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ABSTRACT

System identification is the process of building a mathematical model of an un-
known system from measurements of its inputs and outputs. It is a key step for
model-based control, estimator design, and output prediction. This work presents
an algorithm for non-linear offline system identification from partial observations,
i.e. situations in which the system’s full-state is not directly observable. The algo-
rithm presented, called SISL, iteratively infers the system’s full state through non-
linear optimization and then updates the model parameters. We test our algorithm
on a simulated system of coupled Lorenz attractors, showing our algorithm’s abil-
ity to identify high-dimensional systems that prove intractable for particle-based
approaches. We also use SISL to identify the dynamics of an aerobatic helicopter.
By augmenting the state with unobserved fluid states, we learn a model that pre-
dicts the acceleration of the helicopter better than state-of-the-art approaches.

1 INTRODUCTION

The performance of controllers and state-estimators for non-linear systems depends heavily on the
quality of the model of system dynamics (Hou & Wang, 2013). System-identification tackles the
problem of learning or calibrating dynamics models from data (Ljung, 1999), which is often a time-
history of observations of the system and control inputs. In this work, we address the problem of
learning dynamics models of partially observed, high-dimensional non-linear systems. That is, we
consider situations in which the system’s state cannot be inferred from a single observation, but
instead requires inference over a time-series of observations.

The problem of identifying systems from partial observations arises in many robotics domains (Pun-
jani & Abbeel, 2015; Cory & Tedrake, 2008; Ordonez et al., 2017). Though we often have direct
measurements of a robot’s pose and velocity, in many cases we cannot directly observe relevant
quantities such as the temperature of actuators or the state the environment around the robot. Con-
sider learning a dynamics model for an aerobatic helicopter. Abbeel et al. (2010) attempted to map
only the helicopter’s pose and velocity to its acceleration and they found their model to be inaccurate
when predicting aggressive maneuvers. They posited that the substantial airflow generated by the
helicopter affected the dynamics. Since it is often impossible to directly measure the state of the
airflow around a vehicle, identification must be performed in a partially observed setting.

System-identification is a mature field with a rich history (Ljung, 1999; 2010). Various techniques
can be classified by whether they apply to linear or non-linear systems, with partially or fully ob-
served states. Additionally, techniques are applied in an online or batch-offline setting. This work
presents an approach to offline identification of non-linear and partially observed systems. When
a system is fully observed, i.e. its full state is observed but corrupted by noise, a set of techniques
called equation-error methods are typically employed (Åström & Eykhoff, 1971). In such cases,
we can consider observations as independent, and minimize the error between the observed state-
derivatives and those predicted by the model given the control input and observed states. In par-
tially observed settings, merely knowing the current input is insufficient to accurately predict the
observation. Several black-box approaches exist to predict observations from time-series of in-
puts. Autoregressive approaches directly map a time-history of past inputs to observations (Billings,
2013). Recurrent neural networks (Bailer-Jones et al., 1998; Zimmermann & Neuneier, 2000) and
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subspace-identification methods (Van Overschee & De Moor, 1994) can also be used to learn black-
box dynamical systems from this data.

However, in many cases prior knowledge can be used to specify structured, parameterized models of
the system (Gupta et al., 2019). Such models can be trained with less data and used with a wider ar-
ray of control and state-estimation techniques than non-linear black-box models (Gupta et al., 2019;
Lutter et al., 2019b;a). Techniques used to identify partially observed structured models are often
based on Expectation-Maximization (EM) (Dempster et al., 1977; Schön et al., 2011; Kantas et al.,
2015; Ghahramani & Roweis, 1999). An alternating procedure is performed in which a smoothing
step uses the current system dynamics estimate to infer the distribution over state-trajectories, and
is followed by a learning step that uses this distribution to update the system dynamics estimate.

In the non-linear or non-Gaussian case, it is typically not possible to analytically characterize the
distribution over trajectories, and thus methods based on Sequential Monte-Carlo such as Parti-
cle Smoothing (PS) (Schön et al., 2011; Kantas et al., 2015), or Extended Kalman Smoothing
(EKS) (Ghahramani & Roweis, 1999) are employed in the E-step. Though considered state-of-the-
art for this problem, both methods become intractable in high-dimensional state spaces. PS suffers
from the curse of dimensionality, requiring an intractably large number of particles if the state space
is high-dimensional (Snyder et al., 2008; Kantas et al., 2015), and an M-step that can be quadratic
in complexity with respect to the number of particles (Schön et al., 2011). EKS-based methods
are fast during the E-step, but the M-step requires approximations to integrate out state uncertainty,
such as fitting non-linearities with Radial Basis Function approximators, and scales poorly with the
dimension of the state-space (Ghahramani & Roweis, 1999).

