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ABSTRACT

Discovering objects and their attributes is of great importance for autonomous
agents to effectively operate in human environments. This task is particularly
challenging due to the ubiquitousness of objects and all their nuances in percep-
tual and semantic detail. In this paper we present an unsupervised approach for
learning disentangled representations of objects entirely from unlabeled monoc-
ular videos. These continuous representations are not biased by or limited to a
discrete set of labels determined by human labelers. The proposed representation
is trained with a metric learning loss, where nearest neighbors in embedding space
are pulled together while being pushed against other objects. We show these un-
supervised embeddings allow robots to discover object attributes that generalize
to previously unseen environments. We quantitatively evaluate performance on a
large-scale synthetic dataset with 12k object models, as well as on a real dataset
collected by a robot and show that our unsupervised object understanding gener-
alizes to previously unseen objects. Specifically, we demonstrate the effectiveness
of our approach on robotic manipulation tasks, such as pointing at and grasping
of objects. An interesting and perhaps surprising finding in this approach is that
given a limited set of objects, object correspondences will naturally emerge when
using metric learning without requiring explicit positive pairs. Videos of robotic
experiments are available at sites.google.com/view/object-contrastive-networks
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Figure 1: Object-Contrastive Networks (OCN): by attracting embedding nearest neighbors and repulsing
others using metric learning, continuous object representations naturally emerge. In a video collected by a
robot looking at a table from different viewpoints, objects are extracted from random pairs of frames. Given
two lists of objects, each object is attracted to its closest neighbor while being pushed against all other objects.
Noisy repulsion may occur when the same object across viewpoint is not matched against itself. However the
learning still converges towards disentangled and semantically meaningful object representations which can be
useful in autonomous robotics applications.
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1 INTRODUCTION

The ability to autonomously train to recognize and differentiate previously unseen objects as well as
infer general properties and attributes is an important skill for robotic agents. Increased autonomy
leads to robustness, one of the main challenges real-world robotics faces. It also renders scaling up
data collection practical. Additionally, removing human supervision from the loop has the potential
to enable learning richer and less biased continuous representations than ones supervised by a limited
set of discrete labels. Unbiased representations can prove useful in unknown future environments
different from the ones seen during supervision, a typical challenge for robotics.

In this work we present an unsupervised method that learns representations that disentangle per-
ceptual and semantic object attributes such as class, function, and color. We automatically acquire
training data by capturing videos with a real robot; a robot base moves around a table to capture
objects in various arrangements. Assuming a pre-existing objectness detector, we extract objects
from random frames within a same scene containing the same objects, and let the metric learning
system decide how to assign positive and negative pairs of embeddings. Representations that gener-
alize across objects naturally emerge despite not being given groundtruth matches. Unlike previous
methods, we abstain from employing additional self-supervisory training signals such as tracking
or depth. The only inputs to the system are monocular videos. This simplifies data collection and
allows our embedding to integrate into existing end-to-end learning pipelines. We demonstrate that
a trained Object-Contrastive Network (OCN) embedding allows us to reliably identify object in-
stances based on their visual features such as color and shape. Moreover, we show that objects are
also organized along their semantic or functional properties. For example, a cup might not only be
associated with other cups, but also with other containers like bowls or vases.

The key contributions of this work are: (1) an unsupervised algorithm for learning representations
of objects (naturally encoding attributes like class, color, texture and function) which generalize
to previously unseen objects; (2) showing monocular videos are sufficient to contrast similar and
dissimilar objects pairs naturally without requiring explicit correspondences; (3) demonstrating the
autonomy of the system, using a robot from data collection to tasks such as pointing and grasping
similar objects to ones presented to it.

2 RELATED WORK

Object discovery from visual media. Identifying objects and their attributes has a long history in
computer vision and robotics (Tuytelaars et al., 2009). Traditionally, approaches focus on identify-
ing regions in unlabeled images to locate and identify objects (Sivic et al., 2005; Russell et al., 2006;
Arora et al., 2007; Fritz & Schiele, 2008; Kim et al., 2008). Discovering objects based on the notion
of ’objectness’ instead of specific categories enables more principled strategies for object recogni-
tion (Uijlings et al., 2013; Romea et al., 2011). Several methods address the challenge to discover,
track, and segment objects in videos based on supervised (Wang et al., 2014) or unsupervised (Kwak
et al., 2015; Schulter et al., 2013; Haller & Leordeanu, 2017) techniques. The spatio-temporal sig-
nal present in videos can also help to reveal additional cues that allow to identify objects (Wang &
Gupta, 2015; Jain et al., 2017). In the context of robotics, methods also focus on exploiting depth to
discover objects and their properties (Mishra et al., 2012; Karpathy et al., 2013).

