlur et al. (2014), Ioannou et al. (2017)).

• A multi-stage gradual pruning approach is introduced to simplify the CNN models and adapt the
weights progressively.

2 RELATED WORK

In this section, we first give a review on the depthwise-separable structure in Section 2.1. Then, we
survey the neural network pruning techniques for eliminating the redundant branches in Section 2.2.

2.1 DEEP CNNS WITH DEPTHWISE SEPARABLE CONVOLUTIONS

The principle of depthwise separable convolutions is derived from Flattened Networks (Jin et al.
(2015)) and Factorized Networks (Wang et al. (2017)). Jin et al. (2015) separate the standard 3D
convolutional filter into a set of 1D convolutional filters over channel, along vertical and horizon-
tal directions, named as flattened convolutions. The flattened convolutions can reduce numerous
parameters of a CNN and enhance its accuracy slightly. Wang et al. (2017) treat the standard 3D
convolutional filter as a combination of 2D spatial convolutional filters inside each channel (intra-
channel convolution) and a linear projection (1×1 standard convolutional layer) which is applied to
all the channels. This combination with residual connection is named as single intra-channel convo-
lutional layer. It also can compress the CNN models and enhance the accuracy of CNN slightly.

Inspired by the above researches, Howard et al. (2017) separate the standard convolutional layer
into a combination of one channel-wise group convolutional layer (depthwise convolution) and one
standard convolution layer (pointwise convolution) with the kernel size of 1 × 1. ReLU (Nair &
Hinton (2010)) and batch-normalization (Ioffe & Szegedy (2015)) are applied after each convolu-
tion. To make CNN model able to be deployed on mobile devices, they construct a novel structure
of lightweight network with 13 depthwise separable convolutions, which is named as MobileNetV1
(Howard et al. (2017)). It is able to save 85% of model size with only 1.1% of accuracy drops. To
further improve the information flow of MobileNetV1, Sandler et al. (2018) expand the feature map
channels by inserting an extra pointwise convolution before depthwsie separable convolution. Com-
bining with shortcut connections, it forms a novel building block called bottleneck depth-separable
convolution with residuals which can better avoid information loss than depthwise separable con-
volution. By stacking 17 of such blocks, Sandler et al. (2018) propose MobieNetV2 that achieves
accuracy improvement as well as model size reduction. Besides, MobileNetV2 is also applied as
backbones of SSD (Liu et al. (2016)) and DeepLabV3 (Chen et al. (2017)) to improve inference
speed for object detection and semantic segmentation tasks.

2.2 NEURAL NETWORK PRUNING

In the field of deep model compression, filter pruning becomes one the most popular directions
because the pruned models are able to gain acceleration directly using the existing deep learning
framworks, such as Caffe (Jia et al. (2014)) and PyTorch (Paszke et al. (2017)). In filter pruning,
the main challenge is to recognize unimportant filters so that removing them will not cause unrecov-
erable catastrophic performance drops. Li et al. (2017) recognize unimportant filters by computing
the l1 norm of filters in the pretrained large model given. He et al. (2017) utilize LASSO regression
based channel selection to remove the less useful channels. Li et al. (2017) determine the importance
of filters using the scale factors in batch normalization layers. After pruning the unimportant filters,
these methods require retraining to compensate the losses of performance. On the other hand, Ding
et al. (2019) follow another path to recognize correlated filters by K-means clustering and propose

2

Under review as a conference paper at ICLR 2020

Standard Conv1 Standard Conv2

Figure 1: Illustration of the filter pruning of a standard convolution. Suppose that there are 4 filters
in Conv1, pruning the third filter will remove the third channel of output feature maps. After that,
the third channel in all filters in the next layer (Conv2) should also be removed.

C-SGD to force filters in the same cluster to converge to the same values. Therefore, the redundant
filters can be removed without the need for retraining.

Apart from filter pruning, several work also consider pruning finer structure like intra-kernel prun-
ing that prunes spatial locations within convolution filters. Anwar et al. (2017) use evolutionary
algorithms to prune intra-kernel structures that have the least accuracy drops. Yang et al. (2018))
generate a series of intra-kernel patterns and prune them with minimal absolute summation. Further-
more, unstructured pruning treats each weight as a pruning candidate and thus becomes the finest
pruning strategy. Under this category, Zhu & Gupta (2018) iteratively prune a handful of weights
and retrains to recover the performance immediately. Although they can maintain the accuracy while
increasing the sparsity, special libraries or hardware are required to gain acceleration, which imposes
the development overhead in real applications.

