
Under review as a conference paper at ICLR 2020

ATTRIBUTED GRAPH LEARNING WITH 2-D
GRAPH CONVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph convolutional neural networks have demonstrated promising performance
in attributed graph learning, thanks to the use of graph convolution that effective-
ly combines graph structures and node features for learning node representations.
However, one intrinsic limitation of the commonly adopted 1-D graph convolution
is that it only exploits graph connectivity for feature smoothing, which may lead
to inferior performance on sparse and noisy real-world attributed networks. To
address this problem, we propose to explore relational information among node
attributes to complement node relations for representation learning. In particular,
we propose to use 2-D graph convolution to jointly model the two kinds of rela-
tions and develop a computationally efficient dimensionwise separable 2-D graph
convolution (DSGC). Theoretically, we show that DSGC can reduce intra-class
variance of node features on both the node dimension and the attribute dimension
to facilitate learning. Empirically, we demonstrate that by incorporating attribute
relations, DSGC achieves significant performance gain over state-of-the-art meth-
ods on node classification and clustering on several real-world attributed networks.

1 INTRODUCTION

In an attributed graph, each node is associated with a feature vector, and nodes are connected by
edges encoding their relations. Commonly seen attributed graphs include citation networks where
each node is a document represented by a bag-of-words feature vector and edges are citation links,
web graphs where each webpage is also represented as a vector of words and edges are hyperlinks,
social networks where each user is represented by a user profile vector and edges indicate user friend-
ship, and protein-protein interaction networks where each protein is represented by a list of protein
signatures and edges encode interactions between proteins. Learning on attributed graphs including
node classification and clustering finds many important applications in real-world networks.

Since the connectivity patterns and node contents of an attributed graph usually contain different
information, it often requires joint modelling both aspects of information to achieve good learning
performance. A major class of methods (Yang et al., 2015; Pan et al., 2016; Huang et al., 2017)
is devoted to learning efficient node representations of an attributed graph via nonnegative matrix
factorization or random walk statistics and then perform downstream learning tasks with the learned
representations. A number of semi-supervised classification methods (Belkin et al., 2006; Weston
et al., 2008; Yang et al., 2016) classify nodes in an attributed graph by training a supervised classifier
on node features with some kind of graph regularizer. Recently, a series of works based on graph
convolutional neural networks including ChebyNet (Defferrard et al., 2016), graph convolutional
networks (GCN) (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017) and graph attention
networks (GAT) (Velickovic et al., 2018) have been shown to achieve state-of-the-art performance
in node classification and clustering (Kipf & Welling, 2016; Wang et al., 2017) on attributed graphs.

The key component of these models is one-dimensional (1-D) graph convolution, a function that
naturally combines graph structures and node contents by aggregating a node’s features with its
neighbours’. As shown in (Li et al., 2019), the graph convolutional operator used in GCN and many
follow-up works acts as a low-pass graph filter that smooths a node’s features with its neighbours’.
Under the assumption that nearby nodes tend to be in the same class, it can produce similar feature
representations for nodes in the same class, thereby making them easier to be classified or clustered.
While this works well for attributed graphs with clear cluster structures, real-world networks could

1

Under review as a conference paper at ICLR 2020

be highly noisy and sparse. For example, in a web graph such as Wikipedia, a hyperlink between
two webpages does not necessarily indicate that they belong to the same category, so mixing their
features could be harmful for learning. Furthermore, it has been shown that many real-world net-
works are scale-free (Albert & Barabási, 2002), which means there exist many low-degree nodes.
Since these nodes may have very few or even no links to other nodes, it would be difficult and even
impossible for them to learn similar feature representations as other same-class nodes, which is an
intrinsic limitation of the 1-D graph convolution that is commonly adopted in existing models.

To address these limitations, we propose to explore relational information on a different dimension
– the relations between feature attributes, in addition to node relations. Likewise, a relation between
two feature attributes should reflect some kind of similarity between them. The assumption is that
attributes that tend to indicate same classes should have strong relations. For example, in a citation
network, node attributes are words, and documents of AI category usually contain words such as
“learning”, “robotics”, “machine”, “neural”, etc. These indicative words for AI category should have
much stronger relations among themselves than with other non-indicative words. These informative
relations can be used to construct an attribute affinity graph to smooth node features in a similar
way as the node relations do, only in a different dimension. Importantly, attribute relations can
complement node relations in node representation learning. For instance, consider a document that
has no links to others and hence it is impossible to do feature smoothing with node relations. But
with attribute relations, it can still learn similar feature representations as other same-class nodes.

In this paper, we make the following contributions.

• Methodology: We propose to use 2-D graph convolution to jointly model node relations
and attribute relations for learning node representations of attributed graphs. Further, we
develop a computationally efficient dimensionwise separable 2-D graph convolution (DS-
GC), which is equivalent to performing 1-D graph convolution alternately on the node
dimension and the attribute dimension respectively.

• Theoretical Insight: We show that regular 1-D graph convolution on the node dimension
can reduce intra-class variance of node features, which explains the success of many ex-
isting methods. Further, we show that with a properly constructed attribute affinity graph,
graph convolution on the attribute dimension can also reduce intra-class variance of node
features. Jointly, our analysis provides a theoretical justification of DSGC.

• Empirical Study: We implement DSGC for node classification and clustering on attributed
graphs, and compare it with state-of-the-art methods on a citation network, a web graph,
and an email network. The results demonstrate the superiority of DSGC over regular 1-D
graph convolution on spare and noisy real-world attributed networks. We also show that
DSGC can be plugged into existing models to substantially improve their performance.

2 RELATED WORKS

Structural Graph Learning. Methods for structural graph learning only utilize graph structures
(node relations). A common approach is to learn smooth low-dimensional embeddings of nodes us-
ing Markov random walks (Szummer & Jaakkola, 2002; Perozzi et al., 2014; Grover & Leskovec,
2016), Laplacian eigenmaps (Belkin & Niyogi, 2004), spectral kernels (Chapelle et al., 2003; Zhang
& Ando, 2006), autoencoders (Wang et al., 2016; Cao et al., 2016; Ye et al., 2018) and generative ad-
versarial nets (Dai et al., 2018; Wang et al., 2018). Another direction is graph-based semi-supervised
classification, which includes methods based on low-density graph partition (Blum & Chawla, 2001;
Blum et al., 2004; Joachims, 2003) and the popular label propagation method and its variants (Zhu
et al., 2003; Zhou et al., 2004; Bengio et al., 2006; Hein & Maier, 2007; Wu et al., 2012).

Attributed Graph Learning. Methods for attributed graph learning take into account both graph
structures and node features. A major class of methods learns node representations (Yang et al.,
2015; Pan et al., 2016; Huang et al., 2017) or clustering nodes (Xia et al., 2014; Zhou et al., 2010;
Li et al., 2018) by applying nonnegative matrix factorization, random walk statistics, or Laplacian
eigenmaps on both graph structures and node features. Some node clustering methods use a Bayesian
model (Xu et al., 2012; Bojchevski & Günnemann, 2018) or design a distance measure that trades
off structural and feature information (Zhou et al., 2009; Cheng et al., 2011). Statistical relational
learning methods model node relations and features with probabilistic graphical models, e.g., rela-

2

Under review as a conference paper at ICLR 2020

tional Markov networks (Taskar et al., 2002). Another category of related work is the graph-based
semi-supervised node classification methods that exploit both graph structures and node features.
For example, iterative classification algorithm (Sen et al., 2008) iteratively classifies an unlabeled
node using its neighbours’ labels and features. Manifold regularization (Belkin et al., 2006), deep
semi-supervised embedding (Weston et al., 2008), and Planetoid (Yang et al., 2016) classify node
features by training a supervised classifier with a Laplacian or embedding-based regularizer.

