
Under review as a conference paper at ICLR 2019

S3TA: A SOFT, SPATIAL, SEQUENTIAL, TOP-DOWN
ATTENTION MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a soft, spatial, sequential, top-down attention model (S3TA). This
model uses a soft attention mechanism to bottleneck its view of the input. A
recurrent core is used to generate query vectors, which actively select information
from the input by correlating the query with input- and space-dependent key maps
at different spatial locations.
We demonstrate the power and interpretabilty of this model under two settings.
First, we build an agent which uses this attention model in RL environments and
show that we can achieve performance competitive with state-of-the-art models
while producing attention maps that elucidate some of the strategies used to solve
the task. Second, we use this model in supervised learning tasks and show that it
also achieves competitive performance and provides interpretable attention maps
that show some of the underlying logic in the model’s decision making.

1 INTRODUCTION

Traditional RL agents and image classifiers rely on some combination of convolutional and fully
connected components to gradually process input information and arrive at a set of policy or class
logits. This sort of architecture is very effective, but does not lend itself to easy understanding of
how decisions are made, what information is used and why mistakes are made. Previous efforts
to visualize deep RL agents (Greydanus et al. (2017); Zahavy et al. (2016); Wang et al. (2015))
focus on generating saliency maps to understand the magnitude of policy changes as a function of
a perturbation of the input. This can uncover some of the “attended” regions, but may be difficult
to interpret. For example, it can’t reveal certain types of behavior when the agent makes decisions
based on components absent from a frame. Our mechanism provides a more direct interpretation by
making the attention a core part of the network.

In this work we present a soft, spatial, sequential and top-down attention model (S3TA, pronounced
SETA). This model enables us to build agents and classifiers that actively select important, task-
relevant information from visual inputs by sequentially querying and receiving compressed query-
dependent summaries to generate appropriate outputs. To do this, the model generates attention
maps, which can uncover some of underlying decision process used to solve the task. By observing
and analyzing the resulting attention maps we can make educated guesses at how the system solves
a task and where and why it might be failing. In the RL domain, we observe that the attention
focuses on the key components of each level: tracking the region ahead of the player, focusing
on enemies and important moving objects. In supervised learning, we observed that the attention
sequentially focuses on different portions of the input to build up confidence in a classification or
resolve ambiguity between different class labels. We also find that our model maintains competitive
performance on both learning paradigms while providing interpretability.

2 MODEL

Our model, outlined in Figure 1, queries a large input tensor through an attention mechanism and
uses the returned compressed answer (a low dimensional summary of the input) to produce its
output. We refer to this full query-answer system as an attention head. Our system can implement
multiple attention heads by producing multiple queries and receiving multiple answers.

1

Under review as a conference paper at ICLR 2019

An observation X ∈ RH×W×C at time t (here an RGB frame of height H and width W) is passed
through a “vision core”. The vision core is a multi-layer convolutional network visθ followed by a
recurrent layer with state svis(t) such as a ConvLSTM (Shi et al. (2015)), which produces an output
tensor Ovis ∈ Rh×w×c:

Ovis, svis(t) = visθ(X(t), svis(t− 1)) (1)
The vision core output is then split along the channel dimension into two tensors: the “Keys” tensor
K ∈ Rh×w×Ck and the “Values” tensor V ∈ Rh×w×Cv , with c = CV + CK . To the keys and
values tensors we concatenate a spatial basis — a fixed tensor S ∈ Rh×w×CS which encodes spatial
locations (see below for details).

A recurrent neural network (RNN) with parameters φ produces N queries, one for each attention
head. The RNN sends its state sRNN from the previous time step t− 1 into a “Query Network”. The
query network Qψ is a multi-layer perceptron (MLP) with parameters ψ whose output is reshaped
into N query vectors qn of size Ck + CS such that they match the channel dimension of K:

q1... qN = Qψ(sRNN(t− 1)) (2)

Similar to Vaswani et al. (2017), we take the inner product between each query vector qn and all
spatial locations in the keys tensor K to form the n-th attention logits map Ãn ∈ Rh×w:

Ãni,j =
∑
c

qnc Ki,j,c (3)

where K ∈ Rh×w×Ck+CS is the concatenation along the channel dimension of K and S. We then
take the spatial softmax to form the final normalized attention map An:

Ani,j =
exp(Ãni,j)∑
i,j exp(Ã

n
i,j)

(4)

Each attention map An is broadcast along the channel dimension of the values tensor V, point-
wise multiplied with it and then summed across space to produce the n-th answer vector an ∈
R1×1×Cv+Cs :

anc =
∑
i,j

Ani,jVi,j,c (5)

where V ∈ Rh×w×Cv+CS is the concatenation along the channel dimension of V and S Finally, the
N answer vectors an, and the N query form the input to the RNN core to produce the next RNN
state sRNN(t) and output o(t) for this time step:

o(t), sRNN(t) = RNNφ(a1, ..., an, q1, ..., qn, sRNN(t− 1)) (6)

The exact details for each of the networks, outputs and states are given in Section 4 and the Ap-
pendix.

It is important to emphasize several points about the proposed model. First, the model is fully
differentiable due to the use of soft-attention and can be trained using back-propagation. Second,
the query vectors are a function of the RNN core state alone and not the observation — this allows for
a “top-down” mechanism where the RNN can actively query the input for task-relevant information
rather than having to filter out large amounts of information. Third, the spatial sum (equation 5) is
a severe spatial bottleneck, which forces the system to make the attention maps in such a way that
information is not “blurred” out during summation.

The summation of the values tensor of shape h×w×Cv to an answer of shape 1×1×Cv is invariant
to permutation of spatial position, which emphasizes the need for the spatial basis. Due to the spatial
structure being lost during the spatial summation, the only way the RNN core can know and reason
about spatial positions is by using the channels coming from the spatial basis 1. We postulate that
the query and answer structure can have different “modes” — the system can ask “where” (“what”)
something is by sending out a query with zeros in the spatial channels of the query and non-zeros
in the channels corresponding to the keys (which are input dependent). It can then read the answer
from the spatial channels, localizing the object of interest. Conversely it can ask “what is in this

1The vision core might have some ability to produce information regarding absolute spatial positioning, but
due to its convolutional structure it is limited.

