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Abstract. Knowledge graph became a popular means for modelling data
of interconnected entities i.e. linked data. They are adopted in many
industrial and academic applications. In this work, we focus on the use of
knowledge graphs in the field of molecular biology, where the linked data
is centred around proteins and their associations with other biological
entities. Recently, this type of knowledge graphs is becoming popular
to support predicting different biological associations e.g. drug-protein
targets, gene-disease associations, protein-protein interactions, etc. In
this work, we explore the process of building and using these knowledge
graphs. We first discuss available knowledge sources of molecular biology
knowledge and the process of processing these sources to generate knowl-
edge graphs. We then discuss various tasks and applications that can
use these knowledge graphs to predict different biological associations.
Finally, we provide an example for building and using knowledge graphs
in molecular biology. We build a SwissProt-based knowledge graph of
different protein associations, and we show by experiments that knowledge
graph embedding models can achieve high accuracy in predicting the
different protein associations compared to random baselines.

Keywords: Knowledge Graphs · Molecular Biology · Link Prediction.

1 Introduction

Knowledge graphs are graphs structured knowledge bases that model linked data
in a form of a graph, where graph nodes represent knowledge entities and its
edges represent the relations between them. In recent years, knowledge graphs
became a popular means for modelling linked data in many domains, including
general human knowledge [1], biomedical information [2] and language lexical
information [3]. They are now used to support different applications such as
enhancing semantics of search engine results, biomedical discoveries [4], powering
question answering and decision support systems [5].

Recently, knowledge graphs were introduced to the field of molecular bioin-
formatics, where they modelled the knowledge about molecular biology entities
e.g. proteins and their associations with other biological entities e.g. disease,
pathways, biological functions, etc. They were then used to provide insights about
the biological activities of proteins, and their associations with other biological
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entities [6]. Previously, protein linked data were modelled using uni-relational
networks, where the different computer-based predictive approaches utilised vari-
ous network similarity measures [7] and casual network embeddings [8] to learn
new biological association within these networks. However, the recent advances
in the design of knowledge graph embedding models [9] allowed them to excel in
the task predicting biological associations, where they outperform other models
including classical network embeddings models [4].

Despite their usefulness and proven success, knowledge graphs and their
embedding models are still in an early stage of adoption in the molecular biology
domain, where were only used in a limited set of tasks [10]. Therefore, in this
work, we explore the different possible uses of knowledge graphs in modelling
molecular biology knowledge to solve different biological association tasks. The
rest of our study is structured as follows:

(A) section 2 provides a basic introduction to different topics addressed in this
study such as knowledge graphs, molecular biology, and knowledge graph
embedding techniques.

(B) we discuss the process of building knowledge graphs for molecular biology
data, and a set of expert curated molecular biological knowledge bases in
section 3.

(C) We discuss the different possible applications for the knowledge graphs and
their embedding models in learning different biological associations in section
4.

(D) We propose a new knowledge graph based on SwissProt knowledge base that
is centred around proteins and we perform comparative evaluation for a set
of knowledge graph embedding models on the proposed knowledge graph to
predict protein associations to different biological entities, and we report the
outcome results in section 5.

2 Background

In this section, we introduce concepts and terminologies that we use during the
rest of the study.

2.1 Knowledge Graph Embedding

Knowledge graph embedding models learn a low rank vector representation of
knowledge entities and relations that can be used to rank knowledge assertions
according to their factuality. KGE models are trained in a multi-phase procedure,
where their objective is to effectively learn a vector representation of entities and
relations that can be used to score and rank possible knowledge facts.

First, a KGE model initialises all embedding vectors using random noise
values. It then uses these embeddings to score the set of true and false training
facts using a model-dependent scoring function. The output scores are then
passed to the training loss function to compute training error. These errors are
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used by optimisers to generate gradients and update the initial embeddings,
where the updated embeddings give higher scores for true facts and less for false
facts. This procedure is performed iteratively for a set of iterations i.e. epochs in
order to reach a state where embeddings provide the best possible scoring for
both true and false possible facts.

2.2 Molecular Biology

Molecular biology is the study of the nature and activities of biological macro-
molecules such as proteins. This includes their structure, interactions and their
involvement in the different biological processes. Proteins are one of the main
macromolecules that sustain living organisms. Proteins are made of small building
blocks known as amino acids that are structured according to specific nucleotide se-
quences in the genome. However, this linear structure of proteins is non-functional
unless it undergoes specific folding steps inside our cells. Once secreted by the
cellular organelles, proteins start all the different tasks in our body.

