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ABSTRACT

Large pre-trained Transformers such as BERT have been tremendously effec-
tive for many NLP tasks. However, inference in these large capacity models is
prohibitively slow and expensive. Transformers are essentially a stack of self-
attention layers which encode each input position using the entire input sequence
as its context. However, we find that it may not be necessary to apply this expen-
sive sequence-wide self-attention over at all layers. Based on this observation, we
propose a decomposition to a pre-trained Transformer that allows the lower layers
to process segments of the input independently enabling parallelism and caching.
We show that the information loss due to this decomposition can be recovered in
the upper layers with auxiliary supervision during fine-tuning. We evaluate de-
composition with pre-trained BERT models on five different paired-input tasks in
question answering, sentence similarity, and natural language inference. Results
show that decomposition enables faster inference (up to 4x), significant memory
reduction (up to 70%), while retaining most (up to 99%) of the original perfor-
mance. We will release the code at <anonymized url>.

1 INTRODUCTION

Inference in large Transformer-based NLP models such as BERT (Devlin et al., 2019) requires pro-
hibitively high-levels of compute, making it expensive to support large volume processing in data
centers, and almost infeasible to run on resource constrained mobile devices. These Transformer
models create effective representations using self-attention, a mechanism that allows them to effec-
tively account for wide textual contexts. However, applying self-attention over the entire input for
all layers is computationally expensive. This raises a natural question: Is self-attention over the
entire input necessary in all of the layers?

Previous studies (Tenney et al., 2019; Hao et al., 2019; Clark et al., 2019b) have shown that lower
layers tend to capture syntactic phenomena that mostly depend on local contexts and that higher
layers capture more semantic phenomena that are relevant to downstream tasks, which depend on
longer global contexts. This suggests that considering only local context in lower layers of Trans-
former and considering full global context in upper layers can provide speedup at a very small cost
in terms of effectiveness.

In this work we focus on paired-input NLP tasks such as reading comprehension, natural language
inference and sentence pair similarity. These tasks provide a natural boundary for the locality of text
(e.g., question vs. passage in QA). Because of this natural decomposition in two segments, we can
compute representations for lower layers with only the local segment as the context and compute
representations for upper layers with both segments as the context. This decomposition technique
has multiple benefits: It allows for parallel processing of each segment, caching of segments that are
available offline, and a significant reduction in runtime memory. Moreover, since the architecture
remains largely same, the original pre-trained weights can be reused in the decomposed model. To
compensate for the differences in the decomposed setting, we augment the fine-tuning loss on the
target task with a distillation loss that minimizes the output-level as well as layer-level divergences.

We evaluate the decomposition idea using the BERT model on five different pairwise tasks. The
decomposition achieves substantial speedup (2 to 4.3x) and reduction in memory (51.1% to 76.8%)
for only small loss in effectiveness (0.2 to 1.8 points). Moreover, we find that with decomposition
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the larger BERT model can even run faster than the original smaller BERT model, while still being
more accurate.

2 RELATED WORK

Speeding up inference in a model requires reducing the amount of compute involved. There are two
broad related directions of prior work:

(i) Compression techniques can be used to reduce model size through low rank approximation
(Zhang et al., 2015; Kim et al., 2015; Tai et al., 2015; Chen et al., 2018), and model weights pruning
(Guo et al., 2016; Han et al., 2015), which have been shown to help speedup inference in CNN and
RNN based models. For Transformers, Michel et al. (2019) explore pruning the attention heads to
gain inference speedup. This is an orthogonal approach that can be combined with our decompo-
sition idea. However, for the paired-input tasks we consider, pruning heads only provides limited
speedup. In more recent work Ma et al. (2019) propose approximating the quadratic attention com-
putation with a tensor decomposition based multi-linear attention model. However, it is not clear
how this multi-linear approximation can be applied to pre-trained Transformers like BERT.