2

Under review as a conference paper at ICLR 2019

Figure 1: An outline of our proposed model. Observations pass through a (recurrent) vision core
network, producing a “keys” and a “values” tensor, to both of which we concatenate a spatial basis
tensor (see text for details). A recurrent network at the top sends its state from the previous time-step
into a query network which produces a set of query vectors (only one is shown here for brevity). We
calculate the inner product between each query vector and each location in the keys tensor, then take
the spatial softmax to produce an attention map for the query. The attention map is broadcast along
the channel dimension, point-wise multiplied with the values tensor and the result is then summed
across space to produce an answer vector. This answer is sent to the top RNN as input to produce
the output and next state of the RNN.

particular location” by zeroing out the content channels of the query and putting information on the
spatial channels, reading the content channels of the answer and ignoring the spatial channels. This
is not a dichotomy as the two can be mixed (e.g. “find enemies in the top left corner”), but it does
point to an interesting “what” and “where” separation, which we discuss in Section 4.1.5.

2.1 THE SPATIAL BASIS

The spatial basis S ∈ Rh×w×CS such that the channels at each location i, j encode information
about the spatial position. Adding this information into the values of the tensor allows some spatial
information to be maintained after the spatial summation (equation 5) removes the structural infor-
mation. Following Vaswani et al. (2017) and Parmar et al. (2018) we use a Fourier basis type of
representation. Each channel (u, v) of S is an outer product of two Fourier basis vectors. We use
both odd and even basis functions with several frequencies. For example, with two even functions
one channel of S with spatial frequencies u and v would be:

Si,j,(u,v) = cos(πui/h) cos(πvj/w) (7)

where u, v are the spatial frequencies in this channel, i, j are spatial locations in the tensor and h,w
are correspondingly the height and width of the tensor. We produce all the outer products such that
the number of channels in S is (U + V)2 where U and V are the number of spatial frequencies we
use for the even and odd components (4 for both throughout this work, so 64 channels in total).

The spatial basis can also be learned as another parameter of the model — while we tested this in
some cases we did not observe that this makes a big difference in performance and for brevity this
is not done in this work.

3 RELATED WORK

There is a vast literature in recurrent attention models. They have been applied with some success to
question-answering datasets (Hermann et al., 2015), text translation (Vaswani et al., 2017; Bahdanau

3

Under review as a conference paper at ICLR 2019

et al., 2014), video classification and captioning (Shan & Atanasov, 2017; Li et al., 2017), image
classification and captioning (Mnih et al., 2014; Chung & Cho, 2018; Fu et al., 2017; Ablavatski
et al., 2017; Xiao et al., 2015; Zheng et al., 2017; Wang et al., 2017; Xu et al., 2015; Ba et al., 2014),
text classification (Yang et al., 2016; Shen & Lee, 2016), generative models (Parmar et al., 2018;
Zhang et al., 2018; Kosiorek et al., 2018), object tracking (Kosiorek et al., 2017), and reinforcement
learning (Choi et al., 2017). These attention mechanisms can be grouped by whether they use hard
attention (e.g. Mnih et al. (2014); Ba et al. (2014); Malinowski et al. (2018)) or soft attention
(e.g. Bahdanau et al. (2014)) and whether they explicitly parameterize an attention window (e.g.
Jaderberg et al. (2015); Shan & Atanasov (2017)) or use a weighting mechanism (e.g. Vaswani et al.
(2017); Hermann et al. (2015)).

Our work introduces a novel architecture which builds on existing methods. We use a soft key, query,
and value type of attention similar to Vaswani et al. (2017) and Parmar et al. (2018), but instead of
doing “self”-attention where the queries come from the input (together with the keys and values)
we have a different, top-down source for them. This enables the system to be both state/context
dependent and input dependent. Furthermore the output of the attention model is highly compressed
and has no spatial structure (other than the one preserved using the spatial basis), unlike in “self”
attention where each pixel attends to every other pixel and the structure is preserved. Finally, we ap-
ply the attention sequentially in time similar to Xu et al. (2015) but with a largely different attention
mechanism.

Of existing models, the MAC model (Hudson & Manning, 2018) is the closest to ours. There are
several differences between our model and MAC. First, MAC was built to solve CLEVR (Johnson
et al., 2017); major parts of it are geared for that dataset. Specifically the “control” unit is built to
expect a guiding question for the reasoning process — this may not always exist, such as in the case
of RL or classic supervised learning where the systems needs to come up with its own queries to
produce the required output. Another difference is the use of a pre-trained ResNet-101 (Wang et al.,
2017) as the visual backend; we train the visual core to co-adapt with the top-down mechanism such
that it learns to produce useful keys and values for different queries. Finally, MAC does not use a
spatial basis. It can still reason about space to some extent through the fully connected layers, but
there is not a clear separation between space and content as in our model.

4 ANALYSIS AND RESULTS

4.1 REINFORCEMENT LEARNING

We use the Arcade Learning Environment (Bellemare et al. (2013b)) to train and test our agent on
57 different Atari games.

For this experiment, the model uses a 3 layer convolutional neural network followed by a convo-
lutional LSTM as the vision core. The RNN is an LSTM that generates a policy π and a baseline
function V π; it takes as input the query and answer vectors, the previous reward and a one-hot en-
coding of the previous action. The query network is a three layer MLP, which takes as input the
hidden state h of the LSTM from the previous time step and produces 4 attention queries. See
Appendix A.1.1 for a full specification of the network sizes.

We use the Importance Weighted Actor-Learner Architecture (Espeholt et al. (2018)) training ar-
chitecture to train our agents. We use an actor-critic setup and a VTRACE loss with an RMSProp
optimizer (see learning parameters in Appendix A.1.1 for more details).

We compare against two models without bottlenecks to benchmark performance, both using the
deeper residual network described in Espeholt et al. (2018). In the Feedforward Baseline, the output
of the ResNet is used to directly produce π and V π , while in the LSTM Baseline an LSTM with
256 hidden units is inserted on top of the ResNet. The LSTM also gets as input the previous action
and previous reward. We find that our agent is competitive with these state-of-the-art baselines,
see Table 1 for benchmark results and Appendix A.1.3 for learning curves and performance on
individual levels. Our model provides an attention map which shows the parts of space which are
attended to by each attention head. This gives us hints as to what information from the input is used
when producing the output. Though these do not necessarily tell the whole story of decision making,

1 All referenced videos can be found at https://sites.google.com/view/s3ta .

4

https://sites.google.com/view/s3ta

Under review as a conference paper at ICLR 2019

(a) Seaquest (b) Star Gunner

Figure 2: Basic attention patterns. Bright areas are regions of high attention. Here we show 2 of the
4 heads used (one head in each row, time goes from left to right). The model learns to attend key
sprites such as the player and different enemies. Best viewed on a computer monitor. See text for
more details.

they do expose some of the strategies used by the model to solve the different tasks. Here we present
some of these strategies and their relationship to the task at hand. Additionally, we analyze the use
of the spatial basis vs. keys in the queries as a first step towards understanding the “what” and
“where” in the system. We note that all the strategies we discuss here have been observed in more
than one game or task; they are reproducible across multiple runs and we postulate they are effective
strategies for the solution of the task at hand.