Many recent approaches exploit the effectiveness of convolutional deep neural networks to detect
objects (Ren et al., 2015; Liu et al., 2016; Lin et al., 2017) and to even provide pixel-precise segmen-
tations (He et al., 2017). While the detection efficiency of these methods is unparalleled, they rely on
supervised training procedures and therefore require large amounts of labeled data. Self-supervised
methods for the discovery of object attributes mostly focus on learning representations by identi-
fying features in multi-view imagery (DeTone et al., 2017; Lin et al., 2015) and videos (Wang &
Gupta, 2015), or by stabilizing the training signal through domain randomization (Doersch et al.,
2015; Zhang et al., 2018).

Some methods not only operate on RGB images but also employ additional signals, such as
depth (Florence et al., 2018; Pot et al., 2018) or egomotion (Agrawal et al., 2015) to self-supervise
the learning process. It has been recognized, that contrasting observations from multiple views can
provide a view-invariant training signal allowing to even differentiate subtle cues as relevant features
that can be leveraged for instance categorization and imitation learning tasks (Sermanet et al., 2018).
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Unsupervised representation learning. Unlike supervised learning techniques, unsupervised
methods focus on learning representations directly from data to enable image retrieval (Paulin et al.,
2015), transfer learning (Zhang et al., 2017a), image denoising (Vincent et al., 2008), and other
tasks (Dumoulin et al., 2016; Kumar et al., 2015). Using data from multiple modalities, such as
imagery of multiple views (Sermanet et al., 2018), sound (Owens et al., 2016; Aytar et al., 2016),
or other sensory inputs (Dehzangi et al., 2017), along with the often inherent spatio-temporal co-
herence (Doersch et al., 2015; Radford et al., 2015), can facilitate the unsupervised learning of
representations and embeddings. For example, Zagoruyko & Komodakis (2015) explore multiple
architectures to compare image patches and Pathak et al. (2017b) exploit temporal coherence to
learn object-centric features. Gao et al. (2016) rely of spatial proximity of detected objects to de-
termine attraction in metric learning, OCN operates similarly but does not require spatial proximity
for positive matches, it does however take advantage of the likely presence of a same object in any
pair of frames within a video. Zhang et al. (2017b) also take a similar unsupervised metric learning
approach for tracking specific faces, using tracking trajectories and heuristics for matching trajec-
tories and obtain richer positive matches. While our approach is simpler in that it does not require
tracking or 3D matching, it could be augmented with extra matching signals.

In robotics and other real-world scenarios where agents are often only able obtain sparse signals
from their environment, self-learned embeddings can serve as an efficient representation to optimize
learning objectives. Pathak et al. (2017a) introduce a curiosity-driven approach to obtain a reward
signal from visual inputs; other methods use similar strategies to enable grasping (Pinto & Gupta,
2016) and manipulation tasks (Sermanet et al., 2018), or to be pose and background agnostic (Held
et al., 2015). Mitash et al. (2017) jointly uses 3D synthetic and real data to learn a representation to
detect objects and estimate their pose, even for cluttered configurations. Hickson et al. (2018) learn
semantic classes of objects in videos by integrating clustering into a convolutional neural network.

3 UNSUPERVISED LEARNING OF OBJECT REPRESENTATIONS

We propose an unsupervised approach to the problem of object understanding for multiple reasons:
(1) make data collection simple and scalable, (2) increase autonomy in robotics by continuously
learning about new objects without assistance, (3) discover continuous representations that are richer
and more subtle than the discrete set of attributes that humans might provide as supervision which
may not match future new environments. All these objectives require a method that can learn about
objects and differentiate them without supervision. To bootstrap our learning signal we leverage
two assumptions: (1) we are provided with a general objectness model so that we can attend to
individual objects in a scene, (2) during an observation sequence the same objects will be present in
most frames (this can later be relaxed by using an approximate estimation of ego-motion). Given a
video sequence around a scene containing multiple objects, we randomly select two frames I and
Î in the sequence and detect the objects present in each image. Let us assume N and M objects
are detected in image I and Î , respectively. Each of the n-th and m-th cropped object images are
embedded in a low dimensional space, organized by a metric learning objective. Unlike traditional
methods which rely on human-provided similarity labels to drive metric learning, we use a self-
supervised approach to mine synthetic synthetic similarity labels.

3.1 OBJECTNESS DETECTION

To detect objects, we use Faster-RCNN (Ren et al., 2015) trained on the COCO object detection
dataset (Lin et al., 2014). Faster-RCNN detects objects in two stages: first generate class-agnostic
bounding box proposals all objects present in an image (Fig. 1), second associate detected objects
with class labels. We use OCN to discover object attributes, and only rely on the first objectness
stage of Faster-R-CNN to detect object candidates. Examples of detected objects are illustrated in
Fig. 1.