(ii) Distillation techniques can be used to train smaller student networks to speedup inference. Tang
et al. (2019) show that BERT can be used to guide designing smaller models (such as single-layer
BiLSTM) for multiple tasks. But for the tasks we study, such very small models suffer a significant
performance drop. For instance there is a 13% accuracy degration on MNLI task. Another closely
related recent work is DistillBERT (Sanh et al., 2019), which trains a smaller BERT model (half the
size of BERT-base) that runs 1.5 times faster than the original BERT-base. However, the distilled
model incurs a significant drop in accuracy. More importantly, this distillation model usually un-
dergo expensive pre-training on the language modeling tasks before they can be fine-tuned for the
downstream tasks.

In this work, we ask if can we speedup the inference of Transformer models without compressing
or removing model parameters. Part of the massive success of pre-trained Transformer models for
many NLP task is due to a large amount of parameters capacity to enable complex language rep-
resentations. The decomposition we propose makes minimal changes retaining the overall capacity
and structure of the original model but allows for faster inference by enabling parallel processing
and caching of segments.

3 METHOD

Transformers process the entire input sequence through multiple layers of self-attention, each of
which involves an expensive transformation that is quadratic in the number of tokens in the input
sequence. In the case of paired-input tasks with query and candidate texts (e.g. question and passage
in QA, premise and hypothesis in NLI), the Transformers compute attention over a concatenation
of both texts. This results in highly effective representations of the input pair, but this comes at a
high-cost in terms of time complexity. If you want to reduce complexity, one natural question to ask
is whether we can decompose the Transformer function over segments of the input, trading some
representational power for efficiency.
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Figure 1: Illustration of the attention matrix com-
ponents for QA task.

Consider the question-answering use case
shown in Figure 1, where the standard input-
wide self-attention implicitly models question
self-attention, the passage self-attention, and
the two question and passage cross-attentions.
The cross-attentions allow the question and
passage to influence each other and produce ef-
fective representations for the target task. How-
ever, if we can process the two segments sep-
arately, we can improve efficiency in multiple
ways. We get a basic reduction in compute be-
cause we no longer perform cross-attention, go-
ing from O(p + q)2 to O(p2 + q2). More im-
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portantly we can get important gains through parallelism and caching. The question and passage
self-attentions can be computed in parallel. Since the passage representation is no longer dependent
on the question, they can be computed off-line and cached1. The trade-off, however, is that we loose
some representation effectiveness because we no longer use information from the other segment.
We argue that this is a good trade-off from two viewpoints:
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Figure 2: Average variance of passage representa-
tions when paired with different questions at dif-
ferent layers.

(i) First, we can expect to achieve a good trade-
off in models with multiple layers, where the
cross-attention is less important in lower layers
when compared to the upper layers. Figure 2
supports this argument using the similarity of
the representations of BERT layers for a sin-
gle passage when computed using five differ-
ent questions. The variance is smaller for lower
layers and increases for higher layers. This is
also in agreement with results on probing tasks
which suggest that lower layers tend to model
mostly local phenomena (e.g., POS, syntactic
categories), while higher layers tend to model
more semantic phenomena that are task depen-
dent (e.g, entity co-reference) relying on wider contexts. We further posit that in these multi-layer
models information loss in the lower layers can be potentially compensated for by the higher layers.

(ii) The approach requires minimal change to the overall Transformer architecture, which means
we can reuse the pre-trained weights and expect that fine-tuning on the target task by itself will be
sufficient to obtain high performance.

3.1 DECOMPOSING A TRANSFORMER

First, let’s define formally the computation that a Transformer undertakes for a paired-task contain-
ing two segments of text, Ta and Tb. Let the token embedding representations of segment Ta be
A = [a1;a2; ...;aq] and of Tb be B = [b1;b2; ...;bp]. The full input sequence X can be expressed
by concatenating the token representations from segment Ta and Tb as X = [A;B].

The Transformer encoder has n layers (denoted Li for layer i), which transform this input sequen-
tially: X l+1 = Li(X

l). For the details of the Transformer layer, we refer the reader to (Vaswani
et al., 2017). We denote the application of a stack of layers from layer i to layer j be denoted as Li:j .