3 METHODOLOGY

Standard convolution of CNN is formulated as follows. Denote F(i) ∈ Rci+1×ci×k×k as the convo-
lution kernel of the i-th layer with k as the spatial size of the kernel. This layer takes an input feature
map X(i) ∈ Rci×hi×wi and computes the output as

Y(i)
c,:,: =

ci∑
j=1

X(i)
j,:,: ∗ F(i)

c,j,:,:, c ∈ {1 · · · ci+1}, (1)

where “∗” denotes the common 2D convolution of size k × k. Pruning the standard convolution
(e.g., removing one kernel) only affects the input depth of the next layer. As illustrated in Fig. 1,
when a kernel (filter) is deleted, the output depth (which is equivalently to the input depth of the
next layer) is also decreased, and thus the kernel depth in the next layer is shortened.

The convolution can be divided into groups in a layer, resulting in the operation known as group con-
volution (Ciresan et al. (2011), Ioannou et al. (2017)) that is originally used in AlexNet (Krizhevsky
et al. (2012)). Pruning group convolutions is a structural pruning problem where the pruned param-
eters should follow patterns of their positions on the input and output channels. Therefore, more
structural constraints have to be considered when pruning group convolutions.

3.1 DEPTHWISE SEPARABLE CONVOLUTION AND MOBILENET ARCHITECTURE

Assume that the input depth (number of channels) is ci in the i-th layer. Depthwise convolution
divides the input as ci groups with each group containing a single channel. The output tensor M(i) =

DWconv(X(i),D(i)) is given by

M(i)
c,:,: = X(i)

c,:,: ∗ D(i)
c,1,:,:, c ∈ {1 · · · ci}. (2)

In practical frameworks like Pytorch, this layer is implemented using grouped convolution by setting
the number of groups equaling to the number of input channels.

MobileNetV1 (Howard et al. (2017)) is proposed to utilze the depthwise convolution followed by the
standard convolutions of spatial size 1×1 (referred to as pointwise convolutions). Let Stdconv(X,F)

3

Under review as a conference paper at ICLR 2020

Depthwise Conv2 Pointwise Conv2Pointwise Conv1

Figure 2: Pruning a depthwise separable convolution. Suppose that there are 4 filters in Depthwise
Conv2, pruning the third one, as depicted in red cross, will remove the third channel of both input
and output feature maps due to the parallelism in depthwise convolution. Thus, the corresponding
kernels in Pointwise Conv1 and Depthwise Conv2 are also removed, as shown in double crosses.

denote the standard convolution of Eq. 1. Supposed that P(i) ∈ Rci+1×ci×1×1 are ci+1 pointwise
kernels applied, MobileNetV1 then evaluates the output of the layer as follows

Y(i) = Stdconv(M(i),P(i)). (3)

The parameters in the layer are thus (D(i),P(i)), where D(i) ∈ Rci×1×k×k and P(i) ∈ Rci+1×ci×1×1

are the kernels of depthwise and pointwise convolution layers, respectively.

To further improve MobileNetV1, Sandler et al. (2018) propose to use a novel building block called
bottleneck depth-separable convolution with residuals. This building block uses a shortcut connec-
tion and inserts an extra pointwise convolution that expands the input depth by a factor t before the
depthwise convolution. Therefore, it contains three convolutions and computes the output as

Y(i) = Stdconv(DWconv(Stdconv(X(i),E(i)),D(i)),P(i)) + X(i), (4)

where E(i) ∈ Rtci×ci×1×1, D(i) ∈ Rtci×1×k×k and P(i) ∈ Rci+1×tci×1×1 are the three respective
kernels, and thus its parameters are (E(i),D(i),P(i)).

3.2 CONSTRAINED FILTER PRUNING

Filter pruning is popular for structural reduction because it directly produces a thinner network that
can easily fit into existing deep-learning frameworks for acceleration without needs of self-defined
operations. In the following, we introduce the approach that maintains the structural consistency
when pruning depthwise separable convolutions with shortcut connections.