In order to visualize the attention maps we show the original input frame and super-impose the
attention map An for each head on it using alpha blending. This means that the bright areas in
all images are the ones which are attended to, darker areas are not. We find the range of values
to be such that areas which are not attended have weights very close to zero, meaning that little
information is “blended” from these areas during the summation in equation 5. A more detailed
analysis of the distribution of weights can be seen in Appendix A.2.1.

4.1.1 THE ROLE OF TOP-DOWN INFLUENCE

To test the importance of the top-down queries, we train two additional agents with modified atten-
tion mechanisms that do not receive queries from the top-level RNN but are otherwise identical to
our agent. The first agent uses the same attention mechanism except that the queries are a learnable
bias tensor which does not depend on the LSTM state. The second agent does away with the query
mechanism entirely and forms the weights for the attention by computing the L2 norm of each key
(similar to a soft version of Malinowski et al. (2018)). Both of these modifications turn the top-down
attention into a bottom-up attention, where the vision network has total control over the attention
weights.

We train these agents on 7 ATARI games for 2e9 steps and compare the performance to the agent
with top-down attention. We see significant drops in performance on 6 of the 7 games. On the
remaining game, Seaquest, we see substantially improved performance; the positions of the enemies
follow a very specific pattern, so there is little need for sequential decision making in that envi-
ronment. On these games we see a median human normalized score of 541.1% for the attention
agent, 274.7% for the fixed-query agent, and 274.5% for the L2-Norm Key Agent. Mean scores are
975.5%, 615.2% and 561.0% respectively. See Appendix A.1.4 for more details.

Table 1: Human normalized scores for experts on ATARI.

Model Median Mean
Feedforward Baseline 284.5% 1479.5%
LSTM Baseline 45.0% 1222.0%
Attention 407.1% 1649.0%

5

Under review as a conference paper at ICLR 2019

4.1.2 BASIC ATTENTION PATTERNS

The most dominant pattern we observe is that the model learns to attend to task-relevant things in
the scene. In most ATARI games that usually means that the player is one of the focii of attention, as
well as enemies, power-ups and the score itself (which is an important factor in the calculating the
value function). Figure 2 (best viewed on screen) shows several examples of these attention maps.
We also recommend watching the videos posted online for additional visualizations.

4.1.3 FORWARD PLANNING/SCANNING

In games where there is an element of forward planning and a direct mapping between image space
and world space (such as 2D top-down view games) we observe that the model learns to scan through
possible paths emanating from the player character and going through possible future trajectories.
Figure 3 shows a examples of this in Ms Pacman and Alien — in the both games the model scans
through possible paths, making sure there are no enemies or ghosts ahead. We observe that when it
does see a ghost, another path is produced or executed in order to avoid it. Again we refer the reader
to the videos for a better impression of the dynamics.

4.1.4 “TRIP WIRES”

In many games we observe that the agent learns to place “trip-wires” at strategic points in space
such that if something crosses them a specific action is taken. For example, in Space Invaders two
such trip wires are following the player ship on both sides such that if a bullet crosses one of them
the agent immediately evades them by moving towards the opposite direction. Another example is
Breakout where we can see it working in two stages. First the attention is spread out around the
general area of the ball, then focuses into a localized line. Once the ball crosses that line the agent
moves towards the ball. Figure 4 shows examples of this behavior.

4.1.5 “WHAT” VS. “WHERE”

As discussed in Section 2, each query has two components: one interacts with the keys tensor -
which is a function of the input frame and vision core state - and the other interacts with the fixed
spatial basis, which encodes locations in space. Since the output of these two parts is added together
via an inner product prior to the softmax, we can analyze, for each query and attention map, which
part of the query is more responsible for the the attention at each point; we can contrast the “what”
from the “where”. For example, during a game a query may be trying to find ghosts or enemies in the
scene, in which case the “what” component should dominate as these can reside in many different
places. Alternatively, a query could ask about a specific location in the screen (e.g., if it plays a
special role in a game), in which case we would expect the “where” part to dominate.

In order to visualize this we color code the relative dominance of each part of the query. When a
specific location is more influenced by the contents part, we will color the attention red, and when
it is more influenced by the spatial part, we color it blue. Intermediate values will be white. More
details can be found in Appendix A.2.

Figure 3: Forward planning/scanning. We observe that in games where there is a clear mapping
between image space and world space and some planning is required, the model learns to scan
through possible future trajectories for the player and chooses ones that are safe/rewarding. The
images show two such examples from Ms Pacman and Alien. Note how the paths follow the map
structure. See text for more details and videos. Bright areas are regions of high attention.

6

Under review as a conference paper at ICLR 2019

Figure 4: Trip Wires. We observe in games where there are moving balls or projectiles that the agent
sets up tripwires to create an alert when the object crosses a specific point or line. The agent learns
how much time it needs to react to the moving object and sets up a spot of attention sufficiently
far from the player. In Breakout (top row), one can see a two level tripwire: initially the attention
is spread out, but once the ball passes some critical point it sharpens to focus on a point along the
trajectory, which is the point where the agent needs to move toward the ball. In Space Invaders
(bottom row) we see the tripwire acting as a shield; when a projectile crosses this point the agent
needs to move away from the bullet. Bright areas are regions of high attention.

Figure 5: What/Where. This figures shows a sequence of 10 frames from Enduro (arranged left-to-
right) along with the what-where visualization of each of the 3 of the 4 attention heads. (stacked
vertically). The top row is the input frame at that timestep. Below we visualize the relative contri-
bution of “what” vs. “where” in different attention heads: Red areas indicate the query has more
weight in the “what” section, while blue indicates the mass is in the “where” part. White areas in-
dicate that the query is evenly balanced between what and where. We notice that the first head here
scans the horizon for upcoming cars and then starts tracking them (swithing from mixed to “what”).
The second head is mostly a “where” query following the car for upcoming vehicles (a “trip-wire”).
The last head here mostly tracks the player car and the score (mostly “what”).