Layer 1 

Layer 2 

Tok	CLS		 Tok	 SEP		 Tok	 Tok	 Tok	 SEP		

Layer 1 

Layer 2 

Layer k+1 

Layer n 

Tok	CLS		 Tok	 SEP		 Tok	 Tok	 Tok	 SEP		

Layer 1 

Layer 2 

Decompose 

Auxiliary 
Supervision 

 
(KD+LRS) 

Transformer  
Encoder 

Input  
Tokens 

Original Transformer Decomposed Transformer 

Predictions 

Layer k Layer k Layer k 

Layer k+1 

Layer n 

Predictions 

Figure 3: Decomposing Transformers up to layer k, which enables encoding each segment indepen-
dently from layer 1 to layer k. Auxiliary supervision of upper layer information from the original
model further helps the decomposed model to compensate for information loss in the lower layers.
KD is Knowledge Distillation loss and LRS is Layerwise Representation Similarity loss.

1There is a storage cost associated with caching. We show in Section 5.2 that storage cost is many orders of
magnitude smaller compared to inference costs.
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Full Transformer: The output representations of the full Transformer, An and Bn can be expressed
as:

[An;Bn] = L1:n([A
0;B0]) (1)

Decomposed Transformer: Figure 3 shows a schematic of our model. We decompose the com-
putation of lower layers (up to layer k) by simply removing the cross-interactions between Ta and
Tb representations. Here k is a hyper-parameter. The output representations of the decomposed
Transformer, An and Bn can be expressed as:

[An;Bn] = Lk+1:n([L1:k(A
0);L1:k(B

0)) (2)

3.2 SUPERVISING DECOMPOSED TRANSFORMER

The decomposed Transformer can be used in the same way as the original Transformer. Since the
decomposed Transformer retains much of the original structure, we can initialize this model with
the pre-trained weights of the original Transformer and fine-tune directly on downstream tasks.
However, the decomposed Transformer looses some information in the representations of the lower
layers. The upper layers can learn to compensate for this during fine-tuning. However, we can go
further and use the original model behavior as an additional source of supervision.

Towards this end, we first initialize the parameters of decomposed Transformer with the parameters
of a pre-trained full Transformer, and fine-tune it on the downstream tasks. To guide the learning
of decomposed-Transformer further, we add auxiliary losses that makes predictions and the upper
layer representations of decomposed Transformer closer to the predictions and corresponding layer
representations of the full Transformer during fine-tuning.

Knowledge Distillation Loss: We use this loss to bring the prediction distribution of the decom-
posed Transformer closer to that of the full Transformer during fine-tuning. For this, we minimize
the Kullback—Leibler divergence between decomposed Transformer prediction distribution PA and
full Transformer prediction distribution PB :

Lkd = DKL(PA‖PB)

Layerwise Representation Similarity Loss: We use this loss to bring the layer representations
of decomposed Transformer closer to those of full Transformer during fine-tuning. For this, we
minimize the euclidean distance between token representations of the upper layers of decomposed
Transformer and the full Transformer. Let vi

j be the token representations from ith layer (n layers)
and jth token (m tokens) of the full Transformer. Likewise, let ui

j be the token representations
from ith layer (n layers) and jth token (m tokens) of the decomposed Transformer. Finally, let
decomposed Transformer be decomposed up to layer k. We compute the Layerwise Representation
Similarity loss for fine-tuning decomposed Transformer as following:

Llrs =

n∑
i=k

m∑
j=1

‖vi
j − ui

j‖2

We add the Knowledge Distillation Loss and Layerwise Representation Similarity Loss along with
the Task Specific Supervision Loss (Lts) and learn their relative importance via hyper-parameter
tuning:

Ltotal = γLts + αLkd + βLlrs (3)

We use the Bayesian Optimization (Močkus, 1975) to tune the γ, α and β instead of simple trial-
and-error or grid/random search. The Bayesian process is designed to minimize the number of steps
required to find a combination of hyper-parameters that are close to the optimal one.
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4 EXPERIMENTS

4.1 DATASETS

We use the pre-trained uncased BERT base and large2 models on five different paired-input problems
covering 3 QA tasks, 1 natural language inference task and 1 sentence-level semantic similarity task:

SQuAD v1.1 (Stanford Question Answering Dataset) (Rajpurkar et al., 2016) is an extractive ques-
tion answering datasets containing>100,000 question and answer pairs generated by crowd workers
on Wikipedia articles.

