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ABSTRACT

Recent advances in deep learning have shown promising results in many low-level
vision tasks. However, solving the single-image-based view synthesis is still an
open problem. In particular, the generation of new images at parallel camera views
given a single input image is of great interest, as it enables 3D visualization of the
2D input scenery. We propose a novel network architecture to perform stereo-
scopic view synthesis at arbitrary camera positions along the X-axis, or “Deep 3D
Pan”, with “t-shaped” adaptive kernels equipped with globally and locally adap-
tive dilations. Our proposed network architecture, the monster-net, is devised with
a novel t-shaped adaptive kernel with globally and locally adaptive dilation, which
can efficiently incorporate global camera shift into and handle local 3D geometries
of the target image’s pixels for the synthesis of naturally looking 3D panned views
when a 2-D input image is given. Extensive experiments were performed on the
KITTI, CityScapes, and our VICLAB STEREO indoors dataset to prove the effi-
cacy of our method. Our monster-net significantly outperforms the state-of-the-art
method (SOTA) by a large margin in all metrics of RMSE, PSNR, and SSIM. Our
proposed monster-net is capable of reconstructing more reliable image structures
in synthesized images with coherent geometry. Moreover, the disparity informa-
tion that can be extracted from the “t-shaped” kernel is much more reliable than
that of the SOTA for the unsupervised monocular depth estimation task, confirm-
ing the effectiveness of our method.

1 INTRODUCTION

Recent advances in deep learning have pushed forward the state-of-the-art performance for novel
view synthesis problems. Novel view synthesis is the task of generating a new view seen from a
different camera position, given a single or multiple input images, and finds many applications in
robotics, navigation, virtual and augmented reality (VR/AR), cinematography, etc. In particular,
the challenging task of generating stereo images given a single input view is of great interest as it
enables 3D visualization of the 2D input scene. In addition, the falling price and the increasing
availability of the equipment required for VR/AR has fueled the demand for stereoscopic contents.

The previous works, such as Deep3D (Xie et al., 2016), have addressed the right-view generation
problem in a fully supervised fashion when the input is the left-view to which the output is the
synthetic right-view at a fixed camera shift. In contrast, our proposed Deep 3D Pan pipeline enables
the generation of new views at arbitrary camera positions along the horizontal X-axis of an input
image with far better quality by incorporating adaptive “t-shaped” convolutions with globally and
locally adaptive dilations. Our proposed “t-shaped” kernel with adaptive dilations takes into account
the camera shift amount and the local 3D geometries of the target pixels. Panning at arbitrary
camera positions allows our proposed model to adjust the baseline (distance between cameras) for
different levels of 3D sensation. Additionally, arbitrary panning unlocks the possibility to adjust for
different inter-pupillary distances of various persons. Figure 1 shows some generated left and right
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Figure 1: Generated left and right images by our proposed Deep 3D Pan for an input center image.

view images for a given single image input by our proposed Deep 3D Pan pipeline, which we call
“monster-net” (monocular to stereo network). In this paper, we define “panning” in the context of
3D modeling, implying that camera movement is in parallel to the center view camera plane.

In the following sections, we review the related works to stereoscopic view synthesis and discuss
the differences with our proposed method, followed by the formulation of our Deep 3d Pan pipeline
and finally, we present outstanding results on various challenging stereo datasets, showing superior
performance against the previous state-of-the-art methods.

2 RELATED WORK

Novel view synthesis is a well-studied problem in deep learning-based computer vision, and has
already surpassed the classical techniques for both cases of the multiple-image (Woodford et al.,
2007; Liu et al., 2009; Chaurasia et al., 2013) and single-image input (Horry et al., 1997; Hoiem
et al., 2005). The latter, single-image based novel view synthesis, is known to be a much more
complex problem compared to multiple-image based ones. Previous deep learning-based approaches
usually tend to utilize one of the two techniques to generate a novel view: (i) optical flow guided
image warping, and (ii) a “flavor” of kernel estimation, also known as adaptive convolutions.

The first technique, optical flow guided image warping, has been adopted by several authors to
train convolutional neural networks (CNNs) for optical flow or disparity estimation from single or
stereo images in an unsupervised fashion. However, their final goal was not to synthesize novel
views. These works include those of (Godard et al., 2017; Zhou et al., 2016; Gonzalez & Kim,
2019b; Tosi et al., 2019; Liu et al., 2019; Wang et al., 2019b; Ranjan et al., 2019; Lai et al., 2019).
Not all previous existing works have used flow-guided warping for unsupervised training or to reg-
ularize supervised methods for optical flow estimation. The work of Im et al. (2019) implemented
plane sweep at the feature level to generate a cost volume for multi-view stereo depth estimation.
Such plane sweep can be seen as a type of 1D convolution, similar to the 1D kernel utilized in the
second approach of kernel estimation for new view synthesis.

On the other hand, the second approach, kernel estimation or adaptive convolutions, has proved
to be a superior image synthesis technique and has been incorporated in several different ways. For
example: (1) Flynn et al. (2016), in their early DeepStereo, formulated a CNN capable of synthe-
sizing a middle view by blending multiple plane-swept lateral view inputs weighted by a “selection
volume”, which can be interpreted as a 1D (or line-shaped) adaptive convolution; (2) in a similar
way, Xie et al. (2016) devised the Deep3D, a non fully-convolutional network that estimates a series
of “probabilistic disparity maps” that are then used to blend multiple shifted versions of the left-view
input to generate a synthetic right-view image; (3) The adaptive separable convolutions (SepConv)
in the work of Niklaus et al. (2017) approximated adaptive 2D convolutions by two (vertical and
horizontal) 1D kernels that are applied sequentially to the input current and previous frames (t0 and
t1) for the video interpolation problem; (4) In the works of (Zhou et al., 2018; Srinivasan et al.,
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Figure 2: Synthesis techniques based on adaptive convolutions. The background is the input image.
Red dots represent target pixel locations in output images. Green (along with red) dots represent
sampling positions where the corresponding pixels are used to generate one target pixel.

2019), although with additional considerations, their multiplane image representation approach can
be loosely understood as a 1D adaptive convolution as the final operation involves the reduction of
a plane sweep volume; (5) Geometric-aware networks in the work of Liu et al. (2018) indirectly
achieved adaptive convolutions by learning a fixed number of affine transformations on an input im-
age, where the resulting affine-transformed images are then blended together to generate one output
image; and finally, (6) in the work of Gonzalez & Kim (2019a), the authors developed the Deep
3D Zoom Net, which estimates a selection volume for the “blending of multiple upscaled versions
of the input image”, which can be treated as an special case of a 1D adaptive convolution. The
(Flynn et al., 2016) and (Zhou et al., 2018) approaches require two or more images as inputs, thus,
greatly reducing the complexity of the synthesis task as most ambiguities are removed by counting
on multiple views. In our work, we focus on the single-image based stereoscopic view synthesis
task, which is a far more difficult problem as the network needs to understand the 3D geometry in
the scene, and to handle complex occlusions, ambiguities and non-Lambertian surfaces.