3.2.1 DEPTHWISE SEPARABLE CONVOLUTIONS

Unlike the case of standard convolutions, pruning depthwise convolutions influences both input and
output of a layer. For the i-th depthwise separable convolution with parameters (D(i),P(i)), we
denote the index sets of the depthwise and pointwise convolutions as D(i) ⊂ {0, 1, ..., ci − 1} and
P(i) ⊂ {0, 1, ..., ci+1 − 1}. According to Eq. 2, each filter D(i)

c,1,:,: operates on the input feature map
X(i)
c,:,:. Besides, X(i)

c,:,: is generated by the pointwise convolution of the (i− 1)-th layer with the filter
P(i−1)
c,:,:,: . Hence, we can conclude that the filter pruning pattern of the i-th depthwise convolution

should be the same as that of the (i−1)-th pointwise convolution (i.e., P(i−1) = D(i)), as illustrated
in Fig. 2. After pruning the filters in D(i) and P(i), similar to the pruning of standard convolutions,
the corresponding kernels in the next layer (i + 1) have to be removed as well. 1

The structural constraints are extended to the depth-separable convolution blocks in MobileNetV2
(Sandler et al. (2018)) with the parameters (E(i),D(i),P(i)) as defined in Eq. 4. Similarly, we denote
the index sets to be E(i), D(i) and P(i). Because the input feature maps of the depthwise convolution
are from the extra 1 × 1 convolution layer, their filter pruning indices should be the same. In other
words, we have E(i) = D(i) for all such blocks in MobileNetV2 (Sandler et al. (2018)).

1Particularly, in MobileNetV1 (Howard et al. (2017)), RGB images are converted into 32-channel feature
maps via standard convolutions in the first layer. Thus we have F(1) = D(2) as the starting point for pruning.

4

Under review as a conference paper at ICLR 2020

Standard Conv1 ….. Last Conv2 ….. Last Conv3

Figure 3: Illustration of pruning residual blocks following the strategy in (Ding et al. (2019)). Sup-
posed that there are 2 filters in Standard Conv1 which is followed by 2 residual blocks. Let Last
Conv2 and Last Conv3 be the last layers of the two residual blocks, respectively. Pruning the second
filter in Conv1 will force the second filters in Last Conv2 and Last Conv3 to be removed.

3.2.2 SHORTCUT CONNECTIONS

A shortcut connection that sums the learned residuals and the stem features introduces dependencies
between the two layers that are linked. We call the layer producing the stem features the pacesetter,
and the last layer of the residual block the follower. To maintain the validation of the information
flow after filter pruning, the pacesetter and the follower must have the same pruning patterns. Li
et al. (2017) skips the pruning of pacesetters and followers and only prune other internal layers in
the residual blocks. Accordingly, the input and output feature maps remain to have the same number
of channels as the original model, and this limits the amount of prunable model size. Liu et al.
(2017) and He et al. (2017) insert a sampler layer before the first internal layer in the residual block
to reduce the channels of the input feature maps. Though they can remove the corresponding kernels
in the first internal layer, the filters of pacesetters and followers are un-pruned, which still limits the
possibility of further efficiency boosting.

In our approach, to fully boost the efficiency, we follow the strategy in (Ding et al. (2019)) that
allows to prune the whole network without sidestepping these troublesome layers. Starting from
the beginning of MobileNetV2 (Sandler et al. (2018)), let m be the layer index of the non-residual
block just before a sequence of n bottleneck depth-separable convolution residual blocks, as shown
in Fig. 3. Without loss of generality, we assume that the m-th layer is a standard convolution layer,
which is usually the case in MobileNetV2 (Sandler et al. (2018)). Each of the following n residual
blocks has a pointwise convolution as its last layer within the block. The m-th layer produces the
stem feature maps, and thus is called the pacesetter; the following blocks’ pointwise convolutions
are then the followers. Therefore, for all such structures starting with a standard convolution layer
and followed by residual blocks, we can derive the constraints as shown below:

F(m) = P(m+1) = P(m+2) = ... = P(m+n). (5)