In this work, we present a system-identification algorithm that is suited for high-dimensional, non-
linear, and partially observed systems. By assuming that the systems are close to deterministic, as
is often the case in robotics, we approximate the distribution over unobserved states using only their
maximum-likelihood (ML) point-estimate. Our algorithm, called SISL (System-identification via
Iterative Smoothing and Learning) performs the following two steps until convergence:

• In the smoothing or E-step, we use non-linear programming to tractably find the ML point-
estimate of the unobserved states.

• In the learning or M-step, we use the estimate of unobserved states to improve the estimate
of system parameters.

The idea to use an ML point-estimate in lieu of the distribution over unobserved states in the EM
procedure’s E-step is not new, and, in general, does not guarantee monotonic convergence to a lo-
cal optimum (Celeux & Govaert, 1992). However, such an approximation is equivalent to regular
EM if the ML point-estimate is the only instance of unobserved variables with non-negligible prob-
ability (Celeux & Govaert, 1992; Neal & Hinton, 1998). We apply this idea to the problem of
system-identification for nearly deterministic systems, in which ML point-estimates can serve as
surrogates for the true distribution over unobserved state-trajectories.

The primary contribution of this work is an algorithm for identifying non-linear, partially observed
systems that is able to scale to high-dimensional problems. In Section 2, we specify the assumptions
underpinning our algorithm and discuss the computational methodology for using it. In Section 3,
we empirically demonstrate that it is able to identify the parameters of a high-dimensional system
of coupled Lorenz attractors, a problem that proves intractable for particle-based methods. We also
demonstrate our algorithm on the problem of identifying the dynamics of an aerobatic helicopter,
and compare against various approaches including the state-of-the-art approach (Punjani & Abbeel,
2015).

2 METHODOLOGY

2.1 FORMAL PROBLEM STATEMENT

In this work, we assume that we are given a batch of trajectories containing observations y1:T ∈
Rm×T of a dynamical system as it evolves over a time horizon T , possibly forced by some known
input sequence u1:T−1. We assume that this dynamical system has a state x ∈ Rn that evolves and
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generates observations according to the following equations,

xt+1 = f(xt, ut, t) + wt, wt ∼ pw(·)
yt = g(xt, ut, t) + vt, vt ∼ pv(·)

(1)

where wt is referred to as the process noise and vt as the observation noise. wt and vt are both
assumed to be additive for notational simplicity, but this is not a required assumption. Without loss
of generality, we can drop the dependence on ut, absorbing it into the dependence on t.

We further assume that we are provided a class of parameterized models fθ(x, t) and gθ(x, t) for
θ ∈ Θ that approximate the dynamical system’s evolution and observation processes. The goal of
our algorithm is to find the parameters θ that maximize the likelihood of the observations. That is,
we seek to find:

θML = arg max
θ

p(y1:T | θ)

= arg max
θ

∫
x1:T

p(y1:T | x1:T , θ)p(x1:T | θ)dx1:T

(2)

Assuming, the system is Markovian in xt, we can factorize the distributions as:

p(x1:T | θ) = p(x1)

T−1∏
t=1

pw(xt+1 − fθ(xt, t)),

p(y1:T | x1:T , θ) =

T∏
t=1

pv(yt − gθ(xt, t))
(3)

In order to tractably solve the maximization problem in Equation (2), particle-based EM tech-
niques typically approximate the integral as an expectation over a particle set (Schön et al., 2011;
Kantas et al., 2015). However, since particle-based methods can struggle with high-dimensional
spaces (Snyder et al., 2008; Kantas et al., 2015), this work seeks point estimates for the likelihood-
maximizing state sequence, which can be found using non-linear programming.

2.2 SURROGATE OBJECTIVE FUNCTION

Instead of solving the full maximum likelihood problem shown in Equation (2), we solve a surrogate
problem:

θSISL = arg max
θ

(
max
x1:T

p(y1:T | x1:T , θ)p(x1:T | θ)
)

(4)

The maximized surrogate objective is equivalent to the original objective if the distribution over x1:T

given y1:T and θ is well-approximated by its ML point-estimate, i.e. the distribution is a Dirac delta
function. We expect this assumption to hold if the trajectories are sufficiently long, the dynamics
are close to deterministic, and all relevant dynamic modes are persistently excited. Making these
assumptions, we now present an algorithm for solving Equation (4).