3.2 METRIC LOSS FOR OBJECT ATTRIBUTE DISENTANGLEMENT

We denote a cropped object image by x ∈ X and compute its embedding via a convolutional neural
network f (x) ∶ X → K. Note that for simplicity we may omit x from f (x) while f inherits all
superscripts and subscripts. Let us consider two pairs of images I and Î that are taken at random
from the same contiguous observation sequence. Let us also assume there are n and m objects
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detected in I and Î respectively. We denote the n-th and m-th objects in the images I and Î as xIn
and xÎm, respectively. We compute the distance matrix Dn,m =

√
(f In − f Îm)2, n ∈ 1..N, m ∈ 1..M .

For every embedded anchor f In, n ∈ 1..N , we select a positive embedding f
Î
m with minimum

distance as positive: f În+ = argmin(Dn,m). Given a batch of (anchor, positive) pairs {(xi, x+i )}Ni=1,
the n-pair loss is defined as follows (Sohn, 2016):

LN−pair({(xi, x+i )}Ni=1; f ) =
1

N

N

∑
i=1

log(1 +∑
i≠j

exp(f ⊺i f
+
j − f

⊺
i f

+
i ))

The loss learns embeddings that identify ground truth anchor-positive pairs from all other anchor-
negative pairs in the same batch. It is formulated as a sum of softmax multi-class cross-entropy
losses over a batch, encouraging the inner product of each anchor-positive pair (fi, f

+
i ) to be larger

than all anchor-negative pairs (fi, f
+
j≠i).

The final OCN training objective over an observation sequence is the sum of npairs losses over all
pairs of individual frames:

LOCN = LN−pair({(xIn, xÎn+)}Nn=1; f ) + LN−pair({(xÎm, xIm+)}Mm=1; f )

3.3 ARCHITECTURE

OCN takes a standard ResNet50 architecture until layer global pool and initializes it with ImageNet
pre-trained weights. We then add three additional ResNet convolutional layers and a fully connected
layer to produce the final embedding. The network is trained with the n-pairs metric learning loss as
discussed in Sec. 3.2. Our architecture is depicted in Fig. 1 and Fig. 2.
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Figure 2: Models and baselines: for comparison purposes all models evaluated in Sec. 5 share the same
architecture of a standard ResNet50 model followed by additional layers. While the architectures are shared,
the weights are not across models. While the unsupervised model (left) does not require supervision labels, the
’softmax’ baseline as well as the supervised evaluations (right) use attributes labels provided with each object.
We evaluate the quality of the embeddings with two types of classifiers: linear and nearest neighbor.

3.4 OBJECT-CENTRIC EMBEDDING SPACE

By using multiple views of the same scene and by attending to individual objects, our architecture
allows us to differentiate subtle variations of object attributes. Observing the same object across
different views facilitates learning invariance to scene-specific properties, such as scale, occlusion,
lighting, and background, as each frame exhibits variations of these factors. The network solves the
metric loss by representing object-centric attributes, such as shape, function, texture, or color, as
these are consistent for (anchor, positive)-pairs, and dissimilar for (anchor, negative)-pairs.

3.5 WHY SHOULD THIS WORK?

One might expect that this approach may only work if it is given a good enough initialization so
that matching the same object across multiple frames is more likely than random chance. While
ImageNet pretraining certainly helps convergence as shown in Table 1, it is not a requirement to
learn meaningful representations as shown in Sec. 8. When all weights are random and no labels are
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provided, what can drive the network to consistently converge to meaningful embeddings? We esti-
mate that the co-occurrence of the following hypotheses drives this convergence: (1) objects often
remains visually similar to themselves across multiple viewpoints, (2) limiting the possible object
matches within a scene increases the likelihood of a positive match, (3) the low-dimensionality of the
embedding space forces the model to generalize by sharing abstract features across objects, (4) the
smoothness of embeddings learned with metric learning facilitates convergence when supervision
signals are weak, and (5) occasional true-positive matches (even by chance) yield more coherent
gradients than false-positive matches which produce inconsistent gradients and dissipate as noise,
leading over time to an acceleration of consistent gradients and stronger initial supervision signal.

4 DATA COLLECTION, HYPERPARAMETERS, AND TRAINING

To evaluate the effectiveness of OCN embeddings we generated two datasets of real and synthetic
objects. For the (unlabeled) real data we arrange objects in table-top configurations and capture
frames from continuous camera trajectories. The (labeled) synthetic data is generated from render-
ings of 3D objects in a similar configuration. Details about the datasets are reported in Table 4.

4.1 SYNTHETIC DATA GENERATION

To generate diverse object configurations we use 12 categories (airplane, car, chair, cup, bottle,
bowl, guitars, keyboard, lamp, monitor, radio, vase) from ModelNet (Wu et al., 2015). The selected
categories cover around 8k models of the 12k models available in the entire dataset. ModelNet
provides the object models in a 80-20 split for training and testing. We further split the testing data
into models for test and validation, resulting in a 80-10-10 split for training, validation, and test. For
validation purposes, we manually assign each model labels describing the semantic and functional
properties of the object, including the labels ‘class’, ‘has lid’, ‘has wheels’, ‘has buttons’, ‘has flat
surface’, ‘has legs’, ‘is container’, ‘is sittable’, ‘is device’. Fig. 9 shows an example scene.