Graph Neural Networks. Another line of research on attributed graph learning is based on graph
neural networks (Scarselli et al., 2009; Li et al., 2016). Inspired by the success of convolutional
neural networks (CNN) on Euclidean data, recent works (Bruna et al., 2014; Henaff et al., 2015;
Duvenaud et al., 2015; Atwood & Towsley, 2016) proposed to use 1-D graph convolution for at-
tributed graph learning. To avoid the expensive eigen-decomposition, ChebyNet (Defferrard et al.,
2016) uses a polynomial filter represented by k-th order polynomials of graph Laplacian via Cheby-
shev expansion. Graph convolutional networks (GCN) (Kipf & Welling, 2017) further simplifies
ChebyNet by designing an efficient layer-wise propagation rule via a first-order approximation of
spectral graph convolution. GCN achieved outstanding results in semi-supervised classification and
inspired many follow-up works including MoNet (Monti et al., 2017), GraphSAGE (Hamilton et al.,
2017), graph attention networks (Velickovic et al., 2018), gated attention networks (Zhang et al.,
2018a), FastGCN (Chen et al., 2018b), dual graph convolutional neural network (Zhuang & Ma,
2018), stochastic GCN (Chen et al., 2018a), attributed network representation learning (Zhang et al.,
2018c), LanczosNet (Liao et al., 2019), deep graph infomax (Velickovic et al., 2019), graph Markov
neural networks (Qu et al., 2019), DisenGCN (Ma et al., 2019a), MixHop (Abu-El-Haija et al.,
2019), etc. A recent interesting research direction is on learning graph structures for graph neural
networks, e.g., Bayesian GCN (Zhang et al., 2018b) and LDS (Franceschi et al., 2019). Remarkably,
LDS can automatically learn a graph for data samples even when it is not available.

Some attributed graph clustering methods based on 1-D graph convolution also showed promis-
ing performance, including graph autoencoder and graph variational autoencoder (Kipf & Welling,
2016), marginalized graph autoencoder (Wang et al., 2017), adversarially regularized graph autoen-
coder and adversarially regularized variational graph autoencoder (Pan et al., 2018), and adaptive
graph convolution (Zhang et al., 2019). More comprehensive reviews of graph neural networks can
be found in (Cai et al., 2018; Zhang et al., 2018d; Zhou et al., 2018).

3 2-D GRAPH CONVOLUTION

In this section, we present 2-D graph convolution for attributed graph learning. A comprehensive
introduction of multi-dimensional graph Fourier transform can be found in (Kurokawa et al., 2017).
Different from Kurokawa et al. (2017), here we propose a localized 2-D graph convolution to cir-
cumvent the computationally intensive graph Fourier transform. Furthermore, we propose an even
simpler dimensionwise separable 2-D graph convolution to efficiently model both node relations and
attribute relations along the two dimensions of the feature matrix of an attributed graph.

3.1 2-D GRAPH FOURIER TRANSFORM AND SPECTRAL GRAPH CONVOLUTION

A 2-D graph signal is a function defined on the Cartesian product of the vertex sets of two graphs.
Formally, given two weighted undirected graph G(1) and G(2), denote the vertex sets by V(1) and
V(2), the edge set by E(1) and E(2), and the weighted adjacency matrix by A(1) and A(2). A 2-
D graph signal x on (G(1),G(2)) is a real-valued function f : V(1) × V(2) → R, which can be
conveniently represented in matrix form:

X = (xij) ∈ Rn×m, xij = f(ν
(1)
i , ν

(2)
j), (1)

where n = |V(1)| and m = |V(2)|. In this paper, G(1) represents the given node graph; G(2) repre-
sents the constructed attribute affinity graph; andX is the node feature matrix, which is a 2-D signal
on the two graphs. We call the adjacency matrices A(1) and A(2) node affinity matrix and attribute
affinity matrix respectively.

Define the graph Laplacian of G(1) and G(2) asLl =D
(1)−A(1) andLr =D(2)−A(2) respective-

ly. Denote by λi and µj the eigenvalues ofLl andLr, andU = [u1, · · · ,un] andV = [v1, · · · ,vm]

3

Under review as a conference paper at ICLR 2020

the corresponding eigenbasis respectively, then the n×m outer products uiv
>
j form a basis for the

linear space Rn×m. It is known as 2-D graph Fourier basis – an analogy of the Fourier basis in
classical harmonic analysis in graph domain. The corresponding eigenvalue pair (λi, µj) is known
as the frequency of basis matrix uiv

>
j . Then, a 2-D graph signalX can be decomposed as:

X =
∑
ij

sij(uiv
>
j) = USV

>, S = (sij) ∈ Rn×m. (2)

Then, we can define 2-D graph Fourier transform as S = U>XV , where S is called the spectrum
of signalX or Fourier coefficients.

Based on 2-D graph Fourier transform, we can now manipulate 2-D graph signals in the spectral
(frequency) domain and define 2-D spectral graph convolution. By the convolution theorem, the
convolution of two signals equals to point-wise multiplication of their spectrum in the spectral do-
main. 2-D spectral graph convolution is a function conv : Rn×m → Rn×m that takes signal X as
input and outputs a new signal Z:

Z =
∑
ij

p(λi, µj)sij(uiv
>
j) = U(S ◦ P)V >, (3)

where p(λ, µ) : R× R→ R is the frequency response of the convolution; ◦ is Hadamard (element-
wise) product; and P ∈ Rn×m with Pij = p(λi, µj) is the frequency response in matrix form.

3.2 FAST LOCALIZED 2-D SPATIAL GRAPH CONVOLUTION

Although Eq. (3) well defines 2-D graph convolution, it is often impractical to perform convolution
in the spectral domain, due to the high cost of computing the eigenbasis U ,V needed for Fourier
transform. Similar to (Defferrard et al., 2016) on 1-D graph convolution, here we propose 2-D s-
patial graph convolution to avoid intensive computation. Without loss of generality, we restrict the
frequency response p(·, ·) to be a polynomial of two variables λ, µ with parameters Θ ∈ Rn×m, i.e.,
p(λ, µ) =

∑
i,j θijλ

iµj . Then, the 2-D spectral graph convolution in Eq. (3) becomes

Z =

n−1∑
i=0

m−1∑
j=0

θijL
i
lXL

j
r. (4)

Eq. (4) is called 2-D spatial graph convolution, as it manipulates the signalX in the spatial domain.
Parameter Θ is called the kernel of the convolution. Here, the spatial convolutional filter is localized.
Denote by k1 and k2 the largest exponent of λ and µ in the polynomial p respectively, then i > k1
and j > k2 imply θij = 0. The convoluted signal zij of vertex pair (ν(1)i , ν

(2)
j) only depends on the

neighbourhood of ν(1)i within k1 hops and the neighbourhood of ν(2)j within k2 hops, so the filter is
said to be k1-localized on G(1) and k2-localized on G(2), and the size of the kernel Θ is k1 × k2.

Dimensionwise Separable 2-D Graph Convolution (DSGC) Although the above spatial graph
convolution avoids the computationally expensive Fourier transform, its general form with kernel
size k1 × k2 still involves at least k1 × k2 matrix multiplications. Inspired by the depthwise sep-
arable convolution proposed in (Howard et al., 2017), we streamline spatial graph convolution by
restricting the rank of Θ to be one. Consequently, Θ is decomposed as an outer product of two
vectors θ(1) ∈ Rn and θ(2) ∈ Rm. The frequency response p can be decomposed as a produc-
t of two single variable polynomials, i.e., p(λ, µ) = p1(λ)p2(µ), where p1(λ) =

∑
i θ

(1)
i λi and

p2(µ) =
∑

j θ
(2)
j µj . Finally, the 2-D spatial graph convolution in Eq. (4) becomes

Z = GXF , whereG = p1(Ll) and F = p2(Lr). (5)

We call Eq. (5) dimensionwise separable graph convolution (DSGC). The fastest way to compute
it only requires k1 + k2 matrix multiplications, much less than the k1 × k2 matrix multiplications
needed by a general 2-D spatial graph convolution.

We call GX node graph convolution and G the node graph convolutional filter. Similarly, we call
XF attribute graph convolution andF the attribute graph convolutional filter. Notably,G andF can
complement each other to learn better node representations. As illustrated in Fig. 1, the node affinity

4

Under review as a conference paper at ICLR 2020

Att1 Att2 Att3 Att4

a 1

b 1

c 1

d 1

e 1
a b c d e

a 2/3 1/3

b 1/3 1/3 1/3

c 1/3 2/3

d 1

e 1

Att1 Att2 Att3 Att4

a 2/3 1/3

b 1/3 2/3

c 1

d 1

e 1

Att1 Att2 Att3 Att4

a 1/2 1/2

b 1/2 1/2

c 1/2 1/2

d 1/2 1/2

e 1/2 1/2
Att1 Att2 Att3 Att4

Att1 1/2 1/2

Att2 1/2 1/2

Att3 1/2 1/2

Att4 1/2 1/2

Node of Class 1

Node of Class 2

Attribute

X

G

GX GXF

F

Att4
Att1

Att2
Att3

Attribute affinity graph

d

e
a

b
c

Node affinity graph

Figure 1: Illustration of DSGC.

graph only captures node relations of Class 1, and applying node graph convolution on the feature
matrix X smooths the node features of Class 1, but it does not affect those of Class 2. Fortunately,
the attribute affinity graph encodes complementary relational information on another dimension, and
further applying attribute graph convolution makes the node features of Class 2 similar and those of
Class 1 even more similar, thereby making them much easier to be classified or clustered.