Although the aforementioned methods are distinguished one another, as the different synthesis tech-
niques have their own properties, they can be all interpreted as belonging to a category of adaptive
convolutions which are visualized in Figure 2. As observed in Figure 2-(a), DeepStereo (Flynn et al.,
2016) and Deep3D (Xie et al., 2016) share the same shape of kernel, that is, a 1D horizontal-only
kernel that samples pixels at a fixed interval, or dilation, along the X-axis for each target output
pixel. A 1D horizontal-only constant-dilation kernel suffers from three major drawbacks:

1. Inefficient usage of kernel values. When sampling the positions opposite to the camera
movement (which are the pixel locations corresponding to a1-a3 in Figure 2-(a), assuming a
rightward camera shift), experiments showed that these kernel values would often be zeros.
The same effect repeats when sampling the positions further away from the maximum
disparity value of the given scene (which corresponds to the pixel location at a7, assuming
that the maximum disparity is 2 and the dilation is 1) as the network is not able to find valid
stereo correspondences for these kernel positions;

2. Right-view synthesis is limited to the trained baseline (distance between stereo cameras),
as the models over-fit to a specific training dataset with a fixed baseline; and

3. The 1D line kernel has limited occlusion handling capabilities, as the network will try to
fill in the gaps with the information contained only along the horizontal direction, limiting
the reconstruction performance of the models on the occluded areas.

In contrast, the kernels predicted by the geometric-aware networks (Liu et al., 2018) have deformable
structures adaptive to the given input images, as shown in Fig. 2-(b). However, only one deformed
kernel shape is predicted and shared to synthesize all target output pixels, leading to limited per-
formance. Another drawback of the geometric-aware networks is their complexity, as they require
three sub-networks and a super-pixel segmentation step as pre-processing, hindering the processing
of high-resolution images. For the Deep 3D Zoom Net (Gonzalez & Kim, 2019a) case (Fig. 2-(c)),
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the 1D kernel tends to point to the center of the image, as it performs a blending operation of multiple
upscaled versions of the input image. The dilation size of this 1D kernel is adaptive according to the
desired 3D-zoom factor. Finally, for the video interpolation case, the SepConv (Niklaus et al., 2017)
approximates an NxN adaptive kernel via a 1xN and an Nx1 component (see Fig. 2-(d)) which are
sequentially applied to the input images to generate the synthetic output. SepConv has, by design,
limited receptive fields, as the dilation size is fixed to 1. Besides, the sequential nature of the kernel
forces the vertical component to sample pixels from the output of the horizontal convolution, which
could be already degraded due to heavy deformations introduced by the horizontal component.

Recent works have also attempted to improve upon the stereoscopic view synthesis by improving
the loss functions involved in the CNN’s training. The work of Zhang et al. (2019) proposed a multi-
scale adversarial correlation matching (MS-ACM) loss that learns to penalize structures and ignore
noise and textures by maximizing and minimizing the correlation-l1 distance in the discriminator’s
feature-space between the generated right-view and the target-view in an adversarial training setup.
Whereas the objective function is a key factor in training any CNN, we believe that, at its current
state, the stereoscopic view synthesis problem can benefit more from a better pipeline that can handle
the previously mentioned issues and using the widely accepted l1 and perceptual losses (Johnson
et al., 2016) for image reconstruction, rather than a more complex loss function.

Our proposed dilation adaptive “t-shaped” convolutions incorporate global (new camera position
along the X-axis) and local (3D geometries of specific target pixels) information of the input scene
into the synthesis of each output pixel value, by not only learning the specific kernel that will gener-
ate each output pixel, but also by learning the proper dilation value for each kernel. The “t” shape of
the kernel allows the network to account for occlusions by filling-in the gaps (missing information in
the output) due to shifted camera positions using not only left-and-right pixels (like DeepStereo and
Deep3D), but also up-and-down neighboring pixel information. In addition, the notions of global
and local dilations allow our proposed monocular to stereo network, the monster-net, to generate
arbitrarily 3D panned versions of the input center view along the X-axis, a useful feature not present
in previous works that allows adjusting for eye-to-eye separation and/or level of 3D sensation.

3 METHOD

In order to effectively synthesize an arbitrary 3D panned image, we propose a global dilation filter as
shown in Figure 3. Our proposed cross-shaped global dilation filter Td(p) at a target pixel location
p = (x, y) ∈ Ito, where Ito is a generated image, is defined as

Td(p) =
[
Tc(x, y), [Tu,Tb,Tl,Tr]

T
]

(1)

where Tc(x, y) is the filter parameter value of Td(p) at the center location p. The upper, bottom,
left and right wing parameters (Tu,Tb,Tl,Tr) of the cross-shaped dilation (d) filter are defined as

Tu = [Tu(x, y − d), Tu(x, y − 2d), . . . , Tu(x, y − nud)]T

Tb = [Tb(x, y + d), Tb(x, y + 2d), . . . , Tb(x, y + nbd)]
T

Tl = [Tl(x− d, y), Tl(x− 2d, y), . . . , Tl(x− nld, y)]T

Tr = [Tr(x+ d, y), Tr(x+ 2d, y), . . . , Tr(x+ nrd, y)]
T

(2)

where nu, nb, nl and nr indicate the numbers of filter parameters in Tu,Tb,Tl, and Tr, respectively.
For the cross-shaped dilation filter shown in Figure 3, it is more appropriate to have a longer length of
the right (left) filter wing than the other three wings when the camera panning is rightward (leftward),
as it allows capturing more useful information for the synthesis of a right (left) panned image. In
this case, nr (nl) is set to be greater than nl (nr), nu and nb, such that the global dilation filter
showed in Figure 3 can be elaborated as a “t-shaped” kernel which can then take into account the
camera panning direction for synthesis. Figure 4 shows examples of “t-shaped” kernels overlaid on
top of an input center image. As shown in Figure 4-(a), the “t-shaped” kernel has a longer left wing
of filter parameters for the synthesis of a leftward camera panning while in Figure 4-(b) it shows a
longer right-wing of filter parameters for the synthesis of a rightward camera panning.

Why “t” shape? Experiments with symmetric kernel shapes (e.g., “+” shape) were performed first,
but it was noted that most of the elements on the left (right), upper and bottom sides against the
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Figure 3: Our proposed global dilation (d) filter with a general cross shape.

Figure 4: Our proposed “t-shaped” kernels are overlaid on top of a center input image. The distance
between samples (dilation) is adaptive according to the amount and direction of 3D panning to be
applied to the input image and the local 3D geometry of the scene.

centered red dot of the kernel tended to have very small values close to zeros for most target pixels
for the rightward (leftward) movement of the camera. Similar to SepConv (Niklaus et al., 2017),
the experiments with a horizontal kernel applied first followed by a vertical kernel were performed,
yielding poor results. It was discovered that the “t” shaped kernel is more efficient than the “+”
shaped kernel as it picks up more effective sampling positions with a fewer parameters than the
standard adaptive convolutions such as those in SepConv. As depicted in Figure 5, the “t-shaped”
kernels can embed useful information like disparity and occlusion from a monocular image into the
stereo synthesis process.

The longer right (left) wing of the “t-shaped” kernel contains disparity information, as it will
try to sample pixels from the right (left) side to the target pixel when the camera is assumed to move
in the rightward (leftward) direction. Figure 5-(a) depicts a primitive disparity map Dp that was
constructed by the weighted sum of the kernel values in the longer kernel wing, as described by

Dp(p) =

nr∑
i=1

i

nr
Tr(x+ id, y) (3)

where Tr(x + id, y) is the i-th value of the longer wing Tr at pixel location p = (x, y) for the
rightward 3D panning of an input center image Ic. Note that Dp is normalized in the range [0, 1]. In-
terestingly, as shown in Figure 5-(a), the generated disparity map looks very natural and appropriate,
which implies the effectiveness of our “t-shaped” kernel approach.