RACE (Lai et al., 2017) is reading comprehension dataset collected from the English exams that are
designed to evaluate the reading and reasoning ability of middle and high school Chinese students.
It has over 28,000 passages and 100,000+ questions.

BoolQ (Clark et al., 2019a) consists of 15942 yes/no questions that are naturally occurring in
unprompted and unconstrained settings.

MNLI (Multi-Genre Natural Language Inference) (Williams et al., 2018) is a crowd-sourced corpus
of 433k sentence pairs annotated with textual entailment information.

QQP (Quora Question Pairs) (Iyer et al., 2019) consists of over 400,000 potential duplicate question
pairs from Quora.

For all 5 tasks, we use the standard splits provided with the datasets but in addition divide the original
training data further to obtain a 10% split to use for tuning hyper-parameters (tune split), and use
the original development split for reporting efficiency (FLOPs, memory usage) and effectiveness
metrics (accuracy or F1 depending on the task).

4.2 IMPLEMENTATION DETAILS

We implement all models in TensorFlow 1.14 (Abadi et al., 2015) based on the original BERT
codebase (Devlin et al., 2019). We perform all experiments on one TPU v3-8 node (8 cores, 128GB
memory) with bfloat16 format enabled. We measure the FLOPs and memory consumption through
the TensorFlow Profiler3. For decomposed Transformer models, we tune the hyperparameters for
weighting different losses using bayesian optimizaiton libray (Nogueira, Fernando, 2019) with 50
iterations on the tune split (10% of the original training sets) and report the performance numbers
on the original dev sets. The search range is [0.1, 2.0] for the 3 hyper-parameters.

For Decomposable BERT, we compute the representation for one of the input segments offline and
cache it. For QA we cache the passages, for natural language inference, we cache the premise4 and
for question similarity we cache the first question5.

4.3 RESULTS

Table 1 shows the main results comparing performance, inference speed and memory requirements
of BERT-base and Decomposed BERT-base when using nine lower layers, and three upper layers
(see Subsection 4.4 for the impact of the choice of upper/lower splits). We observe a substantial
speedup and significant memory reduction in all the datasets, while retaining most of the original
model’s effectiveness (as much as 98.4% on SQuAD and 99.8% on QQP datasets). Efficiency
improvements increase with the size of the text segment that can be cached.

Small Distilled or Large Decomposed? Table 2 compares performance, speed and memory of
BERT-base, BERT-large and Decomposed BERT-large. Decomposed BERT-large is 1.6 times faster
than the smaller BERT-base model. Decomposing the larger model turns out to be also more effec-

2Whole Word Masking version
3https://www.tensorflow.org/api_docs/python/tf/profiler/profile
4One use case is where we want to find (premise) sentences from a collection that support information

contained in a query (hypothesis) sentence.
5One use case is FAQ retrieval, where a user question is compared against a collection of previously asked

questions

5
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Avg. Input BERT Decomp- Performance Drop Inference Memory
Tokens base BERT base (absolute | %age) Speedup Reduction

(times) (%age)

SQuAD 320 88.5 87.1 1.4 | 1.6 3.2x 70.3
RACE 2048 66.3 64.5 1.8 | 2.7 3.4x 72.9
BoolQ 320 77.8 76.8 1.0 | 1.3 3.5x 72.0
MNLI 120 84.4 82.6 1.8 | 2.1 2.2x 56.4
QQP 100 90.5 90.3 0.2 | 0.2 2.0x 50.0

Table 1: (i) Performance of BERT-base vs Decomp-BERT-base, (ii) Performance drop, inference
speedup and inference memory reduction of Decomp-BERT-base over BERT-base for 5 tasks.
Decomp-BERT-base uses nine lower layers, and three upper layers with caching enabled. For
SQuAD and RACE we also train with the auxiliary losses, and for the others we use the main
supervision loss – the settings that give the best effectiveness during training. Note that the choice
of the loss doesn’t affect the efficiency metrics.

Performance (Squad-F1) Speed (GFLOPs) Memory (MB)

BERT-large 92.3 204.1 1549.6
BERT-base 88.5 58.4 584.2
Decomp-BERT-large 90.8 47.7 359.7

Table 2: Performance, Inference Speed and Memory for different models on SQuAD.

