
Measuring the Spectrum of Deepnet Hessians

Abstract

We apply state-of-the-art tools in modern high-dimensional numerical
linear algebra to approximate efficiently the spectrum of the Hessian of
modern deepnets, with tens of millions of parameters, trained on real
data. We decompose the Hessian into different components and study the
dynamics with training and sample size of each term individually.

1 Introduction
We consider a C-class classification problem, whereby we are given n training
examples in C classes, ∪Cc=1{xi,c}ni=1, and their corresponding labels and the
goal is to classify future data. State-of-the-art methods tackle this problem using
deepnets. These are trained using stochastic gradient descent by minimizing the
empirical cross-entropy loss,

L(θ) = Avei,c{`(f(xi,c; θ), yc)}. (1)

Here we denoted by f(xi,c; θ) ∈ RC the output of the classifier and by θ ∈ Rp the
concatenation of all the parameters in the network into a single vector. Our goal
is to investigate the Hessian of the loss averaged over the training (or testing)
data,

Hess(θ) = Avei,c
{
∂2`(f(xi,c; θ), yc)

∂θ2

}
. (2)

Using the Gauss-Newton decomposition, the Hessian can be written as a sum-
mation of two components:

Hess(θ) =Avei,c


C∑
c′=1

∂`(z, yc)

∂zc′

∣∣∣∣∣
f(xi,c;θ)

∂2fc′(xi,c; θ)

∂θ2

︸ ︷︷ ︸
H

(3)

+Avei,c

∂f(xi,c; θ)

∂θ

T
∂2`(z, yc)

∂z2

∣∣∣∣∣
f(xi,c;θ)

∂f(xi,c; θ)

∂θ

︸ ︷︷ ︸
G

. (4)

Moreover, G can be further decomposed, as explained in the following section.
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2 Three-level hierarchical decomposition
Define the p-dimensional vectors

gi,c,c′
T = (yc′ − p(xi,c; θ))T

∂f(xi,c; θ)

∂θ
, (5)

where p(xi,c; θ) ∈ RC are the softmax probabilities of xi,c. Note that for c = c′,

gi,c,c
T = (yc−p(xi,c; θ))T

∂f(xi,c; θ)

∂θ
=
∂`(z, yc)

∂z

T
∣∣∣∣∣
zi,c

∂f(xi,c; θ)

∂θ
=
∂`(f(xi,c; θ), yc)

∂θ

(6)
and so gi,c,c is simply the gradient of the i’th training example in the c’th class.
Following the same logic, gi,c,c′ is the gradient of the i’th training example in
the c’th class, if it belonged to class c′ instead. Denote pi,c,c′ to be the c′-th
entry of p(xi,c; θ) and define the following quantities

gc,c′ =
1

pc,c′

∑
i

pi,c,c′gi,c,c′

Σc,c′ =
1

pc,c′

∑
i

pi,c,c′(gi,c,c′ − gc,c′)(gi,c,c′ − gc,c′)T

pc,c′ =
∑
i

pi,c,c′

gc =
1

pc

∑
c′ 6=c

pc,c′gc,c′

Σc =
1

pc

∑
c′ 6=c

pc,c′(gc,c′ − gc′)(gc,c′ − gc′)T

pc =
∑
c′ 6=c

pc,c′

(7)
The left equations cluster gradients for a fixed pair of c, c′, whereas the right
equations cluster gradients with a fixed c. Leveraging this definitions, we prove
that G can be decomposed as follows:

G =
∑
c

pc
nC

gcg
T
c︸ ︷︷ ︸

A1

+
∑
c

pc,c
nC

gc,cg
T
c,c︸ ︷︷ ︸

A2

+
∑
c

pc
nC

Σc︸ ︷︷ ︸
B1

+
∑
c

∑
c′

pc,c′

nC
Σc,c′︸ ︷︷ ︸

B2,c︸ ︷︷ ︸
B2

.

3 Deliverables
Software for analyzing the spectra of the deepnet Hessians. We release
software implementing state-of-the-art tools in numerical linear algebra, allowing
one to approximate efficiently the spectrum (or log spectrum) of the Hessian
and its constituent components of modern deepnets such as VGG and ResNet.

Confirmation of bulk-and-outliers (Figure 1). We confirm previous re-
ports of bulk-and-outliers structure in the Hessian of toy models and synthetic
data [1, 2], this time at the full scale of modern state-of-the-art nets and on real
natural images.
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Attribution of outliers to G and bulk to H. We observe that the spectrum
of H does not contain outliers; thereby we can solidly attribute the outliers of
the Hessian to G. Moreover, we observe that most of the energy in the bulk of
the spectrum can be attributed to H.

Distribution of H. We document the spectrum of log(H) and find that it
does not follow a semicircle distribution, as previously suggested, but rather a
power law trend.

Attribution of the upper tail of the bulk. We document the dynamics of
the train Hessian, G and H as function of training and sample size. We find
that a transition occurs, whereby for low sample size and low epochs the upper
tail of the Hessian bulk can be attributed to G, while for higher sample size and
higher epochs it can be attributed to H.

Attribution of outliers in G to A1. We show the outliers of the Hessian,
which we attribute to G, are in fact due to G being a second moment matrix.
Moreover, the three-level hierarchical structure unveils that the unsubtracted
means correspond to the matrix A1.

Corroboration of three-level hierarchical structure in G (Figure 2).
We provide evidence for the three-level hierarchical structure in the spectrum of
G in the form of t-SNE plots of gc and gc,c′ . Moreover, as the decomposition
predicts, there exist two bulks in the spectrum corresponding to B1 and B2.

Dynamics of structure in G with sample size and training. We docu-
ment the dynamics of the hierarchical structure in G, across different sample
sizes and epochs. We find that fixing sample size and increasing the epoch causes
the bulks B1 and B2 to separate. While fixing the epoch and increasing sample
size causes the two bulks to draw closer. We also observe that fixing sample size
and increasing the epoch or fixing the epoch and increasing sample size causes
the outliers due to A1 to separate from the bulk due to B2.

Massive experiments. We confirm our results across different datasets (MNIST,
FashionMNIST, CIFAR10, CIFAR100, ImageNet), networks (VGG11, ResNet18,
DenseNet40), sample sizes, epochs and other hyperparameters.
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(a) MNIST, train (b) Fashion, train (c) CIFAR10, train

(d) MNIST, test (e) Fashion, test (f) CIFAR10, test

Figure 1: Spectrum of the Hessian for VGG11 trained on various datasets. Each
column of panels documents a famous dataset in deep learning. The panels in
the top row correspond to the train Hessian, while those in the bottom row to
the test Hessian. We observe a clear bulk-and-outliers structure. Arguably the
number of outliers is equal to the number of classes.

(a) VGG16. (b) ResNet50.

Figure 2: t-SNE visualization of the hierarchical structure in ImageNet. Each
panel depicts the two-dimensional t-SNE embedding of gc and gc,c′ for a different
architecture. All circles are colored according to the class c. The gc are marked
with large circles and have a label written in large font attached to them. The
gc,c′ are marked with small circles and a subset of them also have a label, written
in smaller font, attached to them. The label is a concatenation of the two class
names corresponding to c and c′. This plot asserts the three level hierarchy. At
level one we have the cluster centers {gc}c. At level two, next to each cluster
center gc, we find cluster members {gc,c′}c′ 6=c. For visualization purposes, we
subset randomly ten classes.
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