The short left (right), upper and bottom wings of the “t-shaped” kernel contain occlusion
information, as the network will try to fill in the gaps utilizing surrounding information that is not
present in the long part of the “t-shaped” kernel. It is also interesting to see the occlusion map in
Figure 5-(b) where a primitive rightward occlusion map Or

p was constructed by summing up the
“t-shaped” kernel values in the short wing parts according to the following:

Or
p(p) =

nl∑
i=1

Tl(x− id, y) +
nu∑
i=1

Tu(x, y − id) +
nb∑
i=1

Tb(x, y + id) (4)

The bright regions or spots in Figure 5-(b) indicate the occlusions due to the camera shift along the
horizontal axis of the input center image, which are likely to happen for the case of the camera’s
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Figure 5: Disparity (Dp) and occlusion (Or
p) maps generated from the proposed “t-shaped” kernel.

rightward panning. For both Equations (3) and (4), the primitive disparity and occlusion maps for
the leftward panning case can be obtained by swapping the r and l indices.

3.1 GLOBALLY AND LOCALLY ADAPTIVE DILATIONS FOR THE SYNTHESIS OF A NEW VIEW
IMAGE AT A SHIFTED CAMERA POSITION

In general, the disparity amounts between stereo images are variable at different pixel locations
according to the distance between stereo cameras and the local scene geometries. Therefore, it is
necessary to take into account the variable disparity in synthesizing a new view in a globally and
locally adaptive fashion. For this, a “t-shaped” kernel is introduced with a controllable dilation fac-
tor by which both camera shift and local changes in image geometry can be effectively taken into
account when synthesizing a new (left or right) view for the input center image. Any kernel with
a fixed dilation may cause a limited accuracy in synthesizing a novel view because the disparity
amounts vary over the whole image according to the cameras’ baseline and the local geometries.
So, our “t-shaped” kernel is proposed to make the synthesis of novel views not only globally, but lo-
cally adaptive to the camera shift and its local changes in image geometry by controlling its dilation
size per-pixel in the output image. Globally, a short dilation value is more appropriate when slightly
shifting the camera, while a high dilation value is desirable when largely shifting the camera posi-
tion. In a local manner, a small dilation value is appropriate for far-away objects from the camera
while very close objects to the camera can be better reconstructed with a larger dilation value.

3.1.1 GLOBAL DILATION

We define the global dilation gd as the pixel distance between two consecutive kernel sampling
positions, which is given by the pan amount Pa to be applied to the input center image Ic divided by
the total number of filter parameters in the longer “t-shaped” kernel wing (nl or nr). Pa has a unit
of pixels mapped in the image corresponding to the camera shift into the left or right direction and
takes on floating numbers. Therefore, the global dilation gd is given by

gd = { Pa/nr if Pa > 0, Pa/nl if Pa < 0 } (5)

where Pa takes on positive (negative) values for the rightward (leftward) panning scenario. The pan
amount needed to generate a left-view or a right-view is determined during training according to the
closest possible objects to the camera. The “closest possible objects” vary over different training
datasets. For our novel view synthesis task, like in (Godard et al., 2017; Gonzalez & Kim, 2019b),
we assume the KITTI dataset to have a maximum or “closest possible object” disparity of 153 pixels.
During training, Pa is set to 153 and -153 for the rightward and leftward panning, respectively.

3.1.2 LOCAL DILATION

While global dilation allows the “t-shaped” kernel to take into account the global camera shift, a
locally adaptive mechanism is needed to synthesize new views of locally variable disparity. Such a
mechanism is realized by first generating multiple images with the “t-shaped” kernel at N different
dilations and blending them per-pixel in a locally adaptive manner. The blending is a weighted sum
of filtered images by the “t-shaped” kernel with N different dilations, where the blending weights
(w1, w2, . . . , wN ) control the local dilation per-pixel and are learned via a convolutional neural
network (CNN) along with the parameter values of the “t-shaped” kernel. Let |gd| be the maximum
dilation value that is a fractional number. Figures 4-(c), -(d) and -(e) illustrative three “t-shaped”
kernels with a maximum dilation |gd| and two dilation values less than |gd|. To generate an output
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Figure 6: Our t-net architecture. The t-net estimates the kernel values and the dilation weights used
for the local adaptive t convolutions with global and local adaptive dilation.

image Ito panned to the rightward direction (gd > 0) or to the leftward direction (gd < 0), the
input center image Ic is first filtered by N “t-shaped” kernels Tdi

of different dilations (d1, . . . , dN ).
Then, local adaptive dilations are calculated by linearly combining the resulting N intermediate
filtered images according to the corresponding blending weights (w1, w2, . . . , wN ). Based on the
N different global dilations, the output image value Ito(p) at a pixel location p can be calculated as

Ito(p) =

N∑
i=1

wi(p) [Ic ∗ Tdi
] (p) (6)

where [Ic ∗ Tdi ](p) is a “t-shaped” convolution at location p between Ic and Tdi of dilation di =
(1 + (1− i)/N)gd for i = 1, . . . , N . wi(p) indicates a blending weight for the i-th global dilation.

3.2 NETWORK ARCHITECTURE

We propose an end-to-end trainable CNN, called the “monster-net” (monocular to stereo net). The
monster-net is made of two main building blocks, a novel view synthesis network, the “t-net”, and a
resolution restoration block, the “sr-block”. Given an input center image Ic and pan amount Pa, the
final output panned image Io is obtained by sequentially applying the aforementioned modules by

Io = monster-net(Ic, Pa) = sr-block(t-net(Ic, Pa; θt), {Incs}; θsr) (7)

where θt and θsr parameterize the t-net and the sr-block respectively. {Incs} is the stack of progres-
sively shifted-downscaled versions of the input center image Ic described in the SR-BLOCK section.

The t-net. The “t-net” estimates both the “t-shaped” global dilation kernel parameters (Td) and the
adaptive local dilation weights (w1, w2, . . . , wN ). The t-net is designed to have large receptive fields
to synthesize detailed image structures of a new view image, which corresponds to a shifted camera
position. Such large receptive fields are useful in capturing the global image structure and contex-
tual information needed for a new view image to be synthesized. For this, an auto-encoder with skip
connections (not a U-net structure) is adopted, which allows the t-net to have effectively large re-
ceptive fields and to efficiently fuse global and local (fine details) information on the decoder stage.
For better feature extraction, we adopt the residual connections in the encoder side, as proposed by
(Gonzalez & Kim, 2019b). The t-net estimates all necessary values to perform the operation de-
scribed by Equation (6). The t-net, depicted in Figure 6, has two output branches: the first output
branch yields 81 channels, where the first 49 are horizontal parameter maps, and the following 32
vertical parameter maps; the second output branch generates the 3-channel blending weight maps for
the local adaptive dilation. That is, each channel-wise vector at a pixel location for the first output
branch corresponds to the t-kernel parameter values [Tc,TT

l ,T
T
r ,T

T
u ,T

T
b ], and each channel-wise

vector for the second output branch corresponds to the blending weights [w1, w2, . . . , wN ], utilized
for local dilations in Equation (6). As our t-net is devised to generate arbitrarily panned novel views,
feeding the pan amount as a 1-channel constant feature map (Pa(p) = Pa∀ p) helps the network
take into account the varying pan direction, and the amount of occlusion on the 3D panned output.
The effect of feeding the pan amount is further discussed in appendix A-1.