We randomly define the number of objects (up to 20) in a scene and select half of the objects from
two randomly selected categories. The other half is selected from the remaining object categories.
We further randomly define the positions of the objects and vary their sizes, both so that they do not
intersect. Additionally, each object is assigned one of eight predefined colors. We use this setup to
generate 100K scenes for training, and 50K scenes for each, validation and testing. For each scene
we generate a number (n = 10) of views and select random combination of two views for detecting
objects. In total we produce 400K views (200 pairs) for training and 50K views (25K pairs) for each,
validation and testing.

4.2 AUTOMATIC REAL DATA COLLECTION

Our real object data set consists of 187 unique object instances spread across six categories including
‘balls’, ‘bottles & cans’, ‘bowls’, ‘cups & mugs’, ‘glasses’, and ‘plates’. Table 5 provides details
about the number of objects in each category and how they are split between training, test, and
validation. Note that we distinguish between cups & mugs and glasses categories based on whether
it contains a handle. Fig. 3 provides a snapshot of our entire object dataset.

We automated the real world data collection through using a mobile robot equipped with an HD
camera (Fig. 8). At each run, we place about 10 objects on the table and then trigger the capturing
process by having the robot rotate around the table by 90 degrees (see Fig. 8). In average 130 images
are captured at each run. We select random pairs of frames for each trajectory during training of the
OCN. We performed 345, 109, and 122 runs of data collection for training, test, and validation
dataset, respectively. In total 43084 images were captured for OCN training and 15061 and 16385
were used for test and validation, respectively.

4.3 TRAINING

An OCN is trained based on two views of the same synthetic or real scene. We randomly pick two
frames of a camera trajectory around the scene to ensure the same objects are present; the frames
are selected based on their time stamps so that they are as far apart as possible. We set the n-
pairs regularization to λ = 0.002. The distance matrix Dn,m (Sec. 3.2) is constructed based on the
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Figure 3: We use 187 unique object instance in the real world experiments: 110 object for training (left), 43
objects for test (center), and 34 objects for evaluation (right).

individually detected objects for each of the two frames. The object detector was not specifically
trained on any of our datasets. Furthermore, we only used scenes where at least 5 objects were
detected in each frame. Operating on less objects results in a more noisy training signal as the
n-pairs loss cannot create enough meaningful (anchor, negative)-pairs for contrasting them with
the (anchor, positive)-pair. As the number of detected objects per view varies, we reciprocally use
both frames to find anchors and their corresponding positives as discussed in Sec. 3.2. Across our
experiments, the OCN training converged after 600k-1.2M iterations.

5 EXPERIMENTAL RESULTS

To evaluate the effectiveness of an OCN embedding as representation for object attribute disen-
tanglement, we performed experiments on a large-scale synthetic dataset and two robotic tasks of
pointing and grasping in a real-world environment. Moreover, the experiments are designed in a
way to directly showcase the usefulness of OCN on real robotics applications.

5.1 ATTRIBUTES CLASSIFICATION

One way to evaluate the quality of unsupervised embeddings is to train attribute classifiers on top of
the embedding using labeled data. Note however this may not entirely reflect the quality of an em-
bedding because it is only measuring a discrete and small number of attributes while an embedding
may capture more continuous and larger number of abstract concepts.

Classifiers: We consider two types of classifiers to be applied on top of existing embeddings in
this experiment: linear and nearest-neighbor classifiers. The linear classifier consists of a single
linear layer going from embedding space to the 1-hot encoding of the target label for each attribute.
It is trained with a range of learning rates and the best model is retained for each attribute. The
nearest-neighbor classifier consists of embedding an entire ‘training’ set, and for each embedding
of the evaluation set, assigning to it the labels of the nearest sample from the training set. Nearest-
neighbor classification is not a perfect approach because it does not necessarily measure generaliza-
tion as linear classification does and results may vary significantly depending on how many nearest
neighbors are available. It is also less subject to data imbalances. We still report this metric to get a
sense of its performance because in an unsupervised inference context, the models might be used in
a nearest-neighbor fashion (e.g. as in Sec. 5.3).

Baselines: we compare multiple baselines in Table 1 and Table 6. The ‘Softmax’ baseline refers
to the model described in Fig. 2, i.e. the exact same architecture as for OCN except that the model
is trained with a supervised cross-entropy/softmax loss. The ‘ResNet50’ baseline refers to using
the unmodified outputs of the ResNet50 model (He et al., 2016) (2048-dimensional vectors) as
embeddings and training a nearest-neighbor classifier as defined above. We consider ‘Softmax’ and
‘ResNet50’ baselines as the lower and upper error-bounds for standard approaches to a classification
task. The ‘OCN supervised’ baseline refers to the exact same OCN training described in Fig. 2, ex-
cept that the positive matches are provided rather than discovered automatically. ‘OCN supervised’
represents the metric learning upper bound for classification. Finally we indicate as a reference the
error rates for random classification.