2.3 SYSTEM-IDENTIFICATION VIA ITERATIVE SMOOTHING AND LEARNING

By taking the logarithm of the likelihood-objective in Equation (4), and using the factorization from
Equation (3), we get the SISL objective J(x1:T , θ) as follows:

J(x1:T , θ) = log p(x1) +

T∑
t=1

log pv(yt − gθ(xt, t)) +

T−1∑
t=1

log pw(xt+1 − fθ(xt, t)) (5)

Jointly maximizing this objective over x1:T and θ yields θSISL.

Though this objective can be optimized as is by a non-linear optimizer, it is not necessarily efficient
to do so since θ and x1:T are highly coupled, leading to inefficient and potentially unstable updates.
For this reason, we take an iterative approach akin to EM, which performs block-coordinate ascent
on the J(x1:T , θ).
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At iteration k, we first perform smoothing by holding θ constant, and finding the ML point-estimate
for x1:T as follows:

x
(k)
1:T = arg max

x1:T

J(x1:T , θ
(k−1)) + ρx‖x1:T − x(k−1)

1:T ‖22 (6)

Here ρx scales a soft trust-region regularizer similar to damping terms found in Levenberg-
Marquardt methods (Levenberg, 1944; Marquardt, 1963). The smoothing problem can be solved
in O(n2T ) by taking advantage of sparsity in the smoothing objective’s Hessian matrix.

In the learning step, we hold x1:T constant and find:

θ(k) = arg max
θ

J(x
(k)
1:T , θ) + ρθ‖θ − θ(k−1)‖22 + log p(θ) (7)

Again, ρθ scales a soft trust-region regularizer, and specifying log p(θ) allows us to regularize θ
toward a prior. The above optimization problem can be solved using any non-linear optimizer,
such as a first or second-order gradient descent scheme. The SISL algorithm iterates between the
smoothing and learning steps until convergence.

3 EXPERIMENTS

The objective of our experiments is to demonstrate that the SISL algorithm is capable of identi-
fying high-dimensional non-linear systems in partially observed settings. We do so in simulation
by identifying the parameters of a system of partially observed coupled Lorenz attractors, as well
as by identifying the dynamics of a real aerobatic helicopter. In the second experiment, we build
on previous analysis of the dataset (Abbeel et al., 2010; Punjani & Abbeel, 2015) by attempting
to characterize the interaction of the helicopter with the fluid around it, without having any direct
observation of the fluid state.

3.1 IDENTIFICATION OF COUPLED LORENZ SYSTEMS

In this didactic experiment, we will show that:

1. SISL learns unbiased parameter estimates of systems that are close to deterministic, and,
2. SISL scales to high-dimensional problems in which particle-smoothing is intractable.

To justify these claims, we use a system that is sufficiently non-linear and partially observable to
make particle-based smoothing methods intractable. We choose a system of coupled Lorenz attrac-
tors for this purpose, owing to their ability to exhibit chaotic behavior and their use in non-linear
atmospheric and fluid flow models (Bergé et al., 1984). Arbitrary increase in state dimensionality
can be achieved by coupling multiple individual attractors. The state of a system with K coupled
Lorenz attractors is x ∈ R3K = {. . . , x1,k, x2,k, x3,k, . . .}. The dynamics of the system are as
follows:

˙̃x1,k = σk(x2,k − x1,k)

˙̃x2,k = x1,k(ρk − x3,k)− x2,k

˙̃x3,k = x1,kx2,k − βkx3,k

ẋ = ˙̃x+Hx

(8)

where H is an R3K×3K matrix.

We nominally set the parameters (σk, ρk, βk) to the values (10, 28, 8/3), and randomly sample the
entries ofH from a normal distribution to generate chaotic and coupled behavior between attractors,
while avoiding self-coupling. These parameters are estimated during identification. In order to make
the system partially observed, the observation y ∈ R(3K−2) is found from x as follows:

y = Cx+ v, v ∼ N (0, σ2
vI) (9)

where C ∈ R(3K−2)×3K is a known matrix with full row-rank, and v is the observation noise
sampled from a Gaussian with diagonal covariance σ2

vI. The entries ofC are also randomly sampled
from a standard normal distribution. In the following experiments, we simulate the system for T =
128 timesteps at a sample rate of ∆t = 0.04s, and integrate the system using a 4th-order Runge-Kutta
method. Initial conditions for each trajectory are sampled such that x1,k ∼ N (−6, 2.52), x2,k ∼
N (−6, 2.52), x3,k ∼ N (24, 2.52).
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Figure 1: Histograms of weighted RMSE of PS with a varied number of particles.