Super resolution (SR) block. As generating a full resolution dilation-adaptive t-kernel would be
computationally too expensive, we propose to estimate it at a low resolution (LR) for the synthesis
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Figure 7: (a) Shifted-LR versions of the center-view contain different information as they are sam-
pled from different groups of pixels via bilinear interpolation depending on the stride (controlled by
the maximum disparity). (b) Our light sr-block. All convs have 3x3 kernels otherwise specified.

Table 1: Stereoscopic view synthesis performance on the 400 KITTI2015 training images (left) and
the 500 CityScapes validation images (right). lp: perceptual loss. ↑↓ indicate the better performance.

Model training dataset loss RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑
Deep3D K l1 26.13 20.07 0.637 30.10 18.82 0.655
Deep3D-B K l1 + lp 26.00 20.10 0.633 31.34 18.46 0.636
SepConv K l1 27.22 19.73 0.633 27.77 19.54 0.660
SepConv-D K l1 + lp 26.36 20.02 0.626 29.66 18.95 0.647
monstet-net K l1 + lp 25.61 20.24 0.641 20.28 22.34 0.710
monster-net K+CS l1 24.11 20.76 0.667 12.87 26.36 0.816
monster-net (full) K+CS l1 + lp 24.44 20.64 0.651 13.12 26.20 0.805
monster-net K+CS+VL l1 + lp 24.62 20.55 0.645 - - -

of a half-resolution novel view, and then to apply deep learning based SR techniques to bring the
LR novel view to the high (or original) resolution (HR). In comparison, in Deep3D and SepConv,
the estimated LR kernel is upscaled with conventional methods to the HR and then applied to the
input image(s), which is a costly operation as it is carried out in the HR dimensions and can lead to
blurred areas as the kernel is just bilinearly interpolated. In our proposed pipeline, instead of utilizing
common single image SR methods like (Dong et al., 2015; Shi et al., 2016; Kim et al., 2016), we
propose to apply a stereo-SR method. The stereo-SR technique in (Jeon et al., 2018) takes a LR
stereo pair (left and right views) as input and progressively shifts the right-view producing a stack
that is concatenated with the left-view and later processed by a CNN to obtain the super-resolved
left-view. This process is made at an arbitrary and fixed stride (e.g. 1 pixel at every step of the stack)
and does not take into account the maximum disparity between the input views. For our Deep 3D
Pan pipeline, we propose to use the maximum disparity prior that can be obtained from the long
wing of the t-kernel to dynamically set the shifting stride. Additionally, instead of interpolating
and processing the low resolution panned view Ito(p) on the HR dimensions, we progressively shift
and then downscale the high-resolution center view Ic by a factor of x2. This allows our sr-block
to operate on the LR dimensions without performance degradation, as high frequency information
in the horizontal axis is not lost but distributed along the levels of the shifted center view stack as
depicted in Figure 7-(a). Our sr-block, depicted in Figure 7-(b), is a simple, yet effective module
that takes as input the LR Ito view and the shifted-downscaled center view stack Incs described by

Incs = g(Ic,
nPa

Ns
max(Dp)) (8)

where g(I, s) is an s-strided horizontal-shift and 2x down-scaling operator applied on image I. The
stride s can take any real number and the resulting image is obtained via bilinear interpolation. Ns

is the depth of the stack, and was set to Ns = 32 for all our experiments). The stack is concatenated
with the LR Ito and passed trough four Conv-ReLU layers followed by a residual connection as shown
in Figure 7-(b). The final step up-scales the resulting features into the target resolution via nearest
interpolation followed by a convolutional layer. The last layer reduces the number of channels
to three for the final RGB output Io. Nearest upscaling was adopted as it yields no checkerboard
artifacts in contrast with transposed or sub-pixel convolutions (Niklaus et al., 2017).
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Figure 8: Comparison against the state-of-the-art methods for stereoscopic view synthesis.

4 EXPERIMENTS AND RESULTS

To demonstrate the effectiveness of our “t-shaped”-dilation-adaptive kernel, we performed several
experiments on the challenging KITTI2012 (Geiger et al., 2012), KITTI2015 (Menze & Geiger,
2015), and CityScapes (Cordts et al., 2016) datasets. As these stereo datasets only consist of out-
door scenes, we also performed experiments on our indoors dataset, called the VICLAB STEREO
dataset. Surprisingly, to our best knowledge, this is the first stereo dataset available that focuses on
the indoor scene, which is planned to be publicly available for research. Additionally, our formu-
lation of global and local adaptive dilations allows our monster-net to be trained on multiple stereo
datasets at the same time, even if these have different baselines. Instead of over-fitting on a single
camera baseline like the previous methods (Xie et al. (2016); Godard et al. (2017); Zhang et al.
(2019); Luo et al. (2018)), our monster-net can build knowledge when simultaneously trained on
many datasets. To our best knowledge, our Deep 3D Pan pipeline is the first method designed to
be trained on multiple baseline datasets concurrently for the stereoscopic view synthesis problem
where unsupervised monocular depth estimation is even used particularly. For more details about
the datasets and multi-dataset training, please see the appendix A-3.

We compare our monster-net against the stereoscopic view synthesis SOTA: Deep3D Xie et al.
(2016) and a version of SepConv (Niklaus et al., 2017) modified for right-view synthesis. Firstly,
for a fair comparison, the backbone convolutional auto-encoders for the Deep3D and SepConv were
set up to be equivalent to our t-net’s, that is, a six-stage encoder-decoder with skip connections
and residual blocks in the encoder side. Secondly, we compare our monster-net with Deep3D-B,
a “Bigger” version of Deep3D, where, instead of 32 elements in the 1D kernel as in its original
work, we use 49 elements to match the number of horizontal kernel values in our t-net. Thirdly, we
compare against SepConv-D, a dilated version of the SepConv such that the receptive field of the
separable convolutions has a size of 153x153. The Deep3D and the SepConv models are trained
without using perceptual loss as in their original works. For a more meaningful comparison, the
Deep3D-B and the SepConv-D are trained with a combination of l1 and perceptual loss lp (Johnson
et al., 2016), and demonstrate that a better loss function than l1 does not contribute enough to the
stereoscopic view synthesis problem. For more implementation details, reefer to the appendix A-4.