Results: we quantitatively evaluate our unsupervised models against supervised baselines on the
labeled synthetic datasets (train and test) introduced in Sec. 4. Note that there is no overlap in
object instances between the training and the evaluation set. The first take-away is that unsupervised
performance closely follows its supervised baseline when trained with metric learning. As expected
the cross-entropy/softmax approach performs best and establishes the error lower bound while the
ResNet50 baseline are upper-bound results. Note that the dataset is heavily imbalanced for the
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Table 1: Attributes classification errors: using attribute labels, we train either a linear or nearest-neighbor
classifier on top of existing fixed embeddings. The supervised OCN is trained using labeled positive matches,
while the unsupervised one decides on positive matches on its own. All models here are initialized and frozen
with ImageNet-pretrained weights for the ResNet50 part of the architecture (see Fig. 2), while the additional
layers above are random and trainable. Attributes are defined in Sec. 4.1.

Class (12) Color (8) Binary
Attribute Attribute Attributes Embedding

Method Error Error Error Size
[baseline] Softmax 2.98% 0.80% 7.18% -
[baseline] OCN supervised (linear) 7.49% 3.01% 12.77% 32
[baseline] OCN supervised (NN) 9.59% 3.66% 12.75% 32

[ours] OCN unsupervised (linear) 10.70% 5.84% 13.76% 24
[ours] OCN unsupervised (NN) 12.35% 8.21% 13.75% 24

[baseline] ResNet50 embeddings (NN) 14.82% 64.01% 13.33% 2048
[baseline] Chance 91.68% 87.50% 50.00% -

Figure 4: An OCN embedding organizes objects along their visual and semantic features. For example, a red
bowl as query object is associated with other similarly colored objects and other containers. The leftmost object
(black border) is the query object and its nearest neighbors are listed in descending order. The top row shows
renderings of our synthetic dataset, while the bottom row shows real objects.

binary attributes reported in Table 1 and Table 6 and require balancing for linear classification. In
Fig. 4 and Sec. 9, 11, we show qualitative results of nearest neighbor objects discovered by OCN.

5.2 INSTANCE DETECTION AND TRACKING

An OCN embedding can be used to match instances of the same object across multiple views and
over time. This is illustrated in Fig. 5, where objects of one view (anchors) are matched against the
objects of another view. We can find the nearest neighbors (positives) in the scene through the OCN
embedding space as well as the closest matching objects with descending similarity (negatives). We
report the quality of finding corresponding objects in Table 2 and differentiate between attribute
errors, that indicate a mismatch of specific attributes (e.g. a blue cup is associated with a red cup),
and object matching errors, which measure when objects are not of the same instance. An OCN
embedding significantly improves detecting object instances across multiple views.
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Figure 5: View-to-view object correspondences: the first column shows all objects detected in one frame
(anchors). Each object is associated to the objects found in the other view, objects in the second column are the
nearest neighbors. The third column shows the distances of all objects, all other objects are shown from left to
right in descending order according to their distances to the anchor.

5.3 ROBOT EXPERIMENTS

Pointing: We evaluate performance of OCN on a pointing robotic task (Fig. 6). The robot has to
point to an object that it deems most similar to the object directly in front of him on the small table.
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Table 2: Object correspondences errors: attribute error indicates a mismatch of a particular attribute of an
object, while an object matching error is measured when the matched objects are not the same instance.

Method Attribute Error Object Matching Error
OCN supervised 4.53% 16.28%
OCN unsupervised 5.27% 18.15%
Resnet50 embeddings 19.27% 57.04%

The objects on the big table are randomly selected from each of the six object categories (Table 5).
We consider two sets of these target objects. The quantitative experiment in Table 3 uses three
query objects per category and is ran three times for each combination of query and target objects
(3 × 2 × 18 = 108 experiments performed). The full set of experiments for one of the three runs is
illustrated in Fig. 15.

Table 3 quantifies OCN performance of this experiment. We report on errors related to ‘class’ and
‘container’ attributes (note that the other ten attributes described in Sec. 4.1 are not relevant to the
real object data set). While the trained OCN model is performing well on the most categories, it has
particularly some difficulty on the object classes ‘cups & mugs’ and ‘glasses’. These categories are
generally mistaken with the category ‘bowls’. As a result the network performs much better in the
attribute ‘container’ since all the three categories ‘bowls’, ‘bottles & cans’, and ’glasses’ refer to the
same attribute.

Grasping: We qualitatively evaluate the OCN performance on a grasping task in an environment
unseen during training. First, a person holds and shows an object to the robot, then the robot picks
up the most similar object from a set of objects on a table (see Fig. 7). In this experiment, we focus
on evaluating OCN with objects that have either similar shape or color attribute. Using OCN the
robot can successfully identify and grasp the object that has the closest color and shape attributes to
the query object. Note training data did not contain objects held by hand.