3.1.1 UNBIASED ESTIMATION IN DETERMINISTIC SETTINGS

σw σv σ ρ β

0.001 0.01 10.011(0.012) 28.000(0.001) 2.667(0.000)
0.010 0.01 10.017(0.012) 28.000(0.001) 2.668(0.001)
0.100 0.01 10.064(0.036) 27.996(0.013) 2.676 (0.004)
0.001 0.05 10.006(0.016) 27.998(0.002) 2.666(0.001)
0.001 0.10 9.998(0.022) 27.995(0.004) 2.665(0.001)

Table 1: Mean parameter estimates and standard
errors for a single Lorenz system simulated with
various σw and σv .

To test the conditions under which SISL learns
unbiased parameter estimates, we simulate a
single Lorenz system with H = 0, and known
C ∈ R2×3. We introduce and vary the process
noise w ∼ N (0, σ2

wI), and vary the observa-
tion noise coefficient σv , and then attempt to
estimate the parameters (σ, ρ, β). Using initial
guesses within 10% of the system’s true param-
eter values, we run SISL on a single sampled
trajectory. For each choice of σw and σv , we
repeat this process for 10 random seeds.

Table 1 shows the mean and standard errors of
parameter estimates for various σw and σv . We highlight in red the mean estimates that are not
within two standard errors of their true value. We see that σ and ρ are estimated without bias for all
scenarios. However, the estimate of β appears to become biased as the process noise is increased,
but not as the observation noise is increased. This supports the assumption that the objective used in
SISL is sound when systems evolve close to deterministically, but can be biased if it is not.

3.1.2 INTRACTABILITY OF PARTICLE SMOOTHING

State-of-the-art methods for parameter identification of partially observed systems rely on particle-
smoothing (PS) to estimate a distribution over states x1:T given a trajectory of observations y1:T .
We will experimentally demonstrate that the performance of PS does not scale to high-dimensional
systems. To do so, we compare the number of particles required for PS to reliably characterize
the distribution over x1:T for a system of two and six coupled Lorenz systems. The systems are
simulated with observation noise σv = 0.01 but without process noise.

We implement a PS as specified by Schön et al. (2011). Let x̂t,n, wt,n be the estimated system-state
and particle weight corresponding to the nth particle at the tth timestep. In order to test whether PS
can reliably characterize the posterior distribution over x1:T , we measure the weighted root mean
square error (RMSE), ξ as follows:

ξN =
1

NT

T∑
t=1

N∑
n=1

wt,n‖x̂t,n − xt‖2∑N
n=1 wt,n

(10)

If PS is reliable using N particles, we should see that ξN is tightly distributed across random seeds.

Figure 1 shows histograms of ξN for N = [10, 40, 160, 640]. For the two-attractor system, many
random seeds appear to have values of ξN greater than that of the true posterior state distribution
only in the case of N = 10. However, in the case of the higher-dimensional six-attractor system,
not even 160 particles are sufficient to reliably characterize the true posterior, shown by the fact that
the majority of random seeds have large values for ξN .

These results experimentally demonstrate that, for a sufficiently non-linear and partially observ-
able system, the number of particles required to reliably characterize the posterior distribution over
hidden states grows intractably with the dimension of the system. Since particle-based EM meth-
ods for system-identification are typically super-linear in complexity with respect to the number of
particles (Schön et al., 2011), these methods are ill-suited to high-dimensional problems.
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3.1.3 CONVERGENCE OF SISL ON HIGH-DIMENSIONAL PROBLEMS

To demonstrate that SISL is capable of identifying high-dimensional systems, we show that we can
estimate the dynamics of an 18 dimensional system of six coupled Lorenz attractors. Moreover, as
the number of trajectories provided to SISL increases, it converges to more accurate estimates. To
test this claim, we sample 2, 4, and 8 trajectories from a system with parameters θtrue, and σv = 0.01.
We randomly initialize each element of the parameters being optimized (θ = [σ1:K , ρ1:K , β1:K , H])
to within 10% of the their value in θtrue. We then run SISL on each batch, tracking the error in the
estimated dynamics as training proceeds. We measure this error, which we call ε(θ), as follows:

ε(θ) = Ex∼p(x0) [‖fθ(x)− fθtrue(x)‖2] (11)

In the learning step, we do not regularize θ to a prior and set ρθ = 0.