3.3 GRADUAL PRUNING WITH MULTIPLE STAGES

In the above, we have derived the filter pruning constraints implied by the network structures. In
this section, we describe our pruning approach for MobileNets. Gradual pruning (Zhu & Gupta
(2018)) is a simple but effective technique that iteratively prunes a small amount of weights with
low absolute values untill the target sparsity is reached. The original approach of (Zhu & Gupta
(2018)) is used for unstructured pruning that removes weights without following a regular network
structure. Therefore, no direct speedup can be attained when implementing the pruned model to
existing deep learning frameworks. In this work, we apply the gradual pruning principle to filter
removing following the derived constraints. Besides, we extend the principle to multi-stage gradual
pruning. The original gradual pruning approach is a special case of our approach of a single stage,
and our multi-stage gradual pruning method provides a smoother track of pruning for handling the
depthwise separable structure.

Given a pretrained model, we first investigate all the filter pruning constraints and cluster the kernels
having to share the same pruning patterns. Supposed that there are G clusters of kernels and denote
Wg as the set containing all the kernels in the g-th cluster. Let Ig be its index set of pruned filters,
where g ∈ {1, 2, ..., G}. To prune the given model from sparsity 0.0 to a final sparsity sf , we split
this process into S stages and apply gradual pruning in each stags. Gradual pruning aims to prune
a little amount of weights every ∆t iterations as the model is trained to maintain the performance

5

Under review as a conference paper at ICLR 2020

while increasing the sparsity. The amount of weights being removed in each pruning iteration is
computed by a cubic function to interpolate the beginning sparsity and end sparsity in each stage.
Supposed the starting iteration for a stage is t0, the sparsity after every ∆t iterations is as follows:

st = sb + (se − sb)(1−
t

n∆t
), for t ∈ {0,∆t, ..., n∆t}, (6)

where sb and se are the starting and end sparsity for each stage, and n is the number of pruning
iterations. When a pruning iteration proceeds, we compute the importance score for all candidates
by summing the absolute values of filters and remove the ones with smaller scores. Details can be
found in Algorithm 1.

Algorithm 1: Multistage Gradual Pruning

Input: Kernel cluster sets {W1,W2, ...,WG}, final sparsity sf , number of stages S, pruning epoch
Ep and finetune epoch Ef

Output: Index sets {I1, I2, ..., IG} of the pruned filters
Data: Training set D

1 for s in 0, 1, ..., S − 1 do
2 Compute the beginning sparsity sb = s

sf
S and end sparsity se = (s + 1)

sf
S

3 Determine the number of iterations in a pruning epoch T = Ep ×#iters per epoch
4 for t in 0, 1, ..., T − 1 do
5 if t is multiple of ∆t then

// Prune a small amount of the model
6 Determine current sparsity st by Eq. 6
7 for g in 1, 2, ..., G do

// AbaSum() sums all tensor elements’ absolute values
8 For all filter c, compute the score

∑
W∈Wg AbsSum(Wc,:,:,:)

9 Add the indices of filters with the smallest score into Ig untill reaching sparsity st
10 Let T = {Wc,:,:,:|∀c ∈ Ig,W ∈Wg} be the set of all pruned filters
11 Set all filters in T to 0.0

12 Train the model using a batch of data in D without updating filters in T
// Finetune the model to regain performance

13 Train the model for Ef epochs on D without updating filters in T

4 EXPERIMENTS AND RESULTS

In this section, we show the experimental studies to verify the effectiveness of our approach.

4.1 EXPERIMENTAL SETTINGS

To evaluate the performance on pruning lightweight models, we conduct experiments by applying
our proposed method on MobileNetV1 and MobileNetV2 using the following two benchmarks:
CIFAR10 (Krizhevsky et al. (2009)) is a widely used benchmark for image classification. It con-
tains sixty thousands 32×32 color images of objects seen in daily lives, such as animals and vehicles.
Each object has 6,000 images. To verify the model, they are split into 50,000 images as the training
set and 10,000 images as the test set.
SVHN (Netzer et al. (2011)) is a popular benchmark for recognizing digits in natural scene images,
like MNIST database (LeCun et al. (1998)). It consists of 99,289 digits images with the resolution
equal to 32× 32, which are split into 73,257 images for training set and 26,032 for testing.