Figure 6: The robot experiment of pointing to the best match to a query object (placed in front of the robot
on the small table). The closest match is selected from two sets of target object list, which are placed on the
long table behind the query object. The first and the second row respectively correspond to the experiment for
the first and second target object lists. Each column also illustrates the query objects for each object category.
Image snapshots with green frame correspond to cases where both the ‘class’ and ‘container’ attributes are
matched correctly. Image snapshots with blue frame refer to the cases where only ‘container’ attribute is
matched correctly. Images with red frames indicates neither of attributes are matched.

Table 3: Quantitative evaluation on the robot pointing experiment. We report on two attribute errors: ‘class’
and ‘container’. See Sec. 5.3 for more information about the experiment.

Attributes Balls Bottles & Cans Bowls Cups & Mugs Glasses Plates Total
Class error 11.1 ±7.9% 0.0 ±0.0% 22.2 ±15.7% 88.9 ±7.9% 38.9 ±7.9% 5.6 ±7.9% 27.8 ±3.9%
Container error 11.1 ±7.9% 0 ±0.0% 16.7 ±13.6% 16.7 ±0.0% 16.7 ±13.6% 5.6 ±7.9% 11.1 ±2.3%

6 CONCLUSION

We introduced a novel unsupervised representation learning algorithm that allows us to differentiate
object attributes, such as color, shape, and function. An OCN embedding is learned by contrasting
the features of objects captured from two frames of single view camera trajectories of table-top in-
door environments. We specifically attend to individual objects by detecting object bounding boxes
and leverage a metric learning loss to disentangle subtle variations of object attributes. The resulting
embedding space allows to organize objects along multiple dimensions and serves as representation
for robotic learning. We show that an OCN embedding can be used on real robotic tasks such as
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Figure 7: Robot experiment of grasping the object that is closest to the query object (held by hand). Images
on the left are captured by the robot camera, and the images on the right are the video frames from a third
person view camera. The leftmost object (black border) is the query object and its nearest neighbors are listed
in descending order. The top row and the bottom row show the robot successfully identifies and grasps the
object with similar color and shape attribute respectively.

grasping and pointing, where it is important to differentiate visual and semantic attributes of indi-
vidual object instances. Finally, we show that an OCN can be trained efficiently from RGB videos
that are automatically obtained from a real robotic agent.

REFERENCES

Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning to see by moving. In ICCV, 2015.

H. Arora, N. Loeff, D. A. Forsyth, and N. Ahuja. Unsupervised segmentation of objects using efficient learning.
In CVPR, pp. 1–7, June 2007.

Yusuf Aytar, Carl Vondrick, and Antonio Torralba. Soundnet: Learning sound representations from unlabeled
video. In NIPS, 2016.

Omid Dehzangi, Mojtaba Taherisadr, and Raghvendar ChangalVala. Imu-based gait recognition using convo-
lutional neural networks and multi-sensor fusion. Sensors, 17(12), 2017.

Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-supervised interest point
detection and description. CoRR, abs/1712.07629, 2017.

Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual representation learning by context
prediction. In ICCV, 2015.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro, and
Aaron Courville. Adversarially learned inference. CoRR, abs/1606.00704, 2016.

Peter R. Florence, Lucas Manuelli, and Russ Tedrake. Dense object nets: Learning dense visual object descrip-
tors by and for robotic manipulation. 2018.

M. Fritz and B. Schiele. Decomposition, discovery and detection of visual categories using topic models. In
CVPR, pp. 1–8, 2008.

Ruohan Gao, Dinesh Jayaraman, and Kristen Grauman. Object-centric representation learning from unlabeled
videos. CoRR, abs/1612.00500, 2016. URL http://arxiv.org/abs/1612.00500.

Emanuela Haller and Marius Leordeanu. Unsupervised object segmentation in video by efficient selection of
highly probable positive features. In ICCV, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
CVPR, pp. 770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. In ICCV, 2017.

David Held, Sebastian Thrun, and Silvio Savarese. Deep learning for single-view instance recognition. CoRR,
abs/1507.08286, 2015.

Steven Hickson, Anelia Angelova, Irfan A. Essa, and Rahul Sukthankar. Object category learning and retrieval
with weak supervision. CoRR, abs/1801.08985, 2018.

Suyog Dutt Jain, Bo Xiong, and Kristen Grauman. Fusionseg: Learning to combine motion and appearance for
fully automatic segmentation of generic objects in videos. In CVPR, pp. 2117–2126, 2017.

9

http://arxiv.org/abs/1612.00500


Under review as a conference paper at ICLR 2018

Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al. What is the best multi-stage architecture for object
recognition? In Computer Vision, 2009 IEEE 12th International Conference on, pp. 2146–2153. IEEE,
2009.