4 INTRA-CLASS VARIANCE REDUCTION BY DSGC

Given a data distribution, the lowest possible error rate an classifier can achieve is the Bayes error
rate (Fukunaga, 2013), which is caused by the intrinsic overlap between different classes and cannot
be avoided. In this section, we show that DSGC with proper graph convolutional filters can reduce
intra-class variance of the data distribution while keeping class centers roughly unchanged, hence
reducing the overlap between classes and improving learning performance.

Intra-class Variance and Inter-class Variance. Suppose samples xi and their labels yi are obser-
vations of a random vector X = [X1, · · · ,Xm]> and a random variable Y respectively. We define
the variance of random vector X to be the sum of the variance of each dimension Xj , i.e., the trace
of the covariance matrix of X. According to law of total variance (Grinstead & Snell, 2012), the
variance of X can be divided into intra-class variance and inter-class variance:

Var (X) = E [Var (X|Y)]︸ ︷︷ ︸
Intra-class Variance

+ Var (E [X|Y])︸ ︷︷ ︸
Inter-class Variance

, (6)

where the conditional variance Var (X|Y = k) is the variance of class k and the conditional ex-
pectation E [X|Y = k] is the k-th class center. Intra-class variance (IntraVar) measures the average
divergence within each class, while inter-class variance (InterVar) measures the divergence among
class centers. We are interested in the IntraVar/InterVar ratio. Here, we assume that each class of
data Pr (X|Y = k) follows a unimodal distribution (e.g. Gaussian, chi-square, Laplace), a class of
most common distributions in the real world, and with roughly convex contours. Under this assump-
tion, a low IntraVar/InterVar ratio generally indicates low classification error, since the class overlap
is reduced. This is also verified by our experiments on real attributed networks in section 7.

4.1 INTRA-CLASS VARIANCE REDUCTION BY NODE GRAPH CONVOLUTION

As variance of sample mean is always less than variance of individual samples, averaging samples of
the same class can always reduce intra-class variance. Actually this is how node graph convolution
works. For any node i, node graph convolutionGX produces a new feature vector zi =

∑
j Gijxj .

WhenG is a stochastic matrix, the output feature vector zi is a weighted average of the neighbours
of xi. Denote by Z a random vector of zi. Intuitively, as long as each node i has enough same-
class neighbours, Z will have a smaller IntraVar/InterVar ratio than X. Formally, assume that the
graph is generated by a stochastic block model, where nodes from the same class are connected
with probability p and those from different classes are connected with probability q. Then, with the
stochastic graph filterG =D−1A(1), we have the following theorem.

5

Under review as a conference paper at ICLR 2020

Theorem 1. When q is sufficiently small, the IntraVar/InterVar ratio of Z is less than or equal to
that of X, i.e.,

E [Var (Z|Y)]
Var (E [Z|Y])

≤ E [Var (X|Y)]
Var (E [X|Y])

. (7)

The proof is given in the Appendices. Under the assumption that nodes in the same class are most
likely to be connected, node graph convolution G can reduce intra-class variance while keeping
inter-class variance roughly unchanged, thereby decreasing the IntraVar/InterVar ratio.

4.2 INTRA-CLASS VARIANCE REDUCTION BY ATTRIBUTE GRAPH CONVOLUTION

In the following, we show that a proper attribute graph convolutional filter F can also reduce the
IntraVar/InterVar ratio. We use the convention that the random vector X is a column vector, and
hence the attribute graph convolution XF results in a new random vector F>X. We also assume
that the node features are mean-centered, i.e. E [X] = 0. Denote by Cov(k) = Cov (X|Y = k) the
covariance matrix of X w.r.t. each class, and denote by πk = Pr(Y = k) the portion of each class.
Then, after attribute graph convolution, the intra-class variance of data becomes

E
[
Var
(
F>X|Y

)]
=
∑
k

πk
∑
ij

Cov(k)
ij (FF>)ij (8)

Theorem 2. If the attribute graph convolutional filter F is a doubly stochastic matrix, then the
output of attribute graph convolution has an intra-class variance less than or equal to that of X, i.e.,∑

i

Fij =
∑
j

Fij = 1 and Fij ≥ 0,∀ i, j ⇒ E
[
Var
(
F>X|Y

)]
≤ E [Var (X|Y)] .

The proofs of Eq. (8) and Theorem 2 are given in the Appendices. Eq. (8) suggests that to reduce
intra-class variance, the attribute affinity graph should connect attributes Xi and Xj with small or
even negative covariance Cov(k)ij . For example, in Figure 1, the attributes Att3 and Att4 are both
indicative of class 2, but negatively correlated w.r.t. class 2, so connecting them in the attribute
affinity graph can greatly reduce the intra-class variance of class 2.

To achieve a low IntraVar/InterVar ratio, in addition to reducing intra-class variance, we also need
to keep the class centers apart after convolution, which then depends on the quality of the attribute
affinity graph. A good attribute affinity graph should connect attributes that share similar expecta-
tions conditioned on Y. Formally, each attribute Xj has K conditional expectations w.r.t. Y, which
are denoted as a vector ej = (E [Xj |Y = 1] , · · · ,E [Xj |Y = K]) ∈ RK . We have the following.
Theorem 3. If ∀Fij 6= 0, ‖ei − ej‖2 ≤ ε, then the distance between ej and êj =

∑
i Fijei is also

less than or equal to ε, i.e.,

‖ei − ej‖2 ≤ ε, ∀Fij 6= 0 ⇒ ‖ej − êj‖2 ≤ ε,
and ε can be arbitrarily small with a proper F .

By Theorem 3, since the conditional expectations of each attribute may change little after attribute
graph convolution, one can infer that the class centers will also change little, and so does the inter-
class variance. Combining Theorems 2 & 3, it suggests that a proper attribute affinity graph should
connect attributes that have similar class means but are less positively correlated, so as to achieve
a low IntraVar/InterVar ratio and improve performance. Again, it can be seen in Figure 1 that the
attributes Att3 and Att4 have exactly the same class means, but are negatively correlated w.r.t. class
2, and connecting them in the attribute affinity graph reduces the intra-class variance of class 2 to 0.

5 ATTRIBUTED GRAPH LEARNING WITH DSGC

5.1 UNSUPERVISED NODE REPRESENTATION LEARNING

Given an attributed graph with node feature matrix X , we can learn the node representations Z in
an unsupervised manner by applying DSGC onX , i.e.,

Z = GXF , (9)

6

Under review as a conference paper at ICLR 2020

and then perform various downstream learning tasks with Z.

Node Classification. With the learned node representations Z, we can simply train a classifier such
as multilayer perceptron with the labeled nodes, and then apply the trained classifier on the unlabeled
nodes to predict their labels.

Node Clustering. With the learned node representations Z, we propose to cluster nodes as follows.
We first apply a linear kernel onZ to learn pairwise proximity between nodes, i.e.,K = ZZ>, and
then perform spectral clustering (Perona & Freeman, 1998; Von Luxburg, 2007) onK.

5.2 END-TO-END SEMI-SUPERVISED LEARNING

For semi-supervised learning on attributed graphs, we can also use DSGC to replace the 1-D graph
convolution used in existing end-to-end semi-supervised learning models including GCN (Kipf &
Welling, 2017), GAT (Velickovic et al., 2018) and GraphSAGE (Hamilton et al., 2017). For example,
to incorporate DSGC into the vanilla GCN, we can modify the first layer propagation of GCN as:

H(1) = σ(GXFW (1)), (10)

whereH(1) is the hidden units in the first layer,W (1) ∈ Rm×l is the trainable parameters of GCN,
and σ is a nonlinear function such as ReLU. Both G and F are fixed filters, where G is the node
graph convolutional filter of GCN, and F is the proposed attribute graph convolutional filter.