We first train baseline models on CIFAR10 and SVHN for 300 epochs using SGD optimizers with
learning rates 0.1 and 0.01, respectively; for both datasets, the momentum is 0.9 and weight-decay
is 1 × 10−4. The learning rates decay 0.1 every 80 epochs. In each stage of gradual pruning,
we use 4 epochs for pruning with the frequency of 200 iterations and 26 epochs for fine-tuning.
Our metrics include relative accuracy drops and execution time speedups between the baseline and
pruned models. The execution time is measured by running 500 forward passes with batch size 512
on the network models to record the elapsed time. Our method is implemeneted by using PyTorch
(Paszke et al. (2017)) and evaluated on a Nvidia Geforce GTX 1080Ti GPU.

6

Under review as a conference paper at ICLR 2020

0.0 0.2 0.4 0.6 0.8
Ratio of pruned filters

50

60

70

80

90

Ac
cu

ra
cy

8 stages
16 stages

MobileNetV1 on CIFAR10

0.0 0.2 0.4 0.6 0.8
Ratio of pruned filters

40

50

60

70

80

90

Ac
cu

ra
cy

8 stages
16 stages

MobileNetV2 on CIFAR10

Figure 4: Accuracy of the pruned MobileNets on CIFAR10 with 8 and 16 stages of gradual pruning.

0.0 0.2 0.4 0.6 0.8
Ratio of pruned filters

75

80

85

90

Ac
cu

ra
cy

8 stages
16 stages

MobileNetV1 on SVHN

0.0 0.2 0.4 0.6 0.8
Ratio of pruned filters

75

80

85

90

Ac
cu

ra
cy

8 stages
16 stages

MobileNetV2 on SVHN

Figure 5: Accuracy of the pruned MobileNets on SVHN with 8 and 16 stages of gradual pruning.

4.2 ABLATION STUDY

Because our method further extends the gradual pruning into multistage gradual pruning, we conduct
ablation study on how the number of stages affects the performance. When the number of stages
increases, the pruning ratio in each stage decreases, which results in a finer filter pruning procedure.
We compare multistage gradual pruning with 8 and 16 stages, which prunes 1/8 and 1/16 of filters
in one stage, respectively. In Fig. 4, the performance of 8 and 16 stages on the CIFAR10 dataset
are similar, and note that 8-stage pruning already performs well on maintaining the accuracy when
the ratio of pruned filters increases. However, 16 stages pruning can still maintain accuracy better
on around 0.8 of filters pruned than the 8-stage setting. In Fig. 5 (on the SVHN dataset), we find
that the 8-stage pruning suffers from accuracy drops when the sparsity is increased, but the 16-stage
pruning manages to maintain the performance significantly better. We owe this to the reason that it
is easier to recover performance by fine-tuning when performing a finer pruning procedure.

To further investigate the influence of fine- and coarse-grain pruning, we take the model (on the
SVHN dataset) with 1/8 filters pruned in two stages from the 16-stage pruning. Then, we further
prune 1/8 filters of this model in only one stage. After that, the pruning ratio becomes 2/8 with an
accuracy of 91.70%. Compared with the 8-stage pruning’s model with the same pruning ratio that
has the accuracy of 90.24%, we conjecture that finer pruning in the beginning stage helps to find a
better local minimum, and after that coarse-grain pruning can be applied to speed up the pruning
process. In another setting, we take the model with 6/8 filters pruned from the 8-stage pruning and
further prune 1/8 filters in two stages with the 16-stage pruning. The resulted model has 7/8 filters
pruned with the accuracy of 88.07%, which is better than the model with the same pruning ratio in
8-stage pruning having the accuracy of 84.78%. Hence, fine grain pruning process is also capable
of maintaining accuracy even when the model is already stuck in a worse local optimum. With these
observations, our multistage gradual pruning could potentially recover the performance by switching
to finer pruning at any stage when the current pruning stage suffers from severe accuracy drops.