Tesla V100 GPU Intel i9-7900X CPU OnePlus 6 Phone

BERT-base 0.22 5.90 10.20*
Decomp-BERT-base 0.07 1.66 3.28*

Table 3: Inference latency (in seconds) on SQuAD datasets for BERT-base vs Decomp-BERT-base,
as an average measured in batch mode. On the GPU and CPU we use a batch size 32 and on the
phone (marked by *) we use a batch size of 1.

tive than using the smaller base model (+2.3 points) This shows that with decomposition, a large
Transformer can run faster than a smaller one which is half its size, while also being more accurate.

We note that distilling a larger model into a smaller can yield better accuracy than training a smaller
model from scratch. As far as we know, there are two related but not fully comparable results. (1)
Tang et al. (2019) distill BERT to a small LSTM based model where they achieve 15x speedup
but at a significant drop in accuracy of more than 13 points on MNLI. (2) Sanh et al. (2019) distill
BERT to a smaller six layer Transformer, which can provide 1.6x speedup but gives >2 points
accuracy drop on MNLI and>3 points F1 drop on SQuAD. A fair comparison requires more careful
experimentation exploring different distillation sizes which requires repeating pre-training or data
augmentation – an expensive proposition.

Device Results: To evaluate the impact on different devices, we deployed the models on three dif-
ferent machines (a GPU, CPU, and a mobile phone). Table 3 shows the average latency in answering
a question measured on a subset of the SQuAD dataset. On all devices, we get more than three times
speedup.

4.4 ABLATION STUDY

Table 4 shows the contribution of auxiliary losses for fine-tuning Decomposed-BERT on SQuAD
dataset. The drop in effectiveness when not using Layerwise Representation Similarity (LRS in
table), and Knowlege Distillation (KD) losses shows the utility of auxiliary supervision.

Figure 4a and figure 4b shows how the effectiveness and inference speed of Decomposed-BERT
changes as we change the separation layer. The plot shows that inference speed up roughly scales
quadratically with respect to the separation layer number. The drop in effectiveness, on the other
hand, is negligible for separating at lower layers (until layer 3 for the base model and until layer 13
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Base Model Large Model

BERT 88.5 92.3

Decomp-BERT 87.1 90.8
w/o LRS 86.2 88.9
w/o KD & LRS 85.8 87.5

Table 4: Ablation analysis on SQuAD datasets for Decomp-BERT-base and Decomp-BERT-large
models.

for the large model) and increases slowly after that with a dramatic increase in the last layers closest
to the output. The separation layer choice thus allows trading effectiveness for inference speed.
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Figure 4: F1 drop versus speedup of Decomposed BERT model (without auxiliary supervision)
when separating at different layers.

5 ANALYSIS AND DISCUSSION

5.1 UNDERSTANDING TRANSFORMER LOWER AND UPPER LAYERS

The main difference between the original BERT and the decomposed BERT is the absence of cross
attention in the lower layers. We analyze the differences between the representations of the two
models across all layers. To this end, we randomly select 100 passages from SQuAD dev dataset
as well as randomly selecting 5 different questions that already exist in the dataset associated with
each passage. For each passage, we encode all 5 question-passage pair sequence using both the
fine-tuned original BERT-base model and the decomposed model, and compute their distance of the
vector representations at each layer. Figure 5 shows the averaged distances of both the question and
passage at different layers.

Figure 5a indicates that the lower layer representations of the passage for both models remain similar
but the upper layer representations differ significantly, supporting the argument that lower layers tend
to capture more of local context than global contexts. In addition, the figure also shows that using
the auxiliary supervision of upper layers has the desired effect of forcing the decomposed BERT
model to produce representations that are closer to the original model.

Figure 5b shows the distance of question representations between original BERT and decomposed
BERT, which also supports the findings from the passage representation. One minor difference is
the smaller gap between using upper layer supervision for decomposed model and not using the
supervision. We attribute this to the fact that question tokens are fewer than that of the passage, thus
having less distance variations.