In the context of cancer, proteins control crucial roles in the cells, as the
proliferation, migration of cells, angiogenesis, and metastasis. In normal conditions,
those proteins are in an inactive state, however, if triggered, potentially by a
mutation in case of cancer, they start a cascade of downstream activations that
favor the growth and proliferation of cancers. Those cascades of proteins that
are linked to each other to form what is known as signaling pathways. Generally,
pathways in the living systems control the various biological processes such as
including organs activities, metabolism, therapeutic activities of drugs, other
disease related processes, etc.

3 Building Biological Knowledge Graphs

In this section, we discuss the process of building biological knowledge graph
focused which is centred around proteins. We first explore the currently available
biological knowledge sources, and we then discuss how to integrate them together
to build both generic and task specific knowledge graphs.

Biological knowledge graphs are built using a multiple-step procedure. First,
we process available biological knowledge bases of different specialities to generate
associations between their biological entities. Secondly, we apply labels to the
associations according to the types of their domain and range entities. Finally,
labelled associations are integrated together by joining association through
common entities to construct the joint knowledge graphs of all associations.

In the following, we discuss this process in detail, and we discuss popular
biological databases, their properties, and common issues that arise during
building biological knowledge graphs.
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Table 1. Comparison between popular biological knowledge bases. The term "GO"
refers to gene ontology annotations, "S" refers to structured data and "U" refers to
unstructured data.

Database Specialisation Associations Format
UniProt Proteins Diseases, Drugs, GO, Antibodies, Pathways S, U
Reactome Pathways GO, Complexes, Pathways S
KEGG Pathways Diseases, Chemicals, Drugs, Pathways S
DrugBank Drugs Proteins, Pathways S, U
Gene Ontology GO Proteins S
CTD Chemicals Drugs, Proteins, GO, Phenotypes S, U
SIDER Drugs Side effects, Indications S
HPA Proteins Antibodies, Tissues, Cell lines S, U

3.1 Biological Knowledge Sources

Recently, biological knowledge bases became available in many forms including
biological paper abstracts [11], raw biological experimental data [12], curated
annotations [13,14], etc.

In our study, we focus on the databases that offer structured data that can be
easily processed to generate knowledge graphs. Table 1 summarises specialisation
and properties of popular biological knowledge bases. In the following, we discuss
a subset of these knowledge bases that represent the most popular curated
databases for molecular biology data:

1) UniProt: The Universal Protein Resource (UniProt)4 [13] is a comprehen-
sive resource for protein sequence and annotation data. It includes protein
centered information for various species. The information in the UniProt
knowledge base is divided into two main sources: manually curated data i.e.
SwissProt and computer predicted data i.e. TrEMBL. Both sources include
information about proteins of different species, and this information is pro-
vided in combination of both structured and unstructured data formats. The
UniProt protein identifiers are considered one of the most adopted within all
biological knowledge bases, where it can be easily converted to other protein
identifiers. Information in the UniProt knowledge base include protein names,
sequences and sub sequence information. It also include protein associations
to other biological entities from other database like drugs (DrugBank [15]),
disease (OMIM [16]), gene ontology annotations (GO [17]), pathways (Reac-
tome [18]) and protein families and motifs (PFam [19]). UniProt also includes
curated protein-protein interaction from the InAct database [20].

2) Reactome: REACTOME5 [18] is an open-source, open access, manually
curated and peer-reviewed pathway database. The REACTOME database

4 https://www.uniprot.org/
5 https://reactome.org/

https://www.uniprot.org/
https://reactome.org/
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provides associations between proteins and protein complexes, reactions and
pathways. It also includes links between its base pathways and the gene ontol-
ogy annotations. The REACTOME database uses UniProt unique identifiers
i.e. accession codes as the unique identifiers for its proteins, while in some
cases it uses other identifier systems when UniProt ids are not available.

3) KEGG: The Kyoto encyclopedia of genes and genomes (KEGG)6 [14,21] is
a database resource for high-level functions and utilities of the biological sys-
tems. It includes information about genes (and their corresponding proteins),
diseases, drugs, chemicals, pathways and some other biological entities and
concepts related to them. The database uses the Entrez Gene DB [22] based
identifiers for its proteins proteins, and it uses its own identifier systems for
all other biological entities. The KEGG database includes a rich set of bio-
logical associations including protein-drug, protein-disease, protein-pathway,
drug-pathway and drug-disease associations.