Figure 5 shows several such maps C visualized in Enduro for different query heads. As can be
seen, the system uses the two modes to make its decisions, some of the heads are content specific
looking for opponent cars. Some are mixed, scanning the horizon for incoming cars and when
found, tracking them, and some are location based queries, scanning the area right in front of the
player for anything the crosses its path (a “trip-wire” which moves with the player). Examples of
this mechanism in action can be seen in the videos online.

4.1.6 COMPARISON WITH OTHER ATTENTION ANALYSIS METHODS

In order to demonstrate that the attention masks are an accurate representation of where the agent is
looking in the image, we perform the saliency analysis presented in Greydanus et al. (2017) on both
the attention agent and the baseline feedforward agent. This analysis works by introducing a small,
local Gaussian blur at a single point in the image and measuring the magnitude of the change in the
policy. By measuring this at every pixel in the image, one can form a response map that shows how
much the agent relies on the information at every spatial point to form its policy.

7

Under review as a conference paper at ICLR 2019

To produce these maps we run a trained agent for > 200 unperturbed frames on a level and then
repeatedly input the final frame with perturbations at different locations. We form two saliency
maps Sπ(i, j) = 0.5||π(X′i,j) − π(X)||2 and SV π (i, j) = 0.5||V π(X′i,j) − V π(X)||2 where X′i,j is
the input frame blurred at point (i, j), π are the softmaxed policy logits and V π is the value function.
An example of these saliency maps is shown in Figure 6. We see that the saliency map (in green)
corresponds well with the attention map produced by the model and we see that the agent is sensitive
to points in its planned trajectory, as we discussed in Section 4.1.3. Furthermore we see the heads
specialize in their influence on the model — one clearly affects the policy more where the other
affects the value function.

Comparing the attention agent to the baseline agent, we see that the attention agent is sensitive to
more focused areas along the possible future trajectory. The baseline agent is more focused on the
area immediately in front of the player (for the policy saliency) and on the score, while the attention
agent focuses more specifically on the path the agent will follow (for the policy) and on possible
future longer term paths (for the value).

(a) Policy saliency of the baseline agent (b) Policy saliency of the attention agent

(c) Value saliency of the baseline agent (d) Value saliency of the attention agent

Figure 6: Saliency analysis. We run saliency analysis (see text for details) for the policy and value
functions for both ours and the baseline feedforward agent. We visualize saliency in green, and in
the case of our model the attention weights in white. We find that in the attention agent, one can see
that the policy saliency (b) corresponds to the head that is most focused on the immediate actions
of Pacman, while the the value saliency (d) corresponds to the head that is looking further ahead
(two scales of planning/scanning behaviour). Comparing the saliency of the baseline and attention
agents, the attention agent exhibits sharper saliency, which looks along specific paths and follows
the contours of the map. The saliency of the baseline agent (a, c) shows the network is concerned
with shorter timescales and uses the score as the most important input to the value function (in some
frames the value function does look at the map, but the majority of the time it is focused on the
scene). See text for details and videos.

4.2 SUPERVISED LEARNING

We test the S3TA mechanism on several image and video classification problems to explore its
applicability to other tasks. For image classification, we present the image to the network multiple
times, allowing the model to ask new queries of the same image as a function of the previous class
logits.

4.2.1 IMAGENET

For ImageNet classification, the model needs substantially more capacity than it does for reinforce-
ment learning. For the vision core, we use a 50-layer ResNet (He et al. (2016)) with no recurrent
layer (since there is no motion to process). On top of the ResNet we use a 3-layer MLP to produce

8

Under review as a conference paper at ICLR 2019

the class logits at each timestep. The output logits are accumulated across time, adding the output of
the MLP to the current logits. The Query network is a 4-layer MLP that takes as input the previous
(accumulated) logits. The cross-entropy loss is applied to the accumulated class logits at the final
timestep.

We ran several baselines, including a standard ResNet 50-layer model. We also create a recurrent
version of this model by using a shared, 1-layer MLP to transform each time step’s logits into a
224x224 tensor that is then added to the image at the next time step.

For our model, we find that accuracy initially improves as a function of the number of tiling steps.
Our best result is for sequence length of eight timesteps and achieves 74.5% top-1, 91.5% top-5
accuracy. This is an improvement of 0.5% top-1 and 0.4% top-5 over a single ResNet-50 trained
with our setup. Our findings are summarized in Table 2.

Table 2: Performance on ImageNet Test Dataset

Model Top-1 Top-5
Resnet-50 (He et al. (2016)) 75.6% 92.9%
Resnet-50 (our setup) 74.0% 91.1%
Resnet-50, Sequence Length 4 70.2% 88.6%
Attention + Resnet-50, Sequence Length 1 73.1% 90.1%
Attention + Resnet-50, Sequence Length 4 73.4% 91.0%
Attention + Resnet-50, Sequence Length 8 74.5% 91.5%

For ImageNet, S3TA initially attends to low-level edges (mostly around the contour of the object).
It will then reduce the class choices under consideration by focusing on high-level features. In the
case of dogs, the attention maps first identify that a type of dog is present; correspondingly, the class
probabilities will be distributed across possible dog breed choices. The model will then focus on
ears, faces, snouts and other distinctive features to tell the specific breed apart, producing peaked
logits. An example of this is shown in Figure 7.

The model can alter its classification decisions midway through a sequence, even when it appears
to be very confident. When dealing with occlusions, the model will use other image properties to
gather relevant class context. An example of this is show in Figure 8. This shows the model is able
to perform meaningful sequential computation that significantly alter its classification choices.

(a) Shetland Sheepdog (b) Chiuaua

Figure 7: ImageNet classification on two dog images from ImageNet. The input image is tiled four
times. From left to right, the top row shows the input image then the four attention steps. The bottom
row shows the corresponding logit outputs at each timestep. By the third frame, the model is sure
both images are dogs, as indicated by similar class probability distributions. The attention snaps to
specific patches in the last frame to discern the specific dog breed.