0 500 1000

SISL Epoch

10−1

100

ε(
θ)

2 Trajectories

4 Trajectories

8 Trajectories

Figure 2: Error in estimated dynamics as SISL
trains on a varied number of trajectories from a
system of six coupled Lorenz attractors.

In Figure 2, we see the results of this experi-
ment for four random seeds for each batch size.
We can see that, as the number of trajectories
used in training increases, the error in the es-
timated dynamics tends toward zero. Further-
more, we see that SISL convergences monoton-
ically to a local optimum in all cases. This ex-
periment supports our claim that SISL is able to
identify the parameters of a high-dimensional,
non-linear, and partially observable system that
is intractable for particle-based methods.

The experiments conducted thus far have
demonstrated that SISL can learn unbiased pa-
rameter estimates of nearly-deterministic sys-
tems, and can scale to high-dimensional prob-
lems for which particle-based methods are intractable. In the next experiment, we use SISL to
characterize the effect of unobserved states on the dynamics of an aerobatic helicopter.

3.2 CHARACTERIZING AEROBATIC HELICOPTER DYNAMICS

Characterizing the dynamics of a helicopter undergoing aggressive aerobatic maneuvers is widely
considered to be a challenging system-identification problem (Abbeel et al., 2010; Punjani &
Abbeel, 2015). The primary challenge is that the forces on the helicopter depend on the induced
state of the fluid around it. The state of the fluid cannot be directly observed and its dynamics model
is unknown. Merely knowing the state of the helicopter and the control commands at a given time
does not contain enough information to accurately predict the forces that act on it.

In order to address this issue, Punjani & Abbeel (2015) use an approach based on Takens theorem,
which suggests that a system’s state can be reconstructed with a finite number of lagged-observations
of it (Takens, 1981). Instead of attempting to estimate the unobserved fluid state, they directly learn
a mapping from a 0.5 s long history of observed state measurements and control commands to the
forces acting on the helicopter.

This approach is sensible, and is equivalent to considering the past 0.5 s of observations as the
system’s state. However, it can require a very large number of lagged observations to represent
complex phenomena. Having such a high dimensional state can make the control design and state-
estimation more complicated. To avoid large input dimensions, a trade-off between the duration
of the history and sample frequency is necessary. This trade-off will either hurt the resolution of
low-frequency content or will alias high-frequencies. We attempt to instead explicitly model the
unobserved states affecting the system.

3.2.1 OBJECTIVE AND DATASET

The objective of this learning problem is to predict yt, the helicopter’s acceleration at time t, from
an input vector ut containing the current measured state of the helicopter (its velocity and rotation
rates) and the control commands.
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We use data collected by the Stanford Autonomous Helicopter Project (Abbeel et al., 2010). Tra-
jectories are split into 10 s long chunks and then randomly distributed into train, test, and validation
sets according to the protocol established by Abbeel et al. (2010); Punjani & Abbeel (2015) and
summarized in Appendix A.1. The train, test and validation sets respectively contain 466, 100 and
101 trajectories of 500 time-steps each.

A simple success metric on a given trajectory is the root mean squared prediction error, RMSE =√
1
T

∑T
t=1

∥∥∥y(measured)
t − y(pred)

t

∥∥∥2

2
, where y(measured)

t is the measured force from the dataset,

y
(pred)
t is the force predicted by the model, and T is the number of time-steps in each trajectory.

3.2.2 PREVIOUS WORK AND BASELINES

We first consider a naive baseline that does not attempt to account for the time-varying nature of the
fluid-state. We train a neural-network to map only the current helicopter state and control commands
to the accelerations: yt = NNθn(ut), where NNθn is a neural-network with parameters θn. We refer
to this model as the naive model.

We also compare to the work of Punjani & Abbeel (2015). They predict yt using a time-history
ut−H:t of H lagged observations of the helicopter’s measured state and control commands. This
input is passed through a ReLU-activated neural network with a single hidden-layer combined with
what they call a Quadratic Lag Model. As a baseline, we reproduce their performance with a single
deep neural network yt = NNθh(ut−H:t) with parameters θh. We call this neural network model
the H25 model. Both of these models can be trained via stochastic gradient descent to minimize
the Mean-Squared-Error (MSE) of their predictions for y. The optimization methodology for these
models is described in Appendix A.2.