4) Gene Ontology: The gene ontology (GO) database [17] is large resource
for protein functions in living systems. It provides detailed annotations for
proteins biological processes, molecular functions and cellular locations. The
GO database represents the most popular resource for modelling protein
activities, where provides associations between proteins and their activities
in a hierarchical structure. The database also contains a rich ontology that
describes the different relations between the protein annotations.

5) DrugBank: The DrugBank database [15] is resource for drug target data.
It includes different types of information about drugs and chemicals includ-
ing their structure, target proteins, related therapeutic pathways, etc. The
resource also classifies drugs according their development state e.g. under
development or approved, and it includes information about the drugs’ ex-
pected indications along with their dosages and known drug drug interactions.
The DrugBank database is considered one of the largest available resources
for curated data about drugs and their protein targets.

3.2 Knowledge Integration

After processing the biological knowledge resources, the data extracted from
them is usually formatted as sets of pairs of entities with unlabelled associations.
Since knowledge graphs require labelled relations, these data associations need
to be labelled according to their corresponding semantics. They are then merged
together through common entities to form a graph. In the following, we discuss
both association labelling and merging in the context of building biological
knowledge graphs.

6 https://www.kegg.jp/kegg/

https://www.kegg.jp/kegg/
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Fig. 1. Graph schema for an example molecular biological knowledge graph.

1) Association labelling: Biological associations extracted from knowledge
sources are combined to form a graph of interconnected entities. The easiest
for of association labelling is to use a combination of both relation source and
destination entity databases to generate a unique label for each relation e.g.
"protein pathway" as in Fig. 1. However, in many cases sources or destinations
of the same extracted association pairs can belong different types biologi-
cal entities. For example, the associations between UniProt and Reactome
entities are commonly considered protein-pathway relations. However, the
Reactome entities in these relations can often refer to protein complex or
reactions, which then significantly changes the semantics of the association.
In another example, the UniProt database provide associations between its
proteins and the InterPro [23] entities, where these entities represent a wide
range of sequence-based patterns like domains, repeats, protein families, etc.
Therefore, Their associations with the UniProt proteins represent different
semantics. In this case, using different types of associations labels that can
be obtained by amending the destination entity type to the relation type
e.g. "protein InterPro domain" is essential to enrich the semantics of the
outcome knowledge graph.

2) Merging biological associations: Combining biological knowledge graphs
is performed by joining common entities in different association types. How-
ever, due to the different types of identifiers in biological data, same entities
are often referred to using different codes. This can intuitively fixed by map-
ping entities to one identifier system (e.g. UniProt for proteins). However,
different resources have different coverage ratios of biological entities, where
mapping to a different identifier system can result in a loss of information.
Also, the mapping between different database is not not guaranteed to be a
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one-to-one mapping, where some databases include different identifiers for
the same entities that represents different states of these entities.
On the other hand, the identifiers within the same biological databases are
regularly updated in their continues review and update process, where famous
resources like Reactome and UniProt have witnessed changes to large volume
of their identifiers in the recent years. This change affect other databases
that use old identifiers, therefore, they are not linked to the newly introduced
entities. This issue can be resolved by updating outdated links using the logs
of the identifiers updates.

4 Use Cases in Molecular Biology

In this section, we present a set of potential application for knowledge graphs
in the field of molecular biology. We focus our enquiry on the applications that
can be achieved using link prediction on knowledge graphs to learn different
associations between biological entities.

4.1 General Predictive Models in Molecular Biology

The research in molecular biology demands large resources to execute laboratory
experimentation of potential biological discovery. This process is also non-scalable
and often operate on single or few number of investigated entities. Due to the
advances of computer-based predictive models, researcher have benefited from
the scalable simulation-based models to assist their in-lab experiments to predict
new links between the different biological entities as in the following tasks:

1) Protein Molecular and Biological Activities: Proteins have different
biological and molecular functions in the living systems. These activities
are modelled in the gene ontology database, where protein functions and
activities are provided as annotations to proteins. This encouraged multiple
works to develop methods for predicting unknown protein activities using the
known gene ontology annotation. These works use multiple approaches such
as sequence analysis, matrix decomposition [24] and network similarity [25].

2) Gene Disease Associations Predicting the gene-disease associations has
witnessed rapid developments in recent years to identify unknown links
between proteins and diseases. Similar to protein activity prediction, the
developed gene-disease associations prediction models use different methods
such as matrix decomposition, network propagation and boosted tree regres-
sion [26].