4.2.2 KINETICS

Kinetics is an action recognition video dataset where the goal is to classify videos portraying differ-
ent actions correctly. We ran our model on the September 2018 version of the Kinetics 600 dataset
(Carreira et al., 2018). For this model our vision core is a 34 layer ResNet followed by a convolu-
tional LSTM; the rest of the model is identical to the ImageNet model. The videos in the dataset
consist of 256 frames, from which we select 32 equally spaced frames to be processed sequentially

9

Under review as a conference paper at ICLR 2019

(a) Chainsaw (b) Horse Cart

Figure 8: Confusion on ImageNet. In the first image, the tree-filled background initially makes
S3TA suspect the class is “lumbermill”. However, lumbermills are buildings full of mechanical
items. The attention in the final frame focuses solely on the chainsaws, which become its final class
choice. In the second, the horse is occluded in this image, and so S3TA has to use other clues to
distinguish between “shopping cart”, “barrow”, and “horse cart”. In the last frame, the attention
maps focus on the horse whip on the right and the wheel type.

by the model. As before, the class logits are accumulated across the sequence and the last one is
used as the output. We achieve 58% top-1, 82% top-5 accuracy on this dataset. The state-of-the-art
(Carreira et al., 2018) achieves 71.7% top-1 accuracy, 90.4% top-5 accuracy.

In the case of the Kinetics dataset, the attention model often refrains from making a class prediction
until a key item appears in the video sequence. The attention maps then focus on this object while it
remains in view. For instance, the attention focuses on the musical instrument a person is playing,
and the policy logits the narrow down to a few probable choices. If an action sequence is a sport,
then the focus is typically on the game ball. Figure 9 shows an example of this behavior.

Figure 9: Focus on Key Items. The attention maps are disperse until a trumpet appears in view, at
which point the class logits become very peaked. Bright areas are regions of high attention.

5 CONCLUSION

We have introduced S3TA, a model for sequential spatial top-down attention. This model learns to
query its input for task-relevant information and receive spatially bottlenecked answers. The model
performs well on a variety of RL and supervised learning tasks while providing some interpretabilty
of its reasoning process.

The attention mechanism produces attention maps which can be used to visualize which parts of the
input are attended to. We have seen that the agent is able to make use of a combination of “what”
and “where” queries to select both regions and objects within the input depending on the task. In
RL agents, we have seen that the agents are able to learn to focus on key features of the inputs,
look ahead along short trajectories, and place tripwires to trigger certain behaviors. In supervised
models, the model sequentially focuses on important parts of the model to build up confidence in its
classification, and will hold off narrowing down its decision until key pieces of information become
available. In both the RL and supervised learning paradigms, the model yields interpretable results
without sacrificing performance.

10

Under review as a conference paper at ICLR 2019

REFERENCES

Artsiom Ablavatski, Shijian Lu, and Jianfei Cai. Enriched deep recurrent visual attention model
for multiple object recognition. In Applications of Computer Vision (WACV), 2017 IEEE Winter
Conference on, pp. 971–978. IEEE, 2017.

Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition with visual
attention. arXiv preprint arXiv:1412.7755, 2014.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Yavar Bellemare, Marc G.and Naddaf, Joel Veness, and Michael Bowling. The arcade learning en-
vironment: an evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013b.

Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier, and Andrew Zisserman. A short
note about kinetics-600. 2018.

Jinyoung Choi, Beom-Jin Lee, and Byoung-Tak Zhang. Multi-focus attention network for efficient
deep reinforcement learning. arXiv preprint arXiv:1712.04603, 2017.

Minki Chung and Sungzoon Cho. Cram: Clued recurrent attention model. arXiv preprint
arXiv:1804.10844, 2018.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-
PALA: scalable distributed deep-rl with importance weighted actor-learner architectures. CoRR,
abs/1802.01561, 2018. URL http://arxiv.org/abs/1802.01561.

Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer to see better: Recurrent attention convolu-
tional neural network for fine-grained image recognition. In CVPR, volume 2, pp. 3, 2017.

Sam Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. Visualizing and understanding atari
agents. CoRR, abs/1711.00138, 2017. URL http://arxiv.org/abs/1711.00138.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. 2016.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Advances in
Neural Information Processing Systems, pp. 1693–1701, 2015.

Drew A. Hudson and Christopher D. Manning. Compositional attention networks for machine rea-
soning. volume abs/1803.03067, 2018.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In Ad-
vances in neural information processing systems, pp. 2017–2025, 2015.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and
Koray Kavukcuoglu. Population based training of neural networks. CoRR, abs/1711.09846,
2017. URL http://arxiv.org/abs/1711.09846.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and
Ross B. Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1988–1997, 2017.

Adam Kosiorek, Alex Bewley, and Ingmar Posner. Hierarchical attentive recurrent tracking. In
Advances in Neural Information Processing Systems, pp. 3053–3061, 2017.

Adam R Kosiorek, Hyunjik Kim, Ingmar Posner, and Yee Whye Teh. Sequential attend, infer,
repeat: Generative modelling of moving objects. arXiv preprint arXiv:1806.01794, 2018.

11

http://arxiv.org/abs/1802.01561
http://arxiv.org/abs/1711.00138
http://arxiv.org/abs/1711.09846

Under review as a conference paper at ICLR 2019

Xuelong Li, Bin Zhao, and Xiaoqiang Lu. Mam-rnn: multi-level attention model based rnn for
video captioning. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, 2017.

Mateusz Malinowski, Carl Doersch, Adam Santoro, and Peter Battaglia. Learning visual question
answering by bootstrapping hard attention. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pp. 3–20, 2018.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. In
Advances in neural information processing systems, pp. 2204–2212, 2014.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer, and Alexander Ku.
Image transformer. arXiv preprint arXiv:1802.05751, 2018.

Mo Shan and Nikolay Atanasov. A spatiotemporal model with visual attention for video classifica-
tion. arXiv preprint arXiv:1707.02069, 2017.

Sheng-syun Shen and Hung-yi Lee. Neural attention models for sequence classification: Anal-
ysis and application to key term extraction and dialogue act detection. arXiv preprint
arXiv:1604.00077, 2016.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional LSTM network: A machine learning approach for precipitation nowcasting. CoRR,
abs/1506.04214, 2015. URL http://arxiv.org/abs/1506.04214.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998–6008, 2017.