Additionally, we compare the quality of the embedded disparity in the long wing of the “t-shaped”
kernel with those of the state-of-the-art models for the monocular depth estimation task. For that,
we first define a disparity refinement sub-network that uses the primitive disparity obtained from
the long wing of the “t-shaped” kernel as prior information. Secondly, we define a special post-
processing (spp) step, which, instead of relying on a naive element wise summation as in Godard
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Table 2: Depth metrics (Eigen et al., 2014) for KITTI2015. Models are trained with video (V),
stereo (S), semi global matching (SMG) or GT depth (Supp). Top models in terms of a1 accuracy
are highlighted. Simplified table, see appendix A.9 for the full version.
Model Supp V S dataset abs rel↓ sq rel↓ rms↓ log rms↓ a1 ↑ a2 ↑ a3 ↑
Wang et al. (2019a) (9-view) x K 0.112 0.418 2.320 0.153 0.882 0.974 0.992
Tosi et al. (2019) (pp) SMG x K+CS 0.096 0.673 4.351 0.184 0.890 0.961 0.981
ours with refine block (spp) x K+CS 0.099 0.950 4.739 0.160 0.900 0.971 0.989
Gur & Wolf (2019) x K 0.110 0.666 4.186 0.168 0.880 0.966 0.988
Luo et al. (2018) x K 0.094 0.626 4.252 0.177 0.891 0.965 0.984
Wang et al. (2019a) (1/9-view) x x K 0.088 0.245 1.949 0.127 0.915 0.984 0.996

et al. (2017), takes into account the ambiguities of the first and second forward passes to generate
a remarkable sharp and consistent disparity map. For more details on the refinement block and our
special post-processing, reefer to the appendix A-2.

4.1 RESULTS ON THE KITTI, CITYSCAPES AND THE VICLAB STEREO DATASETS

Table 1 shows the performance comparison for our method and previous works. It is important to
mention that our monster-net performs inference on full resolution images, while the previous ap-
proaches for single-view novel view synthesis perform estimation on reduced resolution inputs. Our
method outperforms the Deep3D baseline by a considerable margin of 0.7dB in PSNR, 2.0 in RMSE,
and 0.03 in SSIM. The qualitative results are shown in Figure 8. Our method produces superior look-
ing images. In Deep3D and SepConv, many objects appear too blurred such that their boundaries
can hardly be recognized in the synthetic images (e.g the motorcycle, persons, traffic signs, etc.). We
challenged the models trained on KITTI (K) to perform inference on the CityScapes validation split
(CS), and observed that our method generalizes much better than the Deep3D baseline with up to
3dB higher in PSNR. When training the monster-net with K+CS, we get an additional improvement
of 4dB PSNR in the validation CS dataset. Incorporating an indoor dataset to our training pipeline
is also possible, making our network applicable to a wide variety of scenarios. We added the VI-
CLAB STEREO (VL) dataset to the training, that is K+CS+VL, and observed little impact on the K
dataset performance as shown in Table 1. We also tested the performance of our monster-net on the
validation split of the VL dataset. We observed that our full monster-net trained on K+CS achieved
a mean PSNR of 19.92dB, while achieving a mean PSNR of 21.78 dB when trained on K+CS+VL.
For a network trained on the outdoors dataset only it is difficult to generalize to the indoors case,
as the latter contains mainly homogeneous areas, whereas the outdoors case mainly contains texture
rich scenes. Visualizations on CS and VL, and ablation studies that prove the efficacy of each of our
design choices can be found in the appendices A-5, A-6 and A-8.

4.2 RESULTS ON DISPARITY ESTIMATION

With the addition of a relatively shallow disparity refinement sub-network, the monster-net remark-
ably outperforms all the state-of-the-art models for the unsupervised monocular depth estimation
task, as shown in Table 2. Our monster-net with disparity refinement even outperforms the super-
vised monocular disparity estimation methods such as (Luo et al., 2018; Gur & Wolf, 2019) and
multiple view unsupervised methods such as (Wang et al., 2019a; Ranjan et al., 2019).

5 CONCLUSION

We presented an adaptive “t-shaped” kernel equipped with globally and locally adaptive dilations
for the Deep 3D Pan problem, defined as the task of arbitrarily shifting the camera position along
the X-axis for stereoscopic view synthesis. Our proposed monster-net showed superior performance
to the SOTA for right-view generation on the KITTI and the CityScapes datasets. Our monster-
net also showed very good generalization capabilities with 3dB gain in PSNR against the Deep3D
baseline. In addition, our method presents no-discontinuities, consistent geometries, good contrast,
and naturally looking left or right synthetic panned images. Our monster-net can be extended for
image registration, monocular video to stereo video, and generation of novel views at any camera
translation by just allowing a pixel-wise rotation of our “t-shaped” kernel.
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Gaurav Chaurasia, Sylvain Duchêne, Olga Sorkine-Hornung, and George Drettakis. Depth synthesis
and local warps for plausible image-based navigation. ACM Transactions on Graphics, 32, 2013.
URL http://www-sop.inria.fr/reves/Basilic/2013/CDSD13. to be presented
at SIGGRAPH 2013.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2):
295–307, 2015.

David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image using a
multi-scale deep network. In Advances in neural information processing systems, pp. 2366–2374,
2014.

Jose M. Facil, Benjamin Ummenhofer, Huizhong Zhou, Luis Montesano, Thomas Brox, and Javier
Civera. Cam-convs: Camera-aware multi-scale convolutions for single-view depth. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. Deepstereo: Learning to predict
new views from the world’s imagery. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

Clement Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsupervised monocular depth es-
timation with left-right consistency. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

J.L. Gonzalez and M. Kim. Deep 3D-Zoom Net: Unsupervised Learning of Photo-Realistic 3D-
Zoom. arXiv e-prints, art. arXiv:1909.09349, Sep 2019a.

J.L. Gonzalez and M. Kim. A novel monocular disparity estimation network with domain trans-
formation and ambiguity learning. In 2019 IEEE International Conference on Image Processing
(ICIP), pp. 474–478, Sep. 2019b. doi: 10.1109/ICIP.2019.8803827.

Shir Gur and Lior Wolf. Single image depth estimation trained via depth from defocus cues. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Derek Hoiem, Alexei A. Efros, and Martial Hebert. Automatic photo pop-up. In ACM SIGGRAPH
2005 Papers, SIGGRAPH ’05, pp. 577–584, New York, NY, USA, 2005. ACM. doi: 10.1145/
1186822.1073232. URL http://doi.acm.org/10.1145/1186822.1073232.

Youichi Horry, Ken Anjyo, and Kiyoshi Arai. Tour into the picture: Using spidery mesh interface
to make animation from a single image”. pp. 225–232, 01 1997. doi: 10.1145/258734.258854.

11

http://www-sop.inria.fr/reves/Basilic/2013/CDSD13
http://doi.acm.org/10.1145/1186822.1073232


Published as a conference paper at ICLR 2020

Sunghoon Im, Hae-Gon Jeon, Stephen Lin, and In So Kweon. DPSNet: End-to-end deep plane
sweep stereo. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryeYHi0ctQ.

Daniel S. Jeon, Seung-Hwan Baek, Inchang Choi, and Min H. Kim. Enhancing the spatial resolution
of stereo images using a parallax prior. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European conference on computer vision, pp. 694–711. Springer, 2016.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1646–1654, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Hsueh-Ying Lai, Yi-Hsuan Tsai, and Wei-Chen Chiu. Bridging stereo matching and optical flow via
spatiotemporal correspondence. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1890–1899, 2019.

Feng Liu, Michael Gleicher, Hailin Jin, and Aseem Agarwala. Content-preserving warps for 3d
video stabilization. In ACM SIGGRAPH 2009 Papers, SIGGRAPH ’09, pp. 44:1–44:9, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-726-4. doi: 10.1145/1576246.1531350. URL
http://doi.acm.org/10.1145/1576246.1531350.

Miaomiao Liu, Xuming He, and Mathieu Salzmann. Geometry-aware deep network for single-
image novel view synthesis. In The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018.