Andrej Karpathy, Stephen Miller, and Li Fei-Fei. Object discovery in 3d scenes via shape analysis. In ICRA,
2013.

Gunhee Kim, C. Faloutsos, and M. Hebert. Unsupervised modeling of object categories using link analysis
techniques. In CVPR, pp. 1–8, 2008.

B. G. Vijay Kumar, Gustavo Carneiro, and Ian D. Reid. Learning local image descriptors with deep siamese
and triplet convolutional networks by minimising global loss functions. CoRR, abs/1512.09272, 2015.

S. Kwak, M. Cho, I. Laptev, J. Ponce, and C. Schmid. Unsupervised object discovery and tracking in video
collections. In ICCV, 2015.

T. Lin, Yin Cui, S. Belongie, and J. Hays. Learning deep representations for ground-to-aerial geolocalization.
In CVPR, pp. 5007–5015, 2015.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet, Tomas Pajdla, Bernt
Schiele, and Tinne Tuytelaars (eds.), ECCV, pp. 740–755, 2014.

Tsung-Yi Lin, Piotr Dollr, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In CVPR, 2017.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexan-
der C. Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

A. K. Mishra, A. Shrivastava, and Y. Aloimonos. Segmenting simple objects using rgb-d. In ICRA, pp. 4406–
4413, May 2012.

Chaitanya Mitash, Kostas E Bekris, and Abdeslam Boularias. A self-supervised learning system for object
detection using physics simulation and multi-view pose estimation. In IROS, pp. 545–551. IEEE, 2017.

A Owens, P Isola, J H McDermott, A Torralba, E H Adelson, and W T Freeman. Visually indicated sounds. In
CVPR, pp. 2405–2413, June 2016.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In ICML, 2017a.

Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Darrell, and Bharath Hariharan. Learning features by
watching objects move. In CVPR, 2017b.

M. Paulin, M. Douze, Z. Harchaoui, J. Mairal, F. Perronin, and C. Schmid. Local convolutional features with
unsupervised training for image retrieval. In ICCV, pp. 91–99, Dec 2015.

L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours. In
ICRA, pp. 3406–3413, May 2016.

Etienne Pot, Alexander Toshev, and Jana Kosecka. Self-supervisory signals for object discovery and detection.
CoRR, abs/1806.03370, 2018.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. CoRR, abs/1511.06434, 2015.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with
region proposal networks. In NIPS, pp. 91–99. 2015.

Alvaro Collet Romea, Manuel Martinez Torres, and Siddhartha Srinivasa. The moped framework: Object
recognition and pose estimation for manipulation. IJRR, 30(10):1284 – 1306, 2011.

Bryan C. Russell, William T. Freeman, Alexei A. Efros, Josef Sivic, and Andrew Zisserman. Using multiple
segmentations to discover objects and their extent in image collections. In CVPR, pp. 1605–1614, 2006.

Andrew M Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh, and Andrew Y Ng. On
random weights and unsupervised feature learning. In ICML, pp. 1089–1096, 2011.

Samuel Schulter, Christian Leistner, Peter Roth, and Horst Bischof. Unsupervised object discovery and seg-
mentation in videos. In BMVC, 2013.

10



Under review as a conference paper at ICLR 2018

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, and Sergey Levine.
Time-contrastive networks: Self-supervised learning from video. In ICRA, 2018.

J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman. Discovering objects and their location
in images. In ICCV, 2005.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett (eds.), NIPS, pp. 1857–1865. 2016.

T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. Buntine. Unsupervised object discovery: A comparison.
IJCV, 2009.

J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. Selective search for object
recognition. IJCV, 104(2):154–171, 2013.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Deep image prior. CoRR, abs/1711.10925, 2017.
URL http://arxiv.org/abs/1711.10925.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing
robust features with denoising autoencoders. In ICML, pp. 1096–1103. ACM, 2008.

Le Wang, Gang Hua, Rahul Sukthankar, Jianru Xue, and Nanning Zheng. Video object discovery and co-
segmentation with extremely weak supervision. In ECCV, 2014.

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos. In ICCV,
2015.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In CVPR, pp. 1912–1920. IEEE Computer Society,
2015. ISBN 978-1-4673-6964-0.

Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches via convolutional neural net-
works. In CVPR, June 2015.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In ICLR, 2018.

Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain autoencoders: Unsupervised learning by cross-
channel prediction. In CVPR, 2017a.

Shun Zhang, Jia-Bin Huang, Jongwoo Lim, Yihong Gong, Jinjun Wang, Narendra Ahuja, and Ming-Hsuan
Yang. Tracking persons-of-interest via unsupervised representation adaptation. CoRR, abs/1710.02139,
2017b. URL http://arxiv.org/abs/1710.02139.