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang
Wang, and Xiaoou Tang. Residual attention network for image classification. arXiv preprint
arXiv:1704.06904, 2017.

Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling network architectures for deep rein-
forcement learning. CoRR, abs/1511.06581, 2015. URL http://arxiv.org/abs/1511.
06581.

Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin Peng, and Zheng Zhang. The
application of two-level attention models in deep convolutional neural network for fine-grained
image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 842–850, 2015.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov,
Richard S. Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation
with visual attention. In ICML, 2015.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical
attention networks for document classification. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 1480–1489, 2016.

Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Understanding dqns.
CoRR, abs/1602.02658, 2016. URL http://arxiv.org/abs/1602.02658.

Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. CoRR, abs/1805.08318, 2018.

Heliang Zheng, Jianlong Fu, Tao Mei, and Jiebo Luo. Learning multi-attention convolutional neural
network for fine-grained image recognition. In Int. Conf. on Computer Vision, volume 6, 2017.

12

http://arxiv.org/abs/1506.04214
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1602.02658

Under review as a conference paper at ICLR 2019

A APPENDIX

A.1 ATARI AGENT

A.1.1 AGENT DESCRIPTION

Our agent takes in ATARI frames in RGB format (210 × 160 × 3) and processes them through a
two layer ConvNet and a ConvLSTM, which produces an output of size 27 × 20 × 128. We split
this output along the channel dimension to produce keys of size 27 × 20 × 8 and values of size
27× 20× 120. To each of these we append the same spatial basis of size 27× 20× 64. The query
is produced by feeding the state of the LSTM after the previous time step to a three layer MLP.
The final layer produces a vector with length 288, which is reshaped into a matrix of size 4× 72 to
represent the different attention heads. The queries, keys and values are processed by the mechanism
described in Section 2 and produces answers. The queries, answers, previous action, and previous
reward are fed into an answer processor, which is a 2 layer MLP. The output of the answer processor
is the input to the policy core, which is an LSTM. The output of the policy core is processed through
a one layer MLP and the output of that is processed by two different one layer MLPs to produce the
policy logits and values estimate. All the sizes are summarizes in Table 3.

Module Type Sizes

vision core CNN kernel size: 8× 8, stride: 4, channels: 32
kernel size: 4× 4, stride: 2, feature layers: 64

vision RNN ConvLSTM kernel size: 3× 3, channels: 128

answer processor MLP hidden units: 512
hidden units: 256

policy core LSTM hidden units: 256

query network MLP
hidden units: 256
hidden units: 128
hidden units: 72× 4

policy & value output MLP hidden units: 128

Table 3: The network sizes used in the attention agent

We an RMSProp optimizer with ε = 0.01, momentum of 0, and decay of 0.99. The learning rate is
2e − 4. We use a VTRACE loss with a discount of 0.99 and an entropy cost of 0.01 (described in
Espeholt et al. (2018)); we unroll for 50 timesteps and batch 32 trajectories on the learner. We clip
rewards to be in the range [−1, 1], and clip gradients to be in the range [−1280, 1280]. Since the
framerate of ATARI is high, we send the selected action to the environment 4 times without passing
those frames to the agent in order to speedup learning. Parameters were chosen by performing a
hyperparameter sweep over 6 levels (battle zone, boxing, enduro, ms pacman, seaquest, star gunner)
and choosing the hyperparameter setting that performed the best on the most levels.

A.1.2 MULTI-LEVEL AGENTS

We also train an agent on all ATARI levels simultaneously. These agents have distinct actors acting
on different levels all feeding trajectories to the same learner. Following Espeholt et al. (2018), we
train the agent using population based training (Jaderberg et al. (2017)) with a population size of 16,
where we evolve the learning rate, entropy cost, RMSProp ε, and gradient clipping threshold. We
initialize the values to those used for the single level experts, and let the agent train for 2e7 frames
before begining evolution. We use the mean capped human normalized score described in Espeholt
et al. (2018) to evaluate the relative fitness of each parameter set.

A.1.3 AGENT PERFORMANCE

Figure 10 shows the training curves for the experts on 55 ATARI levels (the curves for Freeway and
Venture are omitted since they are both constantly 0 for all agents). Table 1 shows the final human-

13

Under review as a conference paper at ICLR 2019

normalized score achieved on each game by each agent in both the expert and multi-agent regime.
As expected, the multi-level agent achieves lower scores on almost all levels than the experts.

A.1.4 TOP-DOWN VERSUS BOTTOM-UP

Figure 11 shows the training curves for the Fixed Query Agent and the L2 Norm Keys agent. These
agents are all trained on single levels for 2e9 frames. We see that, in 6 of the 7 tested games,
the agents without top-down attention perform significantly worse than the agent with top-down
attention. Table 5 shows the final scores achieved by each agent on all 7 levels.

A.2 WHAT-WHERE ANALYSIS

To form the what-where maps shown in Section 4.1.5, we compute the relative contribution Ci,j for
a query q from the content and spatial parts at each location is defined to be:

whati,j =
Ck∑
h=1

qhKi,j,h (8)

wherei,j =
Cs∑
h=1

qh+CkSi,j,h (9)

Di,j =

−log(10) whati,j − wherei,j < −log(10)
whati,j − wherei,j |whati,j − wherei,j | ≤ log(10)
log(10) whati,j − wherei,j > log(10)

(10)

Ci,j = Di,jAi,j (11)

where we interpolate between red, white and blue according to the values of C. The intuition is that,
at blue (red) points the contribution from the spatial (content) portion to the total weights would
be more than 10 times greater than the other portion. We truncate at ±10 because there are often
very large differences in the logits, but after the softmax huge differences become irrelevant. We
weight by the overall attention weight to focus the map only on channels that actually contribute to
the overall weight map.

A.2.1 ATTENTION WEIGHTS DISTRIBUTION

Since the sum that forms the attention answers (Equation 5) runs over all space, the peakiness of
the attention weights will have a direct impact on how local the information received by the agent
is. Figure 12 shows the distribution of attention weights for a single agent position in Ms Pacman
and Space Invaders on all four heads. On both games we observe that some of the heads are highly
peaked, while others are more diffuse. This indicates that the agent is able to ask very local queries
as well as more general queries. It is worth noting that, since the sum preserves the channel structure,
it is possible to avoid washing out information even with a general query by distributing information
across different channels.