Importantly, Eq. (10) can be considered as feeding a filtered feature matrix XF instead of the
raw feature matrix X to GCN. By our above analysis, a proper attribute graph filter F can reduce
intra-class variance, which makes XF much easier to classify and guarantees to help train a better
model. Further, it can be shown that the model trained by Eq. (10) is essentially different from that
of GCN almost surely. For GCN, the model is freely chosen from the parameter space W (1), while
the model trained by Eq. (10) is restricted in a subspace FW (1). Since F is low-pass (section 6.2), it
is also low-rank, and FW (1) is a small subspace of Rm×l projected by F . Model parameters in this
subspace are generally better in terms of the generalization performance (test accuracy), due to the
variance reduction property of F . However, the model learned by Eq. (10) can hardly be learned by
GCN, since the subspace FW (1) has measure zero, which is an extremely small subset of Rm×l.

6 IMPLEMENTATION OF DSGC

6.1 NODE GRAPH CONVOLUTIONAL FILTERS

The node affinity graph (A(1)) is given as part of the dataset. There are various graph convolutional
filters available (Li et al., 2019), e.g., the one used in GCN (Kipf & Welling, 2017) is a symmetrically
normalized node affinity matrix. In our experiments, we use a row normalized node affinity matrix
(consistent to our analysis in section 4.1) of order 2 (following GCN) as the filter for node graph
convolution:

G = (D−11 A(1))2, (11)

where D1 is the degree matrix of A(1). We observe in our experiments that the performance of the
symmetrically normalized node affinity matrix (GCN filter) is similar.

6.2 ATTRIBUTE GRAPH CONVOLUTIONAL FILTERS

A key issue in implementing DSGC is to construct the attribute affinity graph (A(2)). Possible ways
of constructing A(2) include extracting entity relation information from existing knowledge bases,
building a similarity graph from features, or identifying correlations by domain knowledge. In the
following, we describe two methods for text data, which have been proven useful by our experiments.

Positive point-wise mutual information (PPMI). Positive PMI (Church & Hanks, 1990) is a com-
mon tool for measuring the association between two words in natural language processing. Given a
pair of words wi and wj , the edge weight is defined as the PPMI between wi and wj :

a
(2)
ij = PPMI(wi, wj) =

[
log

p(wi, wj)

p(wi)p(wj)

]
+

, (12)

7

Under review as a conference paper at ICLR 2020

where p(wi, wj) and p(wi) are learned by sliding a window over a large corpus of text. PMI reflects
word collocation, as it assumes that if two words co-occur more than expected under independence,
there must be some kind of semantic relation between them, which is often true in practice. With
the constructed attribute affinity graph A(2) by PPMI, in our experiments, we use a symmetrically
normalized affinity matrix as the filter:

F =D
− 1

2
2 A(2)D

− 1
2

2 , (13)

whereD2 is the degree matrix ofA(2).

Word embedding based k-NN graphs. Word embedding is a collection of techniques that map vo-
cabularies to vectors in a Euclidean space. Embeddings of words are pre-trained vectors learned from
corpus with algorithms such as GloVe (Pennington et al., 2014). Since word embeddings capture se-
mantic relations between words (Bakarov, 2018), they can be used for constructing an attribute
affinity graph. With the embedding vectors, we can construct a k-NN graph with some proximi-
ty metric such as the Euclidean distance. With the constructed attribute affinity graph A(2), in our
experiments, we use the following one-step lazy random walk filter (Li et al., 2019):

F = (I +D
− 1

2
2 A(2)D

− 1
2

2)/2, (14)

whereD2 is the degree matrix ofA(2). Note that the filters in Eq. (13) and (14) are slightly different,
since the diagonal weight of the affinity matrix constructed by word embedding is much smaller than
that of the PPMI affinity matrix, and we want to assign sufficient weight to each attribute itself. Also,
we use filters of order 1 since the PPMI affinity matrix is very dense. According to the analysis in
Li et al. (2019), Eq. (13) and (14) are both low-pass filters.

7 EMPIRICAL STUDY

To validate the effectiveness of DSGC, we conduct extensive experiments for semi-supervised node
classification and node clustering on three large real-world attributed networks including 20 News-
groups (20 NG) (Lang, 1995), Wikispeedia (Wiki) (West et al., 2009; West & Leskovec, 2012) and
Large Cora (L-Cora) (McCallumzy et al., 1999; Li et al., 2019). 1 Due to space limitation, details of
datasets, experimental setup and computational time are provided in the Appendices.

Variance Reduction. First of all, to verify our analysis in section 4, we demonstrate the variance
reduction effect of both node graph convolution and attribute graph convolution. As shown in Fig-
ure 2, 1-D graph convolution with eitherG or F already greatly reduces the IntraVar/InterVar ratio,
and together they further significantly reduce the ratio.

7.1 NODE CLASSIFICATION

Baselines. We test the proposed node classification method by DSGC with or without using the node
graph convolutional filter (G) and the attribute graph convolutional filter (F) in five cases. We use
a two-layer multilayer perceptron as the classifier for DSGC. PPMI and Emb denote constructing
the attribute affinity graph with positive point-wise mutual information and word embedding respec-
tively. We compare DSGC with the following baselines: label propagation (LP) (Wu et al., 2012),
multi-layer perceptron (MLP), GCN (Kipf & Welling, 2017), generalized label propagation (GLP)
(Li et al., 2019), GraphSAGE (Hamilton et al., 2017), graph attention networks (GAT) (Velickovic
et al., 2018), and deep graph infomax (DGI) (Velickovic et al., 2019). We also try to incorporate
DSGC into GCN, GAT, GraphSAGE, and LDS (Franceschi et al., 2019) (see the experimental setup
of LDS in Appendix A.4) as described in section 5.2 to improve their performance.

Performance. We test semi-supervised node classification under two scenarios – 20 labels per class
and 5 labels per class. For each task, we report the mean classification accuracies and standard
deviations over 10 runs, as summarized in Table 1, where the top 2 accuracies are highlighted in
bold. In Table 2, we report the results of GAT, GCN, GraphSAGE, and LDS after incorporating
DSGC. The following observations can be made.

1Note that we did not use the “Cora”, “Citeseer” and “PubMed” datasets as in (Kipf & Welling, 2017; Yang
et al., 2016; Sen et al., 2008), since the attribute (word) lists are not provided in these datasets.

8

Under review as a conference paper at ICLR 2020

Table 1: Classification accuracy.
Datasets 20 NG L-Cora Wiki

Methods G F 20 labels 5 labels 20 labels 5 labels 20 labels 5 labels

LP 3 7 16.39 ± 0.20 8.62 ± 0.20 55.77 ± 0.97 38.97 ± 3.15 9.53 ± 0.05 10.54 ± 0.19

MLP 7 7 65.77 ± 0.22 36.10 ± 1.11 51.05 ± 0.71 33.56 ± 2.43 60.86 ± 0.69 29.95 ± 1.04

GLP 3 7 76.21 ± 0.18 47.86 ± 1.63 67.58 ± 1.06 51.04 ± 1.61 33.42 ± 1.44 15.38 ± 1.37

GCN 3 7 76.14 ± 0.24 47.70 ± 1.64 66.69 ± 0.98 48.62 ± 1.81 48.65 ± 0.65 38.30 ± 1.48

GAT 3 7 75.16 ± 0.25 49.14 ± 1.55 66.49 ± 1.01 49.27 ± 2.25 48.88 ± 0.68 36.90 ± 1.75

DGI 3 7 73.34 ± 0.27 66.57 ± 0.63 61.39 ± 0.50 54.77 ± 1.24 49.70 ± 1.63 43.64 ± 1.89

GraphSAGE 3 7 65.73 ± 0.17 42.48 ± 0.77 57.28 ± 0.71 46.79 ± 1.91 65.52 ± 0.62 48.81 ± 0.76

DSGC (GX) 3 7 76.27 ± 0.20 47.92 ± 1.57 67.16 ± 1.04 51.93 ± 1.46 49.78 ± 0.50 43.79 ± 1.48

DSGC (XF) 7 Emb 68.08 ± 0.22 43.41 ± 0.99 55.34 ± 0.66 38.13 ± 2.20 68.43 ± 0.37 54.25 ± 0.99

7 PPMI 76.10 ± 0.21 61.45 ± 0.74 58.54 ± 0.79 44.58 ± 2.00 69.53 ± 0.36 58.44 ± 1.48

DSGC (GXF) 3 Emb 77.38 ± 0.14 55.24 ± 1.21 68.38 ± 0.85 52.87 ± 1.56 58.66 ± 0.65 45.71 ± 1.64

3 PPMI 81.91 ± 0.20 70.35 ± 0.72 67.60 ± 0.82 54.07 ± 1.13 58.35 ± 0.52 46.72 ± 1.66
? 3 and 7 indicate using/not using G or F .