Pengpeng Liu, Michael Lyu, Irwin King, and Jia Xu. Selflow: Self-supervised learning of optical
flow. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Yue Luo, Jimmy Ren, Mude Lin, Jiahao Pang, Wenxiu Sun, Hongsheng Li, and Liang Lin. Single
view stereo matching. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via adaptive separable convo-
lution. In The IEEE International Conference on Computer Vision (ICCV), Oct 2017.

Andrea Pilzer, Stephane Lathuiliere, Nicu Sebe, and Elisa Ricci. Refine and distill: Exploiting
cycle-inconsistency and knowledge distillation for unsupervised monocular depth estimation. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Anurag Ranjan, Varun Jampani, Lukas Balles, Kihwan Kim, Deqing Sun, Jonas Wulff, and
Michael J. Black. Competitive collaboration: Joint unsupervised learning of depth, camera mo-
tion, optical flow and motion segmentation. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1874–1883, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár. Amortised
MAP inference for image super-resolution. In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.
URL https://openreview.net/forum?id=S1RP6GLle.

12

https://openreview.net/forum?id=ryeYHi0ctQ
https://openreview.net/forum?id=ryeYHi0ctQ
http://arxiv.org/abs/1412.6980
http://doi.acm.org/10.1145/1576246.1531350
https://openreview.net/forum?id=S1RP6GLle


Published as a conference paper at ICLR 2020

Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng, and Noah
Snavely. Pushing the boundaries of view extrapolation with multiplane images. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Fabio Tosi, Filippo Aleotti, Matteo Poggi, and Stefano Mattoccia. Learning monocular depth esti-
mation infusing traditional stereo knowledge. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

Rui Wang, Stephen M. Pizer, and Jan-Michael Frahm. Recurrent neural network for (un-)supervised
learning of monocular video visual odometry and depth. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019a.

Yang Wang, Peng Wang, Zhenheng Yang, Chenxu Luo, Yi Yang, and Wei Xu. Unos: Unified unsu-
pervised optical-flow and stereo-depth estimation by watching videos. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019b.

O. J. Woodford, I. D. Reid, P. H. S. Torr, and A. W. Fitzgibbon. On new view synthesis using
multiview stereo. In In Proc. BMVC, pp. 1120–1129, 2007.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Deep3d: Fully automatic 2d-to-3d video conversion
with deep convolutional neural networks. In European Conference on Computer Vision, pp. 842–
857. Springer, 2016.

Yu Zhang, Dongqing Zou, Jimmy S. Ren, Zhe Jiang, and Xiaohao Chen. Structure-preserving
stereoscopic view synthesis with multi-scale adversarial correlation matching. In The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, and Alexei A Efros. View synthesis
by appearance flow. In European conference on computer vision, pp. 286–301. Springer, 2016.

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
Learning view synthesis using multiplane images. In SIGGRAPH, 2018.

A APPENDIX

A.1 EFFECT OF FEEDING THE PAN AMOUNT TO THE T-NET

The larger the pan amount, the greater the occlusions to be handled in the synthetic output image.
The effect of feeding the pan amount Pa as a one-channel constant feature to the t-net can be visu-
alized in Figure 9, where multiple primitive disparity and occlusion maps are depicted for different
pan amounts. As shown in Figure 9, the network generates different maps for different magnitudes
and directions of Pa while keeping the input center image Ic unchanged, confirming the effect of the
pan amount as prior knowledge to the network. The difference between the disparity maps can be
appreciated in the “holes” or “shadows” casted in the objects borders, as they represent the occluded
content seen from the output 3D panned image. In the red box in Figure 9 it is observed that the
shadows casted by leftward and rightward camera panning appear in opposite sides ob the objects.
In the yellow box, it is observed that the larger the Pa, the larger the shadows projected, as more
occlusions are to be handled.

A.2 DISPARITY REFINEMENT SUB-NETWORK

The disparity refinement network architecture, as depicted in Figure 10, has two input branches: one
takes a stack of the 2x bilinearly upscaled center image disparity prior (Dcp) and the RGB center
image (Ic); and the other is fed with a stack of the 2x bilinearly upscaled output panned view disparity
prior (Dop) and the generated panned view (Io). The disparity refinement block is a relatively shallow
auto-encoder with skip connections and rectangular convolutions as fusion layers in the decoder
stage. This allows to increase the receptive field size in the horizontal axis, thus improving the
stereo matching performance, as suggested by (Gonzalez & Kim, 2019b). We configure the output
layer of our refinement network with the last layer of Gonzalez & Kim (2019b)’s architecture, which
allows to do ambiguity learning in our refinement block. Ambiguity learning allows the network to
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unsupervisedly account for occlusions and complex or clutered regions that are difficult to minimize
in the photometric reconstruction loss (Gonzalez & Kim, 2019b). We train the refinement block
with the loss functions defined in (Gonzalez & Kim, 2019b) and a new additional loss towards
producing the refined disparity maps similar to the primitive disparity maps Dcp and Dop. The
refinement network is encouraged to produce refined center and panned disparity maps Dc and Do

similar to their primitive counterparts of half the resolution (as they are estimated from the t-net), by
minimizing the following primitive disparity loss

lDp = ||Dop − D1/2
o ||1 + ||Dcp − D1/2

c ||1 (9)

where D1/2
c and D1/2

o are the bilinearly downscaled and refined center and panned disparity maps by
a factor of 1/2, respectively. We give a weight of 0.5 to this new loss term. The disparity refinement
block can be trained end-to-end along with the monster-net or from a pre-trained monster-net.

A.2.1 SPECIAL POST-PROCESSING

Instead of relying on naive post-processing approaches like in (Godard et al., 2017), which consist
on running the disparity estimation twice with normal and horizontally flipped inputs and then tak-
ing the average depth, we define a novel special post-processing step (spp) by taking into account the
ambiguities in the first and second forward pass. We noted that the ambiguity learning from (Gon-
zalez & Kim, 2019b), which we incorporate in our disparity refinement block, can be used to blend
the resulting disparities from the first and the second forward pass such that only the best disparity
estimation (or ambiguity free) from each forward pass is kept on the final post-processed disparity.
Figure 11 depicts our novel post-processing step, which consist on running the forward pass of our
monster-net with disparity refinement block with Pa = 153 and Pa = −153, for the first and the
second pass respectively. Then, the generated ambiguity masks of each forward pass are concate-
nated to create a two-channel tensor and passed through a softmax operation along the channel axis.
The resulting soft-maxed ambiguities are used to linearly combine the disparity maps of each for-
ward pass. As can be observed in Figure 11, the soft-maxed ambiguity mask effectively segment the
best disparity estimation from each forward pass. Figure 12 shows the primitive disparity map, the
subsequent refinement step, the naive post-processing (pp) and our novel post-processing (spp).