A.3 SUPERVISED LEARNING

A.3.1 IMAGENET

Table 6 summarizes the architecture we use to train on ImageNet.

We used a momentum-based optimizer with momentum = 0.9. The learning rate started at 1e − 1
for tile lengths 1 and 4; it set to 1e − 2 for tile length 8. Our batch size was size 1024, and we
annealed the learning rate by 0.1 at iterations 1.0e5, 1.5e5, and 1.75e5. We used a learning decay
rate of 1e − 4. For training, we applied a data augmentation pipeline involving aspect ratio color
distortion as well as flipping the image horizontally. For the sequence length 8 result, we initially
train with sequence length 4 for the first 1e5 iterations and then switch to sequence length 8 for the
remainder of the training. This greatly improves the training efficiency of the model.

14

Under review as a conference paper at ICLR 2019

A.3.2 KINETICS 600

Table 7 contains the layer types and sizes we use to train on Kinetics.

As with our ImageNet experiments, we used a momentum-based optimizer with momentum = 0.9.
The learning rate was set to 1e − 2 and annealed at iterations 1.5e5, 2.0e5. Our batch size was of
size 240.

Our training testing pipelines are very close to those described in (Carreira et al., 2018). However,
we don’t pad videos to be of size 251 frames. Rather than employing their sampling procedure, we
extract 32 frames in fixed intervals from each video.

15

Under review as a conference paper at ICLR 2019

0.0

0.5

1.0

1.5

2.0 1e4 alien

0.0

0.5

1.0

1.5

2.0 1e4 amidar

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5 1e4 assault

0
1
2
3
4
5
6
7
8
9 1e5 asterix

0.0
0.5
1.0
1.5
2.0
2.5
3.0 1e5 asteroids

0.0
0.2
0.4
0.6
0.8
1.0
1.2 1e6 atlantis

Attention

LSTM Baseline

Feedforward Baseline

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6 1e3 bank_heist

0
1
2
3
4
5
6
7
8 1e4 battle_zone

0.0
0.5
1.0
1.5
2.0
2.5
3.0 1e4 beam_rider

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5 1e4 berzerk

20
30
40
50
60
70
80 bowling

−20
0

20
40
60
80

100 boxing

0
100
200
300
400
500
600
700
800
900 breakout

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6 1e4 centipede

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5 1e5chopper_command

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8 1e5 crazy_climber

0
1
2
3
4
5
6 1e5 defender

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4 1e5 demon_attack

−20
−15
−10
−5

0
5

10
15
20
25 double_dunk

0.0

0.5

1.0

1.5

2.0

2.5 1e3 enduro

−100
−80
−60
−40
−20

0
20
40
60
80 fishing_derby

100
150
200
250
300
350
400 frostbite

0.0
0.2
0.4
0.6
0.8
1.0
1.2 1e5 gopher

0
1
2
3
4
5
6 1e3 gravitar

0

1

2

3

4

5 1e4 hero

−10
−5

0
5

10
15
20
25 ice_hockey

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6 1e4 jamesbond

0
1
2
3
4
5
6 1e3 kangaroo

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6 1e4 krull

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8 1e5kung_fu_master

0.0

0.5

1.0

1.5

2.0

2.5 1e3montezuma_revenge

0.0
0.5
1.0
1.5
2.0
2.5
3.0 1e4 ms_pacman

0.0
0.5
1.0
1.5
2.0
2.5
3.0 1e4name_this_game

0
1
2
3
4
5
6
7 1e5 phoenix

−50

−40

−30

−20

−10

0 pitfall

−30
−20
−10

0
10
20
30 pong

0
50

100
150
200
250
300
350
400 private_eye

0.0
0.5
1.0
1.5
2.0
2.5
3.0 1e4 qbert

0.0

0.5

1.0

1.5

2.0 1e4 riverraid

0.0
0.5
1.0
1.5
2.0
2.5
3.0 1e5 road_runner

0
10
20
30
40
50
60
70 robotank

0.0

0.5

1.0

1.5

2.0 1e5 seaquest

−2.0
−1.8
−1.6
−1.4
−1.2
−1.0
−0.8 1e4 skiing

1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2 1e3 solaris

0
1
2
3
4
5
6 1e4space_invaders

0
1
2
3
4
5
6
7 1e5 star_gunner

−10

−5

0

5

10 surround

−24.2

−24.0

−23.8

−23.6

−23.4
tennis

0.0

0.2

0.4

0.6

0.8

1.0 1e5 time_pilot

0
50

100
150
200
250
300 tutankham

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e9

0
1
2
3
4
5
6 1e5 up_n_down

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e9

0
1
2
3
4
5
6 1e5 video_pinball

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e9

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5 1e4 wizard_of_wor

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e9

0
1
2
3
4
5
6 1e5 yars_revenge

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e9

0

1

2

3

4

5 1e4 zaxxon

Figure 10: Performance of individual experts on selected ATARI games. Freeway and Venture
are omitted; no tested agent achieved a non-zero return on either game