49.8

72.5
85.8

33.6
28.0 26.7

8.5

13.2

26.5

12.5
14.4

23.7

5.8 5.7

9.4 8.5
6.8

8.3

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

20 NG Wiki L-Cora

X GX XF, F=PPMI

XF, F=Emb GXF, F=PPMI GXF, F=Emb

Figure 2: IntraVar/InterVar ratios.

Table 2: Improve baselines with DSGC.
Methods F 20 NG L-Cora Wiki

GAT 7 75.16 ± 0.25 66.49 ± 1.01 48.88 ± 0.68

PPMI 80.52 ± 0.16 67.00 ± 0.65 55.51 ± 0.38

GCN 7 76.14 ± 0.24 66.69 ± 0.98 48.65 ± 0.65

PPMI 81.80 ± 0.22 65.83 ± 0.87 60.22 ± 0.71

LDS 7 75.74 ± 0.68 62.51 ± 0.70 62.89 ± 0.61

PPMI 81.98 ± 0.46 62.94 ± 0.32 66.97 ± 0.63

GraphSAGE 7 65.73 ± 0.17 57.28 ± 0.71 65.52 ± 0.62

PPMI 76.27 ± 0.33 60.23 ± 1.81 67.26 ± 0.52
? 7 indicates not using F .

1) Node graph convolution does not always help. On 20 NG and L-Cora, methods based on node
graph convolution such as DSGC (GX), GLP, GCN and GAT all outperform MLP significantly.
However, on Wiki, node graph convolution harms the performance, which is due to the highly noisy
hyperlink graph with intra-class edge ratio 38.0%, much lower than that of 20 NG (96.8%) and L-
Cora (76.5%) (see Table 5 in the Appendices). This shows the limitation of node graph convolution.

2) Attribute graph convolution works. On all the three datasets, DSGC (XF) outperforms MLP by a
large margin. This shows that attribute graph convolution can learn useful node representations even
when there are no connections between nodes. Remarkably, on Wiki, where the hyperlink graph is of
bad quality, DSGC (XF) with either PPMI or Emb outperforms all the baselines by a large margin.
DSGC (XF) with PPMI improves upon the best baseline by 4% and 10% in absolute accuracy for
tasks with 20 labels and 5 labels per class respectively.

3) 2-D graph convolution is effective.

• For datasets with good node graphs such as 20 NG and L-Cora, DSGC (GXF) performs much
better than either DSGC (GX) or DSGC (XF). DSGC (GXF) with PPMI achieves the best
performance. On 20 NG, it improves upon the best baseline by more than 5% for tasks with 20
labels per class, and about 4% for tasks with 5 labels per class, both in absolute accuracy. On L-
Cora, it is comparable with the best baseline. On both datasets, for tasks with 20 labels per class,
DSGC (GXF) with Emb also outperforms all the baselines; for tasks with 5 labels per class, it
outperforms all the baselines except DGI. This shows that node graph convolution and attribute
graph convolution can complement each other and lead to significant performance gain.

• For datasets with bad node graphs such as Wiki, DSGC (GXF) significantly improves upon
DSGC (GX) and outperforms all the baselines except GraphSAGE, which uses extra labeled data
for validation while DSGC uses none. Nevertheless, since node graph convolution degrades perfor-
mance on such a noisy graph, DSGC (XF) performs better than DSGC (GXF).

9

Under review as a conference paper at ICLR 2020

Table 3: Clustering performance.
Datasets 20 NG L-Cora Wiki

Methods G F Acc(%) NMI(%) Acc(%) NMI(%) Acc(%) NMI(%)

Spectral 7 7 25.29 ± 1.01 28.18 ± 0.74 28.22 ± 1.01 11.61 ± 0.04 29.25 ± 0.00 21.83 ± 0.00

GAE 3 7 38.92 ± 1.39 44.58 ± 0.40 34.45 ± 0.76 22.38 ± 0.18 33.78 ± 0.32 22.88 ± 0.20

VGAE 3 7 25.04 ± 0.81 25.72 ± 0.77 29.45 ± 1.25 17.53 ± 0.15 33.83 ± 0.45 21.46 ± 0.19

MGAE 3 7 47.83 ± 2.33 56.14 ± 1.00 35.87 ± 0.97 30.57 ± 0.98 32.73 ± 1.16 27.95 ± 2.29

ARGE 3 7 42.04 ± 0.50 44.13 ± 0.91 36.07 ± 0.05 27.74 ± 0.01 26.49 ± 0.10 17.17 ± 0.05

ARVGE 3 7 21.10 ± 0.61 21.79 ± 0.49 26.45 ± 0.03 12.94 ± 0.01 33.82 ± 0.13 21.42 ± 0.11

AGC 3 7 38.83 ± 0.84 47.08 ± 1.57 41.76 ± 0.01 33.65 ± 0.01 32.74 ± 0.01 24.90 ± 0.01

DSGC (GX) 3 7 38.42 ± 0.66 46.28 ± 0.93 38.26 ± 0.02 30.66 ± 0.02 31.43 ± 0.09 24.16 ± 0.18

DSGC (XF) 7 Emb 28.99 ± 0.06 33.22 ± 0.10 30.80 ± 0.56 17.46 ± 0.21 35.45 ± 0.91 33.44 ± 0.66

7 PPMI 48.36 ± 2.40 53.27 ± 2.17 36.46 ± 0.06 22.53 ± 0.03 38.10 ± 0.01 36.07 ± 0.02

DSGC (GXF) 3 Emb 43.40 ± 0.66 50.97 ± 0.58 40.75 ± 0.02 33.05 ± 0.04 30.50 ± 0.01 25.48 ± 0.03

3 PPMI 52.25 ± 1.97 61.34 ± 1.07 41.24 ± 0.04 30.92 ± 0.01 31.37 ± 0.08 26.06 ± 0.20
? 3 and 7 indicate using/not using G or F .

• As shown in Table 2, for node classification with 20 labels per class on all three datasets, af-
ter incorporating DSGC, the performances of GCN, GAT, LDS, and GraphSAGE are substantially
improved in most cases. This further verifies the effectiveness of 2-D graph convolution.

7.2 NODE CLUSTERING

Baselines. We test the proposed node clustering method by DSGC (section 5.1) with or without
usingG andF in five cases. We compare DSGC with strong baselines for attributed graph clustering
including GAE and VGAE (Kipf & Welling, 2016), MGAE (Wang et al., 2017), ARGE and ARVGE
(Pan et al., 2018), and AGC (Zhang et al., 2019). We also compare with spectral clustering (Spectral)
that operates on a similarity matrix constructed by applying linear kernel on the node representations.

Performance. To evaluate the clustering performance, we adopt two widely-used metrics (Aggarwal
& Reddy, 2014): clustering accuracy (Acc) and normalized mutual information (NMI). The results
are shown in Table 3, where the top 2 results are highlighted in bold. The following observations
can be made. 1) Attribute graph convolution works very well. On 20 NG, DSGC (XF) with PPMI
already outperforms most baselines by a large margin. On Wiki, DSGC (XF) with PPMI or Emb
significantly outperforms all the baselines. 2) Similar to the classification tasks, 2-D graph convolu-
tion is effective. On 20 NG, DSGC (GXF) with PPMI can further improve upon the very strong
performance of DSGC (XF) and performs the best; On L-Cora, DSGC (GXF) with PPMI or Emb
improves upon either DSGC (GX) or DSGC (XF) and outperforms most baselines significantly.
On Wiki, DSGC (XF) performs better than DSGC (GXF), due to the low-quality hyperlink graph
as explained above.

For both classification and clustering, we observe that in most cases DSGC with PPMI can achieve
better performance than with Emb. This shows the effectiveness of PPMI in capturing meaningful
word relations based on information theory and statistics (Church & Hanks, 1989), whereas Emb
only relies on a distance metric for measuring word similarity.

8 CONCLUSION

In this paper, we have proposed to model attributed graphs with 2-D graph convolution. We have
demonstrated theoretically and empirically that by exploiting attribute relations in addition to node
relations, a simple and efficient dimensionwise separable 2-D graph convolution (DSGC) can learn
better node representations than existing methods based on regular 1-D graph convolution on noisy
and sparse real-word networks. We believe 2-D graph convolution is a promising tool for attributed
graph learning, and there is much left to be explored. In future work, we plan to further investigate
the construction of attribute affinity graphs for different types of attributed networks, apply DSGC
to solve various practical problems, and design new efficient filters for 2-D graph convolution.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In ICML, pp. 21–29, 2019.