4.3 EFFICIENCY IMPROVEMENT

We compress the trained MobileNets on CIFAR10 and SVHN using 16 stages, i.e. pruning 1/16 of
filters in each stage, and report the performance on the models with 1/4 filters pruned, as shown in
Table 1 and Table 2. On both CIFAR10 and SVHN datasets, our method can maintain the accuracy
with less than 1% relative accuracy drops. The results indicate that even in lightweight models, there
still exist redundant weights that can be removed with neglectable drops of accuracy. After pruning
1/4 filters of the model, the FLOPs can be reduced to around 1 − (3/4)2 = 43.75%. However,

7

Under review as a conference paper at ICLR 2020

Table 1: Accuracy of MobileNetV1 with 1/4 of filters pruned on CIFAR10 and SVHN.
MobileNetV1 Base Top1 Acc Pruned Top1 Acc Rel. ↓% Speedup ↑%
CIFAR10 86.28 86.15 0.15 40.66SVHN 91.53 91.36 0.19

Table 2: Accuracy of MobileNetV2 with 1/4 of filters pruned on CIFAR10 and SVHN.
MobileNetV2 Base Top1 Acc Pruned Top1 Acc Rel. ↓% Speedup ↑%
CIFAR10 86.31 85.61 0.81 67.74SVHN 92.25 91.91 0.37

considering additional memory access overheard on real machines, our approach still achieves 40%
and 67% of speedups for MobileNetV1 and V2, respectively.

5 CONCLUSIONS AND FUTURE WORK

In this paper, a multi-stage gradual pruning approach for depthwise separable convolution net-
works is proposed. Redundancy of the lightweight model, MobileNet, can be further exploited
in a smoother multi-stage manner of pruning. In our methods, we prune filters considering struc-
tural constraints so that we are able to fully boost the efficiency. Our experiments show that we
can maintain the accuracy better when we use finer pruning ratios and more stages. We also show
that extra efficiency can indeed be acquired by pruning lightweight models. In the future, we plan
to apply our approach to the depthwise separable convolution structures found by NAS for further
improving the inference efficiency.

REFERENCES

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural
networks. ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3):32,
2017.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task
and hardware. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HylVB3AqYm.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv
preprint arXiv:1410.0759, 2014. URL https://docs.nvidia.com/deeplearning/
sdk/cudnn-developer-guide/index.html.

Dan Claudiu Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and Jürgen Schmid-
huber. Flexible, high performance convolutional neural networks for image classification. In
Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning very
deep convolutional networks with complicated structure. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4943–4953, 2019.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015.

8

https://openreview.net/forum?id=HylVB3AqYm
https://openreview.net/forum?id=HylVB3AqYm
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html

Under review as a conference paper at ICLR 2020

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397,
2017.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop, 2015. URL http://arxiv.
org/abs/1503.02531.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Yani Ioannou, Duncan Robertson, Roberto Cipolla, and Antonio Criminisi. Deep roots: Improving
cnn efficiency with hierarchical filter groups. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1231–1240, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456,
2015.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. arXiv preprint arXiv:1408.5093, 2014.

Jonghoon Jin, Aysegul Dundar, and Eugenio Culurciello. Flattened convolutional neural networks
for feedforward acceleration. In International Conference on Learning Representations Work-
shops, 2015. URL https://arxiv.org/abs/1412.5474.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=rJqFGTslg.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 19–34, 2018.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In European conference on computer
vision, pp. 21–37. Springer, 2016.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2736–2744, 2017.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

9

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1412.5474
https://openreview.net/forum?id=rJqFGTslg

Under review as a conference paper at ICLR 2020

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4510–4520, 2018.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019.

Min Wang, Baoyuan Liu, and Hassan Foroosh. Factorized convolutional neural networks. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pp. 545–553, 2017.

Maurice Yang, Mahmoud Faraj, Assem Hussein, and Vincent Gaudet. Efficient hardware realization
of convolutional neural networks using intra-kernel regular pruning. In 2018 IEEE 48th Interna-
tional Symposium on Multiple-Valued Logic (ISMVL), pp. 180–185. IEEE, 2018.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. In International Conference on Learning Representations Workshops, 2018.
URL https://openreview.net/pdf?id=Sy1iIDkPM.

10

https://openreview.net/pdf?id=Sy1iIDkPM

	Introduction
	Related work
	Deep CNNs with Depthwise Separable Convolutions
	Neural Network Pruning

	Methodology
	Depthwise Separable Convolution and MobileNet Architecture
	Constrained Filter Pruning
	Depthwise Separable Convolutions
	Shortcut Connections

	Gradual Pruning with Multiple Stages

	Experiments and Results
	Experimental Settings
	Ablation Study
	Efficiency Improvement

	Conclusions and Future Work