5.2 INFERENCE COST

The decomposed model enables caching of text representations that can be computed offline. While
a full-scale analysis of the detailed trade-offs in storage versus latency is beyond the scope of this
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Figure 5: Representation distance of BERT vs decomp-BERT and distance of BERT vs decomp-
BERT w/o auxiliary loss/supervision

paper, we present a set of basic calculations to illustrate that the storage cost of caching can be
substantially smaller compared to the inference cost.

Assuming a use case of evaluating one million question-passage pairs daily, we first compute the
storage requirements of the representations of these passages. With the BERT-base representations
we estimate this to be 226KB per passage and 226GB in total for 1 million passages. The cost of
storing this data and the added compute costs and reading these passages at the current vendor rates
amounts to a total of $61.7 dollars per month. To estimate inference cost, we use the compute times
we obtain from our calculations and use current vendor rates for GPU workloads which amounts to
$148.5 dollars to support the 1 million question-passage pair workload. The substantial reduction in
cost is because the storage cost is many orders of magnitude cheaper than using GPUs. Details of
these calculations are listed in the Appendix.

5.3 OTHER PRE-TRAINED TRANSFORMER MODELS

More recently, two pre-trained Transformers XLNet (Yang et al., 2019) and RoBERTa (Liu et al.,
2019) have outperformed BERT models on many NLP tasks. RoBERTa has the same architecture
as BERT, it is reasonable to expect the decomposition idea to work accordingly. Although XLNet
brings the segment-level recurrent into the Transformer self-attention layers that making it different
from BERT, the decomposition technique is likely to be applicable due to being agnostic to the layer
internals. We leave showing the effectiveness of decomposition of these two models to near future
work.

6 CONCLUSION

Transformers have improved the effectiveness of NLP tools by their ability to incorporate large
contexts effectively in multiple layers. This however imposes a significant complexity cost. In this
work, we showed that modeling such large contexts may not always be necessary and leverage this
insight to build a decomposition of the Transformer model that provides substantial improvements
in inference speed, memory reduction, while retaining most of the original model’s accuracy. This
decomposition model provides a simple yet strong starting point for efficient models as NLP moves
towards increasingly larger models handling wider contexts.
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A APPENDIX

Data centers often use GPUs for inference workloads (Lab, 2019), we use the GPUs by default
for both models. We use gu to denote the cost of using one GPU per hour, nseq to stand for the
number of input sequences to process, b for the GPU batch size, and tb is the time (in seconds) take
to process b sequences, s denotes the storage size of the cached representations, su denotes the cost
of storage per month, ru is the cost of performing 10,000 reading operations (such as loading cached
representations from the disk).

The total cost of the original model Costoriginal is the cost of using GPUs and is given by the
formula as below:

Costoriginal = tb ·
nseq
b
· gu
3600

And the total cost of the decomposed model Costdecomp includes three parts: using GPUs, storing
representations on disk and loading them into memory. It is formulated as:

Costdecomp = tb ·
nseq
b
· gu
3600

+
nseq
b
· ru
10, 000

+
s · su

30 ∗ 24 ∗ 3600

We assume a passage has 150 tokens on average (The number is calculated based on the SQuAD
dataset).

We take one cloud service provider (Platform, 2019) to instantiate gu, su, and ru: one Tesla V100
GPU (16GB memory) costs $2.48 USD per hour (gu = 2.48), 1GB storage takes $0.02 per month
(su = 0.02) and additional $0.004 per 10,000 read operations (ru = 0.004)6.

6Class B operations on GCP
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It takes 226KB to store the vectors for 150 tokens 7, and the total storage for 1 million sequences
is 226GB. The Tesla V100 GPU allows a maximum batch size of 6408. We measure the tb = 4.6
for the original BERT-base model and tb = 1.4 for the decomposed BERT-base model. Then
Costoriginal = 30 ∗ 4.6 ∗ 1, 000, 000/640 ∗ 2.48/3600 = $148.5, and Costdecomp = 30 ∗ 1.4 ∗
1, 000, 000/640 ∗ 2.48/3600 + 30 ∗ 1, 000, 000/10, 000 ∗ 0.004 + 226 ∗ 0.02 = $61.7.

7vector dimension=768, bfloat16 format
8>640 batch size will cause V100 GPU out of memory
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