A.3 THE KITTI, CITYSCAPES AND VICLAB STEREO DATASETS

The KITTI dataset is a very large collection of mid-resolution 370x1226 stereo images taken from a
driving perspective. We used the KITTI split as suggested in (Godard et al., 2017), which consists of
29,000 stereo pairs from 33 different scenes of the KITTI2012 dataset. We set apart the KITTI2015
dataset for validation as it contains 400 images excluded from the KITTI split. Additionally, the
KITTI2015 contains sparse disparity ground truths (GTs) which are obtained from LIDAR and then
are refined by car CAD models. We use these GTs to evaluate the quality of the estimated disparity
that can be extracted from the long wing of the t-kernel. CityScapes is a higher resolution stereo
dataset with 24,500 stereo pairs that we extract from the train, test and train extra directories
for training. The val directory is left for validation with 500 stereo pairs. We pre-process the
CityScapes dataset for faster and more robust training. We first remove the top 25, bottom 200

Figure 9: Effect of feeding different values of Pa while keeping the input image unchanged. Differ-
ent values of Pa generate different occlusions and different holes in disparities (see red and yellow
boxes), which indicate the occluded regions in the target panned image.
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Figure 10: Disparity refinement block

Figure 11: Our novel special post-processing step (spp)

Figure 12: Primitive disparity and different refinement options.
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and left 100 pixels to avoid car hoods and rectification artifacts, thus yielding a final image size of
799x1948. Secondly, we save the cropped images in .jpg format to accelerate loading times during
training. The VICLAB STEREO is an indoor left and right view dataset that was captured in 18
different buildings on a static pedestal using a Stereolabs’s ZEDTMstereo camera. The captured
2,051 high-resolution stereo pairs were rectified via checkerboard calibration as described in this
MATLAB website1. After rectification, the images in the VICLAB STEREO yield a final resolution
of 1247x2454. We use 2,035 stereo pairs spanning 17 buildings for training, and the remaining 16
images for validation.

A.3.1 TRAINING ON MULTIPLE DATASETS

To our best knowledge, our Deep 3D Pan pipeline is the first method designed to be trained on
multiple baseline datasets at the same time for the stereoscopic view synthesis problem and the
unsupervised monocular depth estimation task. It should be noted that the work of Facil et al.
(2019) only handled the supervised monocular depth estimation task for multiple datasets with dif-
ferent camera intrinsics utilizing “CAM-Convs”, which is a simpler problem than our unsupervised
problem. While they require to know the intrinsic matrix for each dataset, along with added com-
putational complexity to perform the “CAM-Convs”, our method only requires to know the dataset
baseline (distance between cameras). To train on multiple datasets, the only required step is to mul-
tiply the Pa by the relative baseline with respect to a reference dataset. For instance, the baseline in
the KITTI dataset is about 54cm, and, as mentioned before, we have set this baseline to correspond
to PK

a = 153. Then for the CityScapes dataset, whose baseline is 22cm, its pan amount will be given
by PCS

a = (22/54)PK
a . For the VICLAB STEREO dataset with the baseline of 12cm long, its pan

amount becomes PV L
a = (12/54)PK

a . When training on KITTI + CityScapes (K+CS), a batch
of size 8 contains 4 images from each dataset. When training on KITTI + CityScapes + VICLAB
(K+CS+VL), each batch of size 8 contains 3, 3 and 2 images, respectively. For the comparison
against the recent works, we train our model and the state-of-the-art models with KITTI (K) and
KITTI + CITYSCAPES (K+CS) only, and evaluate the resulting trained models on the 400 images
from the KITTI2015.

A.4 IMPLEMENTATION DETAILS

For the training of all models, we used the Adam optimizer (Kingma & Ba, 2014) with the recom-
mended β’s (0.5 and 0.999) for the regression task with a batch size of 8 for 50 epochs. The initial
learning rate was set to 0.0001 and was halved at epochs 30 and 40. The following data augmen-
tations on-the-fly were performed: Random resize with a factor between 0.5 and 1 conditioned by
the subsequent 256x512 random crop; random horizontal flip, random gamma, and random color
and RGB brightness. It was observed that vertical flip has made the learning more difficult, thus it
was avoided. When training our model (the monster-net), the training images were sampled with a
50% chance for rightward (Pa > 0) or leftward (Pa < 0) panning. Additionally, random resolu-
tion degradation was applied to the input only by down-scaling followed by up-scaling back to its
original size using a bicubic kernel with a scaling factor between 1 and 1/3 while keeping the target
view unchanged. Random resolution degradation has improved our results by making the network
more sensitive to edges and forcing it to focus more on structures and less on textures. Similar
“tricks” have been used in previous works in the form of adding noise to the input of discriminators
(Sønderby et al., 2017; Zhang et al., 2019) to make them invariant to noise, and more sensible to
structures. When training our monster-net, either the left or the right view can be used as the input
during training. When the left-view is used as the center input view Ic, the pan amount Pa is set
to 153 and the ground truth Igt is set to be the right image. In the opposite case, when the center
view is the right image, Pa is set to -153 and the left-view is set as the GT. For our monster-net, the
“t-shaped” kernel was set to have short wings of 16 elements and a long wing of 32 elements plus
one center element Tc. For the Deep3D, the 1D kernel is set to have 33 elements and 49 elements
for the Deep3D-B variant. For the SepConv and the SepConv-D cases, we set the horizontal and
vertical 1D kernels to have 1x51 and 51x1 shape, respectively, as in (Niklaus et al., 2017).

1https://www.mathworks.com/help/vision/ref/rectifystereoimages.html
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Figure 13: Results on the CityScapes dataset. Our method trained on KITTI-only (K), generalizes
very well on the unseen images with an improvement over 3dB against the Deep3D baseline.

A.4.1 LOSS FUNCTION

We train our monster-net with a combination of l1 loss and perceptual loss (Johnson et al., 2016).
The later measures the distance between the generated view (Io or Ito) and the ground truth (Igt)
images in the deep feature space of a pre-trained network for image classification. The perceptual
loss is especially good to penalize deformations, textures and lack of sharpness. The mean square
error of the output of the first three max-pooling layers from the pre-trained V GG19 (Simonyan
& Zisserman, 2014), denoted by φl, was utilized as the perceptual loss function. To balance the
contributions of the l1 and perceptual losses, a constantαp = 0.01 was introduced. This combination
of loss terms was applied to both the low-resolution panned image Ito and super-resolved panned
image Io to yield the total loss function Lpan as follows:

Lpan = ||Igt − Io||1 + ||I1/2gt − Ito||1 + αp

3∑
l=1

||φl(Igt)− φl(Io)||22 + ||φl(I
1/2
gt )− φl(Ito)||22 (10)

where I1/2gt is the bilinearly downscaled version of the ground truth by a factor of 1/2.

A.5 RESULTS ON THE CITYSCAPES DATASET

Visualizations on the CittyScapes (CS) datasets for our monster-net trained on KITTI (K) and on
KITT + CityScapes (K+CS) are depicted in Figure 13. The First row of Figure 13 shows the synthe-
sized images from the Deep3D baseline, it can be noted that it over-fits to the training baseline of the
KITTI dataset, performing very poorly on CityScapes. The subsequent rows show the results for our
monster-net when trained without and with the CityScapes dataset. Our models generate very good
structures and sharp panned views as depicted the red highlighted regions on Figure 13 for both
cases of with and without CityScapes training. When trained on KITTI-only, our method general-
izes very well on the CityScapes dataset, with a performance improvement of 3dB over the Deep3D
baseline as shown in Table 1. When trained on K+CS, we obtain an additional improvement of 4dB
against the KITTY-only trained monster-net. Additionally, we present results for our monster-net
trained with and without perceptual loss, (L1) and (l1 + lp) respectively, on the CityScapes dataset.
Sharper results with clear edges and structures are achieved when utilizing the perceptual loss, as
depicted in the highlighted areas in Figure 13.
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Figure 14: Results on the VICLAB STEREO (VL) dataset. The monster-net trained on the
K+CS+VL datasets achieves better structures in homogeneous areas (highlighted in red).