11

http://arxiv.org/abs/1711.10925
http://arxiv.org/abs/1710.02139


Under review as a conference paper at ICLR 2018

APPENDIX

7 DATASET

Figure 8: Consecutive frames captured with our robotic setup. At each run we randomly select 10 objects and
place them on the table. Then a robot moves around the table and take snapshots of the table at different angles.
We collect in average 80-120 images per scene. We select pairs of two frames of the captured trajectory and
train the OCN on the detected objects.

Figure 9: Synthetic data: two frames of a synthetically generated scene of table-top objects (a) and a subset
of the detected objects (c). To validate our method against a supervised baseline, we additionally render color
masks (b) that allow us to identify objects across the views and to associate them with their semantic attributes
after object detection. Note that objects have the same color id across different views. The color id’s allow us
to supervise the OCN during training.

Table 4: Datasets overview: to train an OCN we use real and synthetic data.
Dataset #Categories #Unique Objects #Scenes #Views per Scene #View Pairs
Synthetic 12 4k 250k 2 250K
Real 6 187 576 115-230 400K

Table 5: Real object dataset: we use 187 unique object instances spread across six categories.

Balls Bottles & Cans Bowls Cups & Mugs Glasses Plates
Training 14 13 19 19 22 23
Validation 5 4 8 6 5 6
Test 6 6 10 6 6 9
Total 25 23 37 31 33 38
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8 RANDOM WEIGHTS

We find in Table 6 that models that are not pretrained with ImageNet supervision perform worse but
still yield reasonable results. This indicates that the approach does not rely on a good initialization to
bootstrap itself without labels. Even more surprisingly, when freezing the weights of the ResNet50
base of the model to its random initialization, results degrade but still remain far below chance
as well as below the ’ResNet50 embeddings’ baseline. Obtaining reasonable results with random
weights has already been observed in prior work such as (Jarrett et al., 2009), (Saxe et al., 2011) and
(Ulyanov et al., 2017).

Table 6: Results with random weights (no ImageNet pre-training)

Class (12) Color (8) Binary
Attribute Attribute Attributes

Method Error Error Error Finetuning
[baseline] Softmax 23.18% 10.72% 13.56% yes
[baseline] OCN supervised (NN) 29.99% 2.23% 20.25% yes
[baseline] OCN supervised (linear) 34.17% 2.63% 27.37% yes

[ours] OCN unsupervised (NN) 35.51% 2.93% 22.59% yes
[ours] OCN unsupervised (linear) 47.64% 4.43% 35.73% yes

[baseline] Softmax 27.28% 5.48% 20.40% no
[baseline] OCN supervised (NN) 37.90% 4.00% 23.97% no
[baseline] OCN supervised (linear) 39.98% 4.68% 32.74% no

[ours] OCN unsupervised (NN) 43.01% 5.56% 26.29% no
[ours] OCN unsupervised (linear) 48.26% 6.15% 37.05% no

[baseline] ResNet50 embeddings (NN) 59.65% 21.14% 34.94% no
[baseline] Chance 91.68% 87.50% 50.00% -
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9 ADDITIONAL QUALITATIVE RESULTS

Figure 10: A result showing the organization of real bowls based on OCN embeddings. The query object (black
border, top left) was taken from the validation all others from the training data. As the same object is used in
multiple scenes the same object is shown multiple times.
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Figure 11: A result showing the organization of real bowls based on OCN embeddings. The query object (black
border, top left) was taken from the validation all others from the training data. As the same object is used in
multiple scenes the same object is shown multiple times.
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Figure 12: A result showing the organization of bottles from synthetic data based on OCN embeddings. The
query object (black border, top left) was taken from the validation all others from the training data.
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Figure 13: A result showing the organization of vases from synthetic data based on OCN embeddings. The
query object (black border, top left) was taken from the validation all others from the training data.

17



Under review as a conference paper at ICLR 2018

Figure 14: A result showing the organization of chairs from synthetic data based on OCN embeddings. The
query object (black border, top left) was taken from the validation all others from the training data.
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10 ADDITIONAL ROBOTIC POINTING RESULTS

Figure 15: The robot experiment of pointing to the best match to a query object (placed in front of the robot on
the small table). The closest match is selected from two sets of target object list, which are placed on the long
table behind the query object. The first and the last three rows respectively correspond to the experiment for
the first and second target object lists. Each column also illustrates the query objects for each object category.
Image snapshots with green frame correspond to cases where both the ‘class’ and ‘container’ attributes are
matched correctly. Image snapshots with blue frame refer to the cases where only ‘container’ attribute is
matched correctly. Images with red frames indicates neither of attributes are matched.
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11 ADDITIONAL NEAREST NEIGHBOR RESULTS

Figure 16: An OCN embedding organizes objects along their visual and semantic features. For example, a red
bowl as query object is associated with other similarly colored objects and other containers. The leftmost object
(black border) is the query object and its nearest neighbors are listed in descending order. The top row shows
renderings of our synthetic dataset, while the bottom row shows real objects. For real objects we removed the
same instance manually.
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