16

Under review as a conference paper at ICLR 2019

Experts Multi-level
Level Feedforward LSTM Attention Feedforward Attention
alien 271.8% 0.3% 206.9% 26.8% 27.1%
amidar 50.9% 2.7% 1138.9% 12.5% 15.9%
assault 2505.8% 26.2% 6571.9% 80.3% 69.5%
asterix 6827.5% 0.7% 9922.0% 14.2% 29.5%
asteroids 75.3% 545.8% 626.3% 1.6% 2.7%
atlantis 6320.7% 6161.6% 5820.0% 194.8% 136.4%
bank_heist 184.0% 191.8% 168.5% 4.2% 1.7%
battle_zone 151.9% 216.2% 2.1% 5.6% 2.6%
beam_rider 172.3% 152.1% 132.7% 1.8% 1.4%
berzerk 39.8% 353.6% 1844.3% 10.4% 12.1%
bowling 35.1% 1.7% 9.0% 3.8% 3.1%
boxing 832.5% 25.2% 743.6% 677.1% 32.5%
breakout 2963.5% 2917.4% 2284.2% 15.0% 29.2%
centipede 136.5% 12.7% 108.3% 43.1% 35.4%
chopper_command 5885.2% 8622.1% 12.3% 20.8% 5.3%
crazy_climber 560.7% 5.6% 643.9% 374.3% 398.0%
defender 2835.5% 3361.2% 3523.9% 98.9% 76.9%
demon_attack 7406.6% 7526.0% 7563.3% 47.4% 112.5%
double_dunk 865.2% 850.8% 1934.0% 108.4% 171.6%
enduro 275.0% 274.5% 275.0% 127.7% 51.7%
fishing_derby 293.9% 8.6% 280.8% 132.3% 10.0%
freeway 0.1% 0.1% 0.1% 75.9% 12.9%
frostbite 6.0% 7.3% 5.7% 35.1% 4.7%
gopher 4588.1% 5124.6% 5280.3% 36.4% 141.6%
gravitar 151.8% 144.6% 184.6% 3.8% 3.1%
hero 151.9% 6.7% 121.7% 43.2% 22.2%
ice_hockey 241.0% 302.2% 64.1% 37.7% 35.6%
jamesbond 845.9% 5819.2% 319.7% 31.7% 13.0%
kangaroo 178.9% 174.1% 0.6% 21.7% 8.5%
krull 1031.8% 921.0% 1309.6% 547.4% 883.3%
kung_fu_master 363.7% 20.6% 763.9% 73.3% 118.1%
montezuma_revenge 52.6% 0.1% 0.1% 0.0% 0.1%
ms_pacman 195.9% 6.4% 442.8% 31.6% 26.4%
name_this_game 482.3% 7.5% 413.1% 74.0% 53.9%
phoenix 10705.9% 10423.9% 8560.2% 47.5% 63.3%
pitfall 3.4% 3.4% 3.4% 3.4% 3.4%
pong 118.1% 2.0% 118.1% 55.3% 2.1%
private_eye 0.2% 0.2% 1.0% 0.5% 2.0%
qbert 160.6% 1.2% 207.7% 4.7% 5.7%
riverraid 118.6% -3.3% 93.4% 33.8% 30.9%
road_runner 2441.2% 2336.6% 3570.9% 409.7% 284.8%
robotank 625.3% 700.3% 450.3% 25.6% 32.1%
seaquest 8.5% 0.6% 546.5% 1.9% 1.4%
skiing 63.6% 63.6% 8.7% 63.6% 63.4%
solaris 15.7% 19.1% 13.0% 12.5% 12.8%
space_invaders 3230.4% 3412.5% 3668.0% 16.8% 30.4%
star_gunner 4972.8% 6707.6% 6838.6% 8.4% 10.4%
surround 114.2% 93.0% 121.9% 4.8% 0.7%
tennis 307.4% 153.5% 0.7% 49.8% 45.4%
time_pilot 3511.7% 16.7% 5708.4% 6.8% 17.0%
tutankham 169.3% 19.3% 187.3% 104.1% 76.9%
up_n_down 4035.0% 12.3% 4771.5% 347.8% 59.1%
venture 0.0% 0.0% 0.0% 8.9% 3.1%
video_pinball 2853.2% 139.0% 3001.8% 153.3% 188.7%
wizard_of_wor 842.5% 7.6% 401.1% 16.6% 8.5%
yars_revenge 1100.1% 12.7% 867.0% 47.8% 32.2%
zaxxon 472.2% 521.1% 488.6% 25.5% 2.8%

Table 4: The human-normalized score of agents on all ATARI levels.
17

Under review as a conference paper at ICLR 2019

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 1e4 amidar

0.0

0.5

1.0

1.5

2.0

2.5 1e5 asteroids

0.0 0.5 1.0 1.5 2.0
1e9

0.0

0.5

1.0

1.5

2.0

2.5

3.0 1e4 berzerk

0.0 0.5 1.0 1.5 2.0
1e9

0.0

0.5

1.0

1.5

2.0

2.5 1e3 enduro

Attention Agent

Fixed Query Agent

Normalized Key Agent

0.0 0.5 1.0 1.5 2.0
1e9

0.0

0.5

1.0

1.5

2.0

2.5

3.0 1e4 ms_pacman

0.0 0.5 1.0 1.5 2.0
1e9

0

1

2

3

4

5

6 1e5 seaquest

0.0 0.5 1.0 1.5 2.0
1e9

0

1

2

3

4

5

6 1e4 space_invaders

Figure 11: Performance of individual experts on selected ATARI games. Freeway and Venture
are omitted; no tested agent achieved a non-zero return on either game

level name Fixed Query Agent L2 Norm Keys Agent Top-Down Attention Agent
amidar 225.7% 547.5% 903.6%
asteroids 88.0% 126.4% 541.1%
berzerk 285.3% 334.1% 1153.9%
enduro 274.8% 274.5% 274.7%
ms_pacman 198.4% 199.6% 414.3%
seaquest 1435.9% 49.4% 28.2%
space_invaders 1798.1% 2395.2% 3512.8%

Table 5: The scores of the attention agent compared to the two bottom-up experiments described in
the text.

(a) The distribution of attention weights for Ms Pacman.

(b) The distribution of attention weights for Space Invaders

Figure 12: The distribution of attention weights on each head for a Ms Pacman and a Space Invaders
frame. The two bar plots show the sum of the weights along the x and y axis (the range of each plot
is [0, 1].

18

Under review as a conference paper at ICLR 2019

Module Type Sizes
vision core CNN ResNet-50 (v2)

policy core MLP
hidden units: 2048
hidden units: 2048
hidden units: 2048

query network MLP

hidden units: 1024
hidden units: 512
hidden units: 256
hidden units: 128

Table 6: The network sizes used in the ImageNet model.

Module Type Sizes
vision core CNN ResNet-34 (v2)

vision ConvLSTM kernel size: 3× 3, channels: 256

policy core MLP
hidden units: 1024
hidden units: 1024
hidden units: 1024

query network MLP
hidden units: 512
hidden units: 256
hidden units: 128

Table 7: The network sizes used in the Kinetics600 model.

19

	Introduction
	Model
	The spatial basis

	Related work
	Analysis and Results
	Reinforcement Learning
	The role of top-down influence
	Basic attention patterns
	Forward Planning/Scanning
	``Trip wires''
	``What'' vs. ``Where''
	Comparison with other attention analysis methods

	Supervised Learning
	ImageNet
	Kinetics

	Conclusion
	Appendix
	Atari Agent
	Agent Description
	Multi-Level Agents
	Agent Performance
	Top-Down versus Bottom-Up

	What-Where Analysis
	Attention Weights Distribution

	Supervised Learning
	ImageNet
	Kinetics 600