A.6 RESULT ON THE VICLAB STEREO INDOORS DATASET

A network that is trained on outdoor datasets only is not able to generalize well on highly homoge-
neous areas that are common in the indoors datasets but rare in the outdoor scenes. Visualization of
the synthetic views generated for the VICLAB STEREO (VL) indoors dataset is provided in Figure
14. We compare the results of our network trained on K+CS versus those of our monster-net trained
on K+CS+VL. The latter achieves better generalization, as depicted in Figure 14, with marginal
performance decrease in the KITTI dataset (-0.09dB) and considerable quality improvement on the
VICLAB STEREO dataset (+1.86dB), as showed in the last row of Table 1.

A.7 3D PANNING BEYOND THE BASELINE

As our method allows for arbitrary camera panning, it is possible to perform 3D pan beyond the
baseline as depicted in Figure 15, where the pan amount was set to go 30% beyond the baseline for
both leftward and rightward camera panning, that is Pa = −200 and Pa = 200 for the per-scene
top and bottom samples respectively, where the input image for both pan amounts was set to be
the left-view. It is observed that the monster-net with adaptive dilations generates naturally looking
new views with consistent structures and without discontinuities even at beyond training baseline
3D panning.

A.8 ABLATION STUDIES

We demonstrate the contribution of our design choices in this section. Our main contribution is
the adaptive “t-shaped” kernel equipped with globally and locally adaptive dilations. Figure 16-(a)
shows the effect of adaptive dilations in comparison with the fixed dilation. As can be observed, the
resulting synthesized image by a fixed local dilation kernel shows unnaturally looking regions with
low contrast, discontinuities and blurs. Unlike any previous work, our pipeline can greatly benefit
from training on multiple datasets at the same time, as shown in Figure 16-(b). That is, our method
greatly benefits from training on two datasets (KITTI and CityScapes) as it exploits the baseline
information via its global adaptive dilation property. Training on both KITTI and CityScapes con-
tributes to improved geometry reconstruction as the network is exposed to a wide variety of objects
at many different resolutions where, in addition to applying random resizing during training, the
resolutions and baselines of these two datasets are very different. Figure 16-(c) shows the effect of
utilizing our sr-block. Even if the quality of the panned image Ito is good in terms of structure, the
sharpness is further improved by the addition of the super resolution block. Finally, we analyze the
effect of the perceptual loss. By utilizing the perceptual loss, our monter-net is able to better synthe-
size rich textures and complex or thin structures, as depicted in Figure 16-(d), even though the PSNR
and SSIM are slightly lower as shown in Table 1. The last is known as the “perception-distortion
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Figure 15: Our models generating 3D panned views at 30% beyond the baseline for the leftward
and rightward camera panning. The magnification of the figures helps to better compare between
the fixed local dilation monster-net and adaptive local dilation monster-net.

Figure 16: Ablation studies

tradeoff” (Blau & Michaeli, 2018) which suggests that better synthetic looking images not always
yield higher PSNR/SSIM.

A.9 DISPARITY/DEPTH ESTIMATION RESULTS

Our monster-net with refinement block beats the current state-of-the-art methods for unsupervised
monocular depth estimation in terms of prediction accuracy for the KITTI2015 dataset. As shown
in Table 3, the primitive disparity Dp, that can be extracted from the longer wing of the “t-shaped”
kernel, is already among the best performing unsupervised methods. When we add the refinement
block with ambiguity learning, our model results outperform those of the state-of-the-art. Further-
more, we get an additional improvement in the a1 accuracy metric when we add our novel special-
post-processing (spp) step. The qualitative comparison against previous methods and the ground
truth disparity is shown in Figure 17. It is noted that our monster-net with disparity refinement and
special-post-processing generates very reliable disparity maps even on thin structures and image
borders. Additionally, our method benefits from very good detection of far away objects
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Table 3: Disparity estimation performance on the KITTI2015 metrics from (Eigen et al., 2014).
Models are trained with (V) video, (S) stereo, semi global matching (SMG) or GT depth (Supp),
and can take stereo inputs (s), nine consecutive input frames during testing and training (9-view), or
one input frame during testing and nine consecutive views as supervision during training (1/9-view).
Additionally, (st) stands for student, (t) for teacher, (pp) for post-processing and (spp) for special
post-processing. The best performing models in terms of a1 threshold, which is the percentage of
disparity values with a relative error less than 0.25, are highlighted in bold.
Model Supp V S dataset abs rel↓ sq rel↓ rms↓ log rms↓ a1 ↑ a2 ↑ a3 ↑
Pilzer et al. (2019) (st) x K 0.142 1.231 5.785 0.239 0.795 0.924 0.968
Ranjan et al. (2019) x K 0.140 1.070 5.326 0.217 0.826 0.941 0.975
Ranjan et al. (2019) x K+CS 0.139 1.032 5.199 0.213 0.827 0.943 0.977
Godard et al. (2017) x K 0.149 2.565 6.645 0.245 0.849 0.936 0.969
Godard et al. (2017) (pp) x K 0.114 1.138 5.452 0.204 0.859 0.946 0.977
Tosi et al. (2019) SMG x K 0.111 0.867 4.714 0.199 0.864 0.954 0.979
Gonzalez & Kim (2019b) x K 0.113 1.114 5.364 0.195 0.866 0.951 0.981
Godard et al. (2017) (pp) x K+CS 0.100 0.934 5.141 0.178 0.878 0.961 0.986
Wang et al. (2019a) (9-view) x K 0.112 0.418 2.320 0.153 0.882 0.974 0.992
Pilzer et al. (2019) (t) x K 0.098 0.831 4.656 0.202 0.882 0.948 0.973
Tosi et al. (2019) (pp) SMG x K+CS 0.096 0.673 4.351 0.184 0.890 0.961 0.981
ours w/o refine block x K+CS 0.121 1.028 4.917 0.174 0.885 0.969 0.989
ours with refine block x K+CS 0.098 0.893 4.836 0.166 0.894 0.967 0.988
ours with refine block (pp) x K+CS 0.095 0.793 4.634 0.159 0.896 0.969 0.989
ours with refine block (spp) x K+CS 0.099 0.950 4.739 0.160 0.900 0.971 0.989
Gur & Wolf (2019) x K 0.110 0.666 4.186 0.168 0.880 0.966 0.988
Luo et al. (2018) x K 0.094 0.626 4.252 0.177 0.891 0.965 0.984
Wang et al. (2019a) (1/9-view) x x K 0.088 0.245 1.949 0.127 0.915 0.984 0.996
Godard et al. (2017) (s) x K 0.068 0.835 4.392 0.146 0.942 0.978 0.989
Lai et al. (2019) (s) x x K 0.062 0.747 4.113 0.146 0.948 0.979 0.990
Wang et al. (2019b) (s) x x K 0.049 0.515 3.404 0.121 0.965 0.984 0.992

Figure 17: Qualitative comparison between our method and the SOTA for the unsupervised monoc-
ular depth estimation task on the KITTI2015 dataset.
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