3) Drug Protein Targets and their side effects The study of drug targets
has become very popular with the objective of explaining mechanisms of
actions of current drugs and their possible unknown off-target activities.
Knowing targets of potential clinical significance also plays a crucial role
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in the process of rational drug development. With such knowledge, one can
design candidate compounds targeting specific proteins to achieve intended
therapeutic effects. However, a drug rarely binds only to the intended targets,
and off-target effects are common. This may lead to unwanted adverse effects,
but also to successful drug re-purposing, i.e. use of approved drugs for new
diseases [27]. Large-scale and reliable prediction of drug-target interactions
(DTIs) can substantially facilitate development of such new treatments. Vari-
ous DTI prediction methods have been proposed to date. Examples include
chemical genetic and proteomic methods such as affinity chromatography and
expression cloning approaches. These, however, can only process a limited
number of possible drugs and targets due to the dependency on laboratory
experiments and available physical resources. Computational prediction ap-
proaches have therefore received a lot of attention lately as they can lead to
much faster assessments of possible drug-target interactions [?].

4.2 Knowledge Graph Embedding in Molecular Biology Tasks

In all of the aforementioned examples, knowledge graph embedding models [9]
are a natural fit, where they can predict links between the different biological
entities in the biological knowledge graphs. They learn the representation of the
association and its corresponding entities by training on the known example then
they can provide prediction over the unknown links. In this context, knowledge
graph embedding models are known to excel and provide state-of-the-art results in
learning links between nodes in a labelled graph [9]. For example, Zitnik et. al [6]
showed that using knowledge graph embedding models provide state-of-the-art
results in the task of predicting drug polypharmacy side effects.

Despite their high predictive accuracy [9], knowledge graph embedding models
are in early adoption stages in molecular biology. The current works in predicting
biological associations mostly depends on network-based predictive models, where
the use of labelled graph is still not widely utilised [8].

5 Experimental Example

In this section, we give an example of building a molecular biological knowledge
graph, and using it to learn association between different biological entities using
knowledge graph embedding models.

5.1 Building The SwissProt Knowledge Graph

The SwissProt database represent the manually curated part of the UniProt
knowledge base. It contain different assertion about proteins in different species.
In our example, we only consider data about proteins in the human body i.e.
homo sapiens’ proteins. We process the SwissProt textual entries of proteins
to generate their associations with five different datasets: Reactome, InterPro,
DrugBank, OMIM, and GO. We also include enzyme classes of enzyme proteins.
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Table 2. Comparison in terms of the area under the ROC and precision recall curves
between the evaluation results of a set of knowledge graph embedding models and a
random baseline mode in predicting different protein associations on the SwissProt
knowledge graph.

Ralation Random TransE DistMult ComplEx
ROC PR ROC PR ROC PR ROC PR

P. biological process 0.50 0.09 0.96 0.77 0.96 0.88 0.95 0.87
P. cell compartment 0.50 0.09 0.96 0.71 0.96 0.84 0.94 0.82
P. molecular function 0.50 0.09 0.96 0.77 0.98 0.92 0.98 0.92
P. antibody 0.50 0.09 0.75 0.22 0.86 0.33 0.80 0.28
P. disease 0.50 0.09 0.78 0.29 0.94 0.53 0.92 0.54
P. pathway 0.50 0.09 0.97 0.83 1.00 0.98 1.00 0.98
P. drug 0.50 0.09 0.95 0.80 0.99 0.95 0.99 0.95

AVERAGE 0.50 0.09 0.90 0.63 0.95 0.77 0.94 0.77

During the process of extracting protein associations with other entities, we
retrieve the entries of protein related entities from their corresponding databases
when possible, and we include their types as facts in the knowledge graph. After
extracting protein associations, we label each association instance according
to the type of the destination entity, where we extract these types from the
destination databases e.g. InterPro and GO. The outcome of labelling does not
require special merging since all the used entities use common identifier system.
We have exported the outcome knowledge graph to two separate files for general
and type-based assertions. We have also published these two files online on a
figshare repository 7.

5.2 Experimental Setup

Data: In our experiments, we assess investigate the task of learning multiple
types of protein associations to different biological associations such as biological
processes, cell compartments, molecular functions, antibodies, diseases, pathways
and drugs. We divide our knowledge graph into three split: training, validation
and testing, where each of the validation and testing sets contain 10% of each
of the investigated associations, and the training set contains the rest of all
associations. Negative assertions for both testing and validation examples are
generating using corrupting either the subject or the object of the associations
using uniform randomly selected entities of the same type as the original entity.
The ratio between positive and negative instances is one to ten respectively in
both testing and validation.