Charu C Aggarwal and Chandan K Reddy. Data Clustering: Algorithms and Applications. CRC
Press, Boca Raton, 2014.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In NeurIPS, pp. 1993–
2001, 2016.

Amir Bakarov. A survey of word embeddings evaluation methods. CoRR, abs/1801.09536, 2018.

M. Belkin and P. Niyogi. Semi-supervised learning on Riemannian manifolds. Machine Learning,
56(1):209–239, 2004.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learn-
ing from labeled and unlabeled examples. Journal of Machine Learning Research, 7(1):2399–
2434, 2006.

Y. Bengio, O. Delalleau, and N. Le Roux. Label propagation and quadratic criterion. Semi-
supervised Learning, pp. 193–216, 2006.

A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In ICML,
pp. 19–26, 2001.

A. Blum, J. Lafferty, M.R. Rwebangira, and R. Reddy. Semi-supervised learning using randomized
mincuts. In ICML, pp. 13, 2004.

Aleksandar Bojchevski and Stephan Günnemann. Bayesian robust attributed graph clustering: Joint
learning of partial anomalies and group structure. In AAAI, pp. 2738–2745, 2018.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. ICLR, 2014.

HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE TKDE, 30(9):1616–1637, 2018.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph representations.
In AAAI, pp. 1145–1152, 2016.

O. Chapelle, J. Weston, and B. Scholkopf. Cluster kernels for semi-supervised learning. In NeurIPS,
pp. 601–608, 2003.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In ICML, pp. 941–949, 2018a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. In ICLR, 2018b.

Hong Cheng, Yang Zhou, and Jeffrey Xu Yu. Clustering large attributed graphs: A balance between
structural and attribute similarities. ACM TKDD, 5(2):12:1–12:33, 2011.

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual information and lexi-
cography. In 27th Annual Meeting of the Association for Computational Linguistics, 26-29 June
1989, University of British Columbia, Vancouver, BC, Canada, Proceedings., pp. 76–83, 1989.

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual information, and lexi-
cography. Computational Linguistics, 16(1):22–29, 1990.

Quanyu Dai, Qiang Li, Jian Tang, and Dan Wang. Adversarial network embedding. In AAAI, 2018.

11

Under review as a conference paper at ICLR 2020

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NeurIPS, pp. 3844–3852, 2016.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In NeurIPS, pp. 2224–2232, 2015.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In ICML, pp. 1972–1982, 2019.

Keinosuke Fukunaga. Introduction to statistical pattern recognition. Elsevier, 2013.

Charles M Grinstead and James Laurie Snell. Introduction to probability. American Mathematical
Soc., 2012.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In ACM
SIGKDD, pp. 855–864. ACM, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NeurIPS, pp. 1024–1034, 2017.

Matthias Hein and Markus Maier. Manifold denoising. In NeurIPS, pp. 561–568, 2007.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. CoRR, abs/1506.05163, 2015.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Xiao Huang, Jundong Li, and Xia Hu. Accelerated attributed network embedding. In SIAM ICDM,
pp. 633–641, 2017.

T. Joachims. Transductive learning via spectral graph partitioning. In ICML, pp. 290–297, 2003.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. NIPS Workshop on Bayesian
Deep Learning, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional network-
s. In ICLR, 2017.

Takashi Kurokawa, Taihei Oki, and Hiromichi Nagao. Multi-dimensional graph fourier transform.
arXiv preprint arXiv:1712.07811, 2017.

Ken Lang. Newsweeder: Learning to filter netnews. In ICML, pp. 331–339, 1995.

Qimai Li, Xiao-Ming Wu, Han Liu, Xiaotong Zhang, and Zhichao Guan. Label efficient semi-
supervised learning via graph filtering. In CVPR, pp. 9582–9591, 2019.

Ye Li, Chaofeng Sha, Xin Huang, and Yanchun Zhang. Community detection in attributed graphs:
an embedding approach. In AAAI, pp. 338–345, 2018.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence neural
networks. In ICLR, 2016.

Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S Zemel. Lanczosnet: Multi-scale deep
graph convolutional networks. CoRR, abs/1901.01484, 2019.

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, and Wenwu Zhu. Disentangled graph convolutional
networks. In ICML, pp. 4212–4221, 2019a.

Jiaqi Ma, Weijing Tang, Ji Zhu, and Qiaozhu Mei. A flexible generative framework for graph-based
semi-supervised learning. CoRR, abs/1905.10769, 2019b.

12

Under review as a conference paper at ICLR 2020

Andrew McCallumzy, Kamal Nigamy, Jason Renniey, and Kristie Seymorey. Building domain-
specific search engines with machine learning techniques. In Proceedings of the AAAI Spring
Symposium on Intelligent Agents in Cyberspace, pp. 28–39. Citeseer, 1999.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and Michael M.
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In CVPR,
pp. 5425–5434, 2017.

Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-party deep network repre-
sentation. In IJCAI, pp. 1895–1901, 2016.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. In IJCAI, pp. 2609–2615, 2018.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In EMNLP, pp. 1532–1543, 2014.

Pietro Perona and William Freeman. A factorization approach to grouping. In ECCV, pp. 655–670,
1998.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In ACM SIGKDD, pp. 701–710, 2014.

Meng Qu, Yoshua Bengio, and Jian Tang. GMNN: graph markov neural networks. In ICML, pp.
5241–5250, 2019.

Claudio Saccá, Michelangelo Diligenti, and Marco Gori. Collective classification using semantic
based regularization. In IEEE ICMLA, volume 1, pp. 283–286, 2013.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93–106, 2008.

M. Szummer and T. Jaakkola. Partially labeled classification with Markov random walks. In NeurIP-
S, pp. 945–952, 2002.

Benjamin Taskar, Pieter Abbeel, and Daphne Koller. Discriminative probabilistic models for rela-
tional data. In UAI, pp. 485–492, 2002.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In ICLR, 2019.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. Mgae: Marginalized graph
autoencoder for graph clustering. In CIKM, pp. 889–898, 2017.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In ACM SIGKDD,
pp. 1225–1234, 2016.

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, and
Minyi Guo. Graphgan: Graph representation learning with generative adversarial nets. In AAAI,
2018.

Robert West and Jure Leskovec. Human wayfinding in information networks. In WWW, pp. 619–
628, 2012.

Robert West, Joelle Pineau, and Doina Precup. Wikispeedia: An online game for inferring semantic
distances between concepts. In IJCAI, pp. 1598–1603, 2009.

13

Under review as a conference paper at ICLR 2020

Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via semi-
supervised embedding. In ICML, pp. 1168–1175, 2008.

Xiaoming Wu, Zhenguo Li, Anthony M. So, John Wright, and Shih-fu Chang. Learning with Par-
tially Absorbing Random Walks. In NeurIPS, pp. 3077–3085, 2012.

Rongkai Xia, Yan Pan, Lei Du, and Jian Yin. Robust multi-view spectral clustering via low-rank
and sparse decomposition. In AAAI, pp. 2149–2155, 2014.

Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. A model-based approach to
attributed graph clustering. In ACM SIGMOD, pp. 505–516, 2012.

Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. Network representation
learning with rich text information. In IJCAI, pp. 2111–2117, 2015.

Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In ICML, pp. 40–48, 2016.

Fanghua Ye, Chuan Chen, and Zibin Zheng. Deep autoencoder-like nonnegative matrix factorization
for community detection. In CIKM, pp. 1393–1402, 2018.

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. Gaan: Gated
attention networks for learning on large and spatiotemporal graphs. In UAI, pp. 339–349, 2018a.

T. Zhang and R.K. Ando. Analysis of spectral kernel design based semi-supervised learning. In
NeurIPS, pp. 1601–1608, 2006.

Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. Attributed graph clustering via adaptive
graph convolution. In IJCAI, pp. 4327–4333, 2019.

Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Üstebay. Bayesian graph convolutional
neural networks for semi-supervised classification. CoRR, abs/1811.11103, 2018b.

Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu, Jianwei Zhang, Martin Ester,
and Can Wang. ANRL: attributed network representation learning via deep neural networks. In
IJCAI, pp. 3155–3161, 2018c.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. CoRR, ab-
s/1812.04202, 2018d.

Denny Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard Schölkopf. Learning
with local and global consistency. In NeurIPS, pp. 321–328, 2004.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural
networks: A review of methods and applications. CoRR, abs/1812.08434, 2018.

Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Graph clustering based on structural/attribute similar-
ities. Proceedings of the VLDB Endowment, 2(1):718–729, 2009.

Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Clustering large attributed graphs: An efficient incre-
mental approach. In ICDM, pp. 689–698, 2010.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In ICML, pp. 912–919, 2003.

Chenyi Zhuang and Qiang Ma. Dual graph convolutional networks for graph-based semi-supervised
classification. In WWW, pp. 499–508, 2018.

14

Under review as a conference paper at ICLR 2020

Appendices
Appendix A provides details about the experiments in section 7 and presents additional experimental
results. Appendix B, C and D provide proofs of the theorems in section 4.

APPENDIX A EXPERIMENT DETAILS AND SUPPLEMENTARY EXPERIMENTS

A.1 DATASET DETAILS

Table 4: Classes of each dataset.
Datasets Classes

20 NG

talk.politics.guns sci.crypt rec.autos comp.graphics
talk.politics.mideast sci.electronics rec.motorcycles comp.os.ms-windows.misc
talk.politics.misc sci.med rec.sport.baseball comp.sys.ibm.pc.hardware
talk.religion.misc sci.space rec.sport.hockey comp.sys.mac.hardware
soc.religion.christian alt.atheism misc.forsale comp.windows.x

Wiki
Everyday Life Religion Science Design and Technology
Countries People History Language and literature
Citizenship

L-Cora

Artificial Intelligence Networking Encryption and Compression
Data Structures Algorithms and Theory Hardware and Architecture
Operating Systems Programming Human Computer Interaction
Information Retrieval Databases

20 Newsgroups (20 NG) Lang (1995) is an email discussion group, where each node is an email and
there are 18846 emails in total. Each email is represented by an 11697-dimension tf-idf feature vec-
tor. Two emails are connected by an edge if they replies the same one. These emails are categorized
into 20 classes as listed in Table 4.

Wikispeedia (Wiki) West et al. (2009); West & Leskovec (2012) is a webpage network in which the
nodes are 3767 Wikipedia webpages, and the edges are web hyperlinks. Each webpage is described
by a 18316-dimension tf-idf vector. We remove several tiny classes from the dataset, so the webpages
distribute more evenly across the remaining 9 categories, which are also listed in Table 4.

Large Cora (L-Cora) McCallumzy et al. (1999) is a citation network in which the nodes are comput-
er science research papers represented by 3780 dimension of tf-idf values. Two papers are connected
by an undirected edge if and only if one cites the other. These citation links form a node graph. The
nodes in the dataset are originally categorized into a topic hierarchical tree with 73 leaves. After
removing the papers that belong to no topic and the ones that have no authors or title, a subset of
11881 papers is obtained Saccá et al. (2013). These papers are then classified into 10 highest-level
topics in the topic hierarchy, as listed in Table 4. We name this dataset “Large Cora” to distinguish
it from the “Cora” dataset with 2708 papers used in Kipf & Welling (2017); Yang et al. (2016); Sen
et al. (2008). Note that we did not test on this ”Cora” and the “Citeseer” and “PubMed” datasets as
in Kipf & Welling (2017); Yang et al. (2016); Sen et al. (2008), because the attributes (words) are
not provided in these datasets.

The statistics of the datasets are summarized in Table 5, where the last row shows the intra-class
edge ratio of the node graph of each dataset, which can reflect the quality of the graph.

A.2 VISUALIZATION

In Figure 3, we visualize the results of performing graph convolution on the node features of 20 NG
dataset by t-SNE. It can be seen that graph convolution can successfully reduce the overlap among
classes, and 2-D graph convolution is more effective than 1-D.

15

Under review as a conference paper at ICLR 2020

Table 5: Dataset statistics.
Dataset 20 NG Wiki L-Cora

Vertices 18846 3767 11881
Edges 147034 129597 64898
Classes 20 9 10
Features 11697 18316 3780
Connected Components 8504 303 833
Intra-class edge ratio 96.8% 38.0% 76.5%

(a) X (b) GX (c) XF (d) GXF

Figure 3: t-SNE visualization of “20 NG”. (a) Raw features; (b) Results of node graph convolution;
(c) Results of affinity graph convolution; (d) Results of 2-D graph convolution (DSGC).

A.3 TRAINING TIME

The training time is summarized in Figure 4. We can see that DSGC is several times faster than
GCN, GAT, DGI and GraphSAGE. This is because DSGC only performs graph convolution once
before training, while others need to do graph convolution in every training step.

L-Cora 20NG Wiki

Figure 4: Training time of DSGC and baselines.

A.4 PARAMETER SETTINGS FOR NODE CLASSIFICATION

For DSGC, we test positive point-wise mutual information (PPMI) and word embedding based k-NN
graphs (Emb) for constructing the attribute affinity graph. For constructing the PPMI graph, we set
the context window size to 20 and use the inverse distance as co-occurrence weight. For constructing
the Emb graph, we use GloVe Pennington et al. (2014) to learn word embeddings and set the number
of nearest neighbours k = 20. The classifier of DSGC is a two-layer multi-layer perceptron (MLP)
with 64 hidden units. The MLP is trained with Adam Optimizer for 200 epochs with 0.015 learning
rate. For the sake of fair comparison to all baselines and to make sure our method can work well in
practice, we do not use extra labeled data for validation on our methods and the baselines, unless

16

Under review as a conference paper at ICLR 2020

otherwise stated. Instead, we always select the model with the lowest train loss in the 200 epochs.
In each run, the dataset is randomly split into a labeled set and an unlabeled set. The classification
results are averaged over 10 runs.

Hyperparameters of all models, including our methods and baselines, are tuned to its best perfor-
mance by grid search. DSGC follows the network setting and hyperparameters of GCN, which are a
2-layer structure with 64 hidden units and 0.015 learning rate. We set the balancing parameter α in
LP as 100. We largely follow Velickovic et al. (2018) to set network structures and hyperparameters
of GAT, which are 2 layers, 8 heads, 8 neurons of each head, 0.005 learning rate, 400 epochs, and 0.3
dropout. Our setting of DGI is the same as Velickovic et al. (2019), except that the number of hidden
units is decreased to 128, so it can be fitted into our GPU memory. Our setting of GraphSAGE is the
same as Hamilton et al. (2017) (using 30% data as validation set), except that the number of samples
in layer 2 is reduced to 5, also due to limited GPU memory. Parameters of GLP are same as Li et al.
(2019). For LDS Franceschi et al. (2019), since it cannot scale to the size of 20 NG (out of GPU
memory), we follow the authors to select a 10-category subset of 20 NG. For each dataset, both the
training set and validation set for LDS contain 20 labels per class.

All models are tested on a platform with Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz and single
NVIDIA(R) GeForce(R) GTX 1080 Ti.

A.5 PARAMETER SETTINGS FOR NODE CLUSTERING

For our method DSGC, the attribute affinity graphs PPMI and Emb are constructed in the same
way as in node classification. For other baselines, we follow the parameter settings described in the
original papers. In particular, for GAE and VGAE (Kipf & Welling, 2016), we construct encoders
with a 32-neuron hidden layer and a 16-neuron embedding layer, and train the encoders for 200
iterations using the Adam algorithm with a learning rate of 0.01. For MGAE (Wang et al., 2017),
the corruption level p is 0.4, the number of layers is 3, and the parameter λ is 10−5. For ARGE and
ARVGE (Pan et al., 2018), we construct encoders with a 32-neuron hidden layer and a 16-neuron
embedding layer. The discriminators are built by two hidden layers with 16 neurons and 64 neurons
respectively. We train all the autoencoder-related models for 200 iterations and optimize them using
the Adam algorithm. The learning rate and the discriminator learning rate are both 0.001. For AGC
(Zhang et al., 2019), the maximum iteration number is 60. For fair comparison, these baselines also
adopt spectral clustering as DSGC to get the clustering results. We repeat each method for 10 times,
and show the mean clustering results and the standard deviations.