7 https://figshare.com/articles/swissprot-hsa-kg/7828601

https://figshare.com/articles/swissprot-hsa-kg/7828601
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Model settings: In our experiments, we use state-of-the-art knowledge graph
embedding models such as the TransE [28], the DistMult [29], and the Com-
plEx [30] models to perform link prediction over the SwissProt knowledge graph.
We compare these model to a random models as a baseline. We run all the models
over the training data of the knowledge graph and we compare their predictive
accuracy using the area under both the roc and precision recall curves as an
assessment metric. A grid search is performed to obtain best hyper parameters
for each model on the validation set, where the set of investigated parameters are:
embeddings size K ∈ {50, 100, 150, 200}, margin λ ∈ {1, 2, 3, 4, 5} for the TransE
and the DistMult models, and number of negative samples n ∈ {2, 4, 6, 10}. All
embeddings vectors of our models are initialised using the uniform Xavier ran-
dom initialiser [31]. For all the experiments, we use batches of size 5000, with a
maximum of 1000 training iterations i.e. epochs. The gradient update procedure
is performed using the AMSGrad optimiser [32] with a fixed 0.01 learning rate.

5.3 Results

Table 2 shows the results of our experiments, where it shows that all the knowledge
graph embedding models provide a significant enhancements over the random
baseline model. The results shows that the accuracy of the models vary on
the different types of relations, where the best accuracy of knowledge graph
embedding models is achieved on predicting protein pathway association, and
their worst accuracy is reported in predicting protein associated diseases. The
results also show that the DistMult model achieves best results in terms of the
area under both the precision recall and roc curves with 0.77 and 0.95 respectively.
On the other hand, the random baseline achieves 0.09 and 0.50 in terms of the
area under the precision recall and roc curves respectively.

6 Conclusions

In this work, we have discussed the use of knowledge graphs in the field of
molecular biology. We have also shown that knowledge graph are a natural
fit for modelling molecular biological systems of interconnected entities. We
discussed the process of building knowledge graph from popular curated biological
knowledge sources, and the issues that can arise through this process and their
possible solutions. We have also discussed the potential use cases of knowledge
graphs in molecular biology and the current developed techniques to handle these
tasks. Finally, we have presented an example experimental pipeline of processing,
building and using a knowledge graph of molecular biological data. We built a
knowledge graph from the SwissProt database, and we have used knowledge graph
embedding models to learn different types of protein associations within the built
knowledge graph. Our experiments showed that knowledge graph embedding
models showed a significant and consistent enhancement in the predictive accuracy
compared to a random baseline in terms of both the area under the roc and
precision recall curves.



On Molecular Biological Knowledge Graphs 11

7 Acknowledgements

This work has been supported by Insight Centre for Data Analytics at National
University of Ireland Galway, Ireland (supported by the Science Foundation
Ireland grant 12/RC/2289). The GPU card used in our experiments is granted
to us by the Nvidia GPU Grant Program.

References

1. Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören
Auer, and Chris Bizer. DBpedia - a large-scale, multilingual knowledge base
extracted from wikipedia. Semantic Web Journal, 2014.

2. Michel Dumontier et. al. Bio2rdf release 3: A larger, more connected network of
linked data for the life sciences. In Proceedings of the ISWC 2014 Posters & Demos,
pages 401–404, 2014.

3. George A. Miller. Wordnet: A lexical database for english. Communications of the
ACM, 38(11):39–41, November 1995.

4. Emir Muñoz, Vít Novácek, and Pierre-Yves Vandenbussche. Using drug similarities
for discovery of possible adverse reactions. In AMIA 2016, American Medical
Informatics Association Annual Symposium, Chicago, IL, USA, November 12-16,
2016. AMIA, 2016.

5. David A. Ferrucci, Eric W. Brown, Jennifer Chu-Carroll, James Fan, David Gondek,
Aditya Kalyanpur, Adam Lally, J. William Murdock, Eric Nyberg, John M. Prager,
Nico Schlaefer, and Christopher A. Welty. Building watson: An overview of the
deepqa project. AI Magazine, 31(3):59–79, 2010.

6. Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side
effects with graph convolutional networks. In Bioinformatics, 2018.

7. Tamás Nepusz, Haiyuan Yu, and Alberto Paccanaro. Detecting overlapping protein
complexes in protein-protein interaction networks. Nature Methods, 9:471–472,
2012.

8. Chang Su, Jie Tong, Yongjun Zhu, Peng Cui, and Fei Wang. Network embedding
in biomedical data science. Briefings in bioinformatics, 2018.

9. Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A
survey of approaches and applications. IEEE Trans. Knowl. Data Eng., 29(12):2724–
2743, 2017.

10. Mona Alshahrani, Mohammed Asif Khan, Omar Maddouri, Akira R. Kinjo, Núria
Queralt-Rosinach, and Robert Hoehndorf. Neuro-symbolic representation learning
on biological knowledge graphs. In Bioinformatics, 2017.

11. Alan R. Aronson, James G. Mork, Clifford W. Gay, Susanne M. Humphrey, and
Willie J. Rogers. The nlm indexing initiative’s medical text indexer. Studies in
health technology and informatics, 107 Pt 1:268–72, 2004.

12. Melissa J. Landrum, Jennifer M. Lee, George R. Riley, Wonhee Jang, Wendy S.
Rubinstein, Deanna M. Church, and Donna R. Maglott. Clinvar: public archive of
relationships among sequence variation and human phenotype. In Nucleic Acids
Research, 2014.

13. The UniProt Consortium. Uniprot: the universal protein knowledgebase. In Nucleic
Acids Research, 2017.



12 S.K. Mohamed et. al.

14. Minoru Kanehisa, Miho Furumichi, Mao Tanabe, Yoko Sato, and Kanae Morishima.
Kegg: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids
Research, 45(D1):D353–D361, 2017.

15. David S. Wishart, Craig Knox, An Chi Guo, Dean Cheng, Savita Shrivastava, Dan
Tzur, Bijaya Gautam, and Murtaza Hassanali. Drugbank: a knowledgebase for
drugs, drug actions and drug targets. Nucleic Acids Research, 36:D901–D906, 2008.

16. Ada Hamosh, Alan F. Scott, Joanna S. Amberger, Carol A. Bocchini, David
Valle, and Victor A. McKusick. Online mendelian inheritance in man (omim),
a knowledgebase of human genes and genetic disorders. Nucleic Acids Research,
33:D514 – D517, 2002.

17. The Gene Ontology Consortium. The gene ontology resource: 20 years and still
going strong. In Nucleic Acids Research, 2019.

18. Antonio Fabregat et. al. The reactome pathway knowledgebase. Nucleic acids
research, 44 D1:D481–7, 2016.

19. Robert D. Finn et. al. Pfam: the protein families database. In Nucleic Acids
Research, 2014.

20. Sandra E. Orchard et. al. The mintact project—intact as a common curation
platform for 11 molecular interaction databases. In Nucleic Acids Research, 2014.

21. Minoru Kanehisa, Yoko Sato, Masayuki Kawashima, Miho Furumichi, and Mao
Tanabe. Kegg as a reference resource for gene and protein annotation. Nucleic
Acids Research, 44(D1):D457–D462, 2016.

22. Donna R. Maglott, Jim Ostell, Kim D. Pruitt, and Tatiana Tatusova. Entrez gene:
gene-centered information at ncbi. Nucleic acids research, 39 Database issue:D52–7,
2011.

23. Alex L et. al. Mitchell. Interpro in 2019: improving coverage, classification and
access to protein sequence annotations. Nucleic Acids Research, 47(D1):D351–D360,
2019.

24. Marinka Zitnik and Jure Leskovec. Predicting multicellular function through
multi-layer tissue networks. In Bioinformatics, 2017.

25. Xiangxiang Zeng, Xuan Zhang, and Quan Zou. Integrative approaches for pre-
dicting microrna function and prioritizing disease-related microrna using biological
interaction networks. Briefings in bioinformatics, 17 2:193–203, 2016.

26. Hongyi Zhou and Jeffrey Skolnick. A knowledge-based approach for predicting
gene-disease associations. Bioinformatics, 32 18:2831–8, 2016.

27. Anne et. al. Corbett. Drug repositioning for alzheimer’s disease. Nature Reviews
Drug Discovery, 11(11):833, 2012.

28. Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In NIPS,
pages 2787–2795, 2013.

29. Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding
entities and relations for learning and inference in knowledge bases. In ICLR, 2015.

30. Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. Complex embeddings for simple link prediction. In ICML, volume 48 of
JMLR Workshop and Conference Proceedings, pages 2071–2080. JMLR.org, 2016.

31. Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In AISTATS, volume 9 of JMLR Proceedings, pages
249–256. JMLR.org, 2010.

32. Sashank Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and
beyond. In ICLR, 2018.


	On Molecular Biological Knowledge Graphs