17

Under review as a conference paper at ICLR 2020

APPENDIX B PROOF OF THEOREM 1 IN SECTION 4.1

We suppose that nodes from the same class are connected with probability p, and nodes from dif-
ferent classes are connected with probability q, i.e., the adjacency matrix A(1) of node graph obeys

Pr(aij = 1) =

{
p, if yi = yj
q, if yi 6= yj

, Pr(aij = 0) =

{
1− p, if yi = yj
1− q, if yi 6= yj

(15)

and G = D−1A(1) is a stochastic matrix. We also assumes that classes are balanced, i.e., Pr(Y =
k) = 1/K for all k, then we have following theorem.
Theorem 1. When q is sufficiently small, Z has an IntraVar/InterVar ratio less than or equal to that
of X, i.e.,

E [Var (Z|Y)]
Var (E [Z|Y])

≤ E [Var (X|Y)]
Var (E [X|Y])

. (16)

Proof. The proof consists of two parts. In the first part, we prove that inter-class variance is un-
changed after node graph convolution, when q approximates 0, i.e.,

lim
q→0

Var (E [Z|Y]) = Var (E [X|Y]) . (17)

In the second part, we prove that intra-class variance becomes smaller after node graph convolution,
i.e.,

E [Var (Z|Y)] ≤ E [Var (X|Y)] , (18)
when G is a stochastic matrix.

Part 1. Inter-class variance is unchanged. Since

zi =
∑
j

Gijxj ,

we have
E [zi|yi = k] =

∑
j

E [Gij]E [xj] # by linearity of expectation

=
∑

j,yj=k

E [Gij]E [xj] +
∑

j,yj 6=k

E [Gij]E [xj]

=

∑
j,yj=k E [aij]E [xj] +

∑
j,yj 6=k E [aij]E [xj]∑

j E [aij]

=
p
∑

j,yj=k E [X|Y = k] + q
∑

j,yj 6=k E [xj]

N
K (p− q) +Nq

=

N
K pE [X|Y = k] + q

∑
j E [xj]− q

∑
j,yj=k E [xj]

N
K (p− q) +Nq

=
N
K (p− q)E [X|Y = k] +NqE [X]

N
K (p− q) +Nq

=
(p− q)E [X|Y = k] +KqE [X]

(p− q) +Kq

When q approximates 0, E [zi|yi = k] will approximate E [X|Y = k], so

E [Z|Y = k] =
∑

i,yi=k

Pr(Z = zi|yi = k)E [zi|yi = k]

=
∑

i,yi=k

Pr(Z = zi|yi = k)E [X|Y = k]

= E [X|Y = k] .

Hence,
Var (E [Z|Y]) = Var (E [X|Y]) . (19)

18

Under review as a conference paper at ICLR 2020

Part 2. Intra-class variance becomes smaller. Denote by Cov (·, ·) the covariance of two random
variables. We have

Var

∑
j

Gijxj

 =
∑
j

G2
ijVar (xj) +

∑
j,l

GijGilCov (xj ,xl) # property of variance

≤
∑
j,l

GijGil

√
Var (xj)

√
Var (xl) # property of covariance

=

∑
j

Gij

√
Var (xj)

2

.

Since

Var (zi|yi = k) = Var

∑
j

Gijxj

∣∣∣∣∣∣ yj = k

≤

∑
j

Gij

√
Var (xj |yj = k)

2

by the above inequality

=

∑
j

Gij

√
Var (X|Y = k)

2

=
(√

Var (X|Y = k)
)2

since
∑
j

Gij = 1

= Var (X|Y = k) ,

we have

Var (Z|Y = k) =
∑

i,yi=k

Pr(Z = zi|yi = k)Var (zi|yi = k) ≤ Var (X|Y = k) . (20)

Then we have

E [Var (Z|Y)] =
∑
k

Pr(Y = k)Var (Z|Y = k)

≤
∑
k

Pr(Y = k)Var (X|Y = k) # by the above inequality

= E [Var (X|Y)] . (21)

Combining Eq. (19) and Eq. (21), we prove that when q is sufficiently small,

E [Var (Z|Y)]
Var (E [Z|Y])

≤ E [Var (X|Y)]
Var (E [X|Y])

. (22)

19

Under review as a conference paper at ICLR 2020

APPENDIX C PROOF OF THEOREM 2 IN SECTION 4.2

Theorem 2. If the attribute graph convolutional filter F is a doubly stochastic matrix, then the
output of attribute graph convolution has an intra-class variance less than or equal to that of X, i.e.,∑

i

Fij =
∑
j

Fij = 1 and Fij ≥ 0,∀ i, j ⇒ E
[
Var
(
F>X|Y

)]
≤ E [Var (X|Y)] .

Proof. We first prove a lemma that variance of each class will not increase after attribute graph
convolution, i.e., Var

(
F>X|Y = k

)
≤ Var (X|Y = k). Denote by Cov (·) the covariance matrix of

a random vector. Based on our definition of variance in section 4, we have

Var
(
F>X|Y = k

)
= Tr

(
Cov

(
F>X|Y = k

))
= Tr

(
F>Cov (X|Y = k)F

)
property of covariance

= Tr
(
Cov (X|Y = k)FF>

)
cyclic property of trace

=
∑
ij

Cov (Xi,Xj |Y = k) (FF>)ij # property of trace

=
∑
ij

Cov(k)ij (FF>)ij

≤
∑
ij

√
Var (Xi|Y = k)

√
Var (Xj |Y = k) (FF>)ij # property of covariance

=
∑
ij

σiσj(FF
>)ij # σ ∈ Rm, σi ,

√
Var (Xi|Y = k)

= σ>FF>σ

≤ ‖σ‖22 # eigenvalues of F is no more than 1

=
∑
i

Var (Xi|Y = k)

= Var (X|Y = k) .

Next, we prove the theorem with the above lemma. Denote by πk = Pr(Y = k) the portion of each
class, then we have

E
[
Var
(
F>X|Y

)]
=
∑
k

πkVar
(
F>X|Y = k

)
=
∑
k

πk
∑
ij

Cov(k)ij (FF>)ij

≤
∑
k

πkVar (X|Y = k)

= E [Var (X|Y)]

Construction of a Doubly Stochastic Filter F Given an attribute affinity matrixA(2), one could
easily construct a doubly stochastic filter F by the following steps: 1) compute graph Laplacian
L(2) = D(2) −A(2); 2) compute doubly stochastic graph matrix Ω = (I + L(2))−1; 3) take Ω as
a new attribute affinity matrix, choose a polynomial p with nonnegative coefficients that sum to 1,
and let F = p(Ω). It can be easily seen that F is doubly stochastic.

20

Under review as a conference paper at ICLR 2020

APPENDIX D PROOF OF THEOREM 3 IN SECTION 4.2

Theorem 3. If ∀Fij 6= 0, ‖ei − ej‖2 ≤ ε, then the distance between ej and êj =
∑

i Fijei is also
less than or equal to ε, i.e.,

‖ei − ej‖2 ≤ ε, ∀Fij 6= 0 ⇒ ‖ej − êj‖2 ≤ ε,

and ε can be arbitrarily small with a proper F .

Proof.

‖ej − êj‖2 =

∥∥∥∥∥ej −∑
i

Fijei

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i

Fij(ej − ei)

∥∥∥∥∥
2

since
∑
i

Fij = 1

≤
∑
i

Fij ‖ej − ei‖2 # Cauchy-Schwarz inequality

≤
∑
i

Fijε = ε

Next, we prove that there exists such an F that ε is 0. This is equivalent to finding a doubly stochastic
F satisfying

∑
i Fijei = ej for all j. Since F = I is a trivial solution, it is solvable. Denote by

m the number of attributes, and denote by K the number of classes. This linear system consists
of m(K + 2) equations and m2 variables. In most real-world attributed networks, the number of
attributes is far greater than the number of classes, so the number of variables in this linear system
is greater than the number of equations. Given that it is solvable, it must have infinite number of
solutions other than I . Thus, ε can be arbitrarily small with a proper F .

21

	Introduction
	Related Works
	2-D Graph Convolution
	2-D Graph Fourier Transform and Spectral Graph Convolution
	Fast Localized 2-D Spatial Graph Convolution

	Intra-class Variance Reduction by DSGC
	Intra-class Variance Reduction by Node Graph Convolution
	Intra-class Variance Reduction by Attribute Graph Convolution

	Attributed Graph Learning with DSGC
	Unsupervised Node Representation Learning
	End-to-End Semi-Supervised Learning

	Implementation of DSGC
	Node Graph Convolutional Filters
	Attribute Graph Convolutional Filters

	Empirical Study
	Node Classification
	Node Clustering

	Conclusion
	Experiment Details and Supplementary Experiments
	Dataset Details
	Visualization
	Training Time
	Parameter Settings for Node Classification
	Parameter Settings for Node Clustering

	Proof of Theorem 1 in Section 4.1
	Proof of Theorem 2 in Section 4.2
	Proof of Theorem 3 in Section 4.2