As a third baseline, we compare with subspace-identification methods (Van Overschee & De Moor,
1994). We let ỹt = yt − NNθn(ut) be the prediction errors of the trained naive model. We use the
MATLAB command n4sid to fit a linear dynamical system of the following form:

xt+1 = Asxt +Bsut; ỹt = Csxt +Dsut (12)

Here, x ∈ Rd is the unobserved state with arbitrary dimension d. The learned parameters are
θs = [As, Bs, Cs, Ds]. We use a state dimension of 10 and call this model the SID model. The n4sid
algorithm scales super-linearly with the amount of data supplied, and thus we train on 10 randomly
sampled subsets of 100 trajectories each, and report the distribution in prediction performance.

Particle-based EM methods are not presented as baselines because they are intractable on problems
with large state-spaces, as shown in Section 3.1.2.

3.2.3 NON-LINEAR UNOBSERVED STATE MODEL

Similar to the parameterization used for subpace-identification, we fit the prediction errors of the
naive model using the following dynamical system:

xt+1 = ANLxt +BNLut; ỹt = CNLxt +DNLut + NNθ̄NL
(xt, ut) (13)

where NNθ̄NL
is a neural network, and θNL = [ANL, BNL, CNL, DNL, θ̄NL] are the learned parameters.

While learning, we assume that both process and observation noise are distributed with diagonal
Gaussian covariance matrices σwI and σvI respectively. The values of σw and σv are treated as
hyperparmeters of SISL. Here as well, we use a state dimension of 10 and call this model the NL
model. The optimization methodology for this model is described in Appendix A.2.

It should be noted that the system we learn need not actually correspond to an interpretable model of
the fluid-state, but only of time-varying hidden-states that are useful for predicting the accelerations
of the helicopter. Expert knowledge of helicopter aerodynamics could be used to further inform a
gray-box model trained with SISL.

3.2.4 EVALUATION METHODOLOGY

The test RMSE of the naive and H25 models can be evaluated directly on the test trajectories using
next-step prediction. However, the SID and NL models require an estimate of the unobserved state
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Figure 3: (a): Test performance of optimized models on various trajectories. Error bars on SID
represent the standard deviation of performance of the 10 trained models. (b): Predicted acceleration
along axis x, y and z in the body frame for one of the harder test set trajectories. Larger versions of
these plots, including rotational accelerations, can be found in Appendix A.3.

before making a prediction. The natural analog of next-step prediction is extended Kalman filtering
(EKF), during which states are recursively predicted and corrected given observations. At a given
time-step, a prediction of ỹt is made using the current estimate of xt, and is used in the computation
of RMSE. The state-estimate is then corrected with the measured ỹt.

3.2.5 RESULTS

Figure 3a shows the RMSE of the compared models on trajectories in the test-set. We see that the NL
model is able to consistently predict the accelerations on the helicopter with better accuracy than any
of the other models. The naive model performs on average 2.9 times worse than the H25 model, and
its results can be found in Appendix A.3. The SID model notably outperforms the state-of-the-art
H25 model, suggesting that a large linear dynamical system can be used to approximate a non-linear
and partially observable system (Korda & Mezić, 2018). However, introducing non-linearity as in
the NL model noticeably improves performance.

Figure 3b depicts the errors in prediction over a sample trajectory in the test-set. Here, we also see
that the NL model is able to attenuate the time-varying error present in predictions made by the H25,
suggesting that it has accurately characterized the dynamics of unobserved, time-varying states.

This experiment validates the effectiveness of SISL to identify a non-linear dynamical model of
unobserved states that affect the forces acting an aerobatic helicopter.

4 CONCLUSIONS

This paper presented an algorithm for system identification of non-linear systems given partial state
observations. The algorithm optimizes system parameters given a time history of observations by
iteratively finding the most likely state-history, and then using it to optimize the system parameters.
The approach is particularly well suited for high-dimensional and nearly deterministic problems.

In simulated experiments on a partially observed system of coupled Lorenz attractors, we showed
that our algorithm can perform identification on a problem that particle-based EM methods are
fundamentally ill-suited for. We also validated that our algorithm is an effective replacement for
identification methods based on EM if the system is close to deterministic, but can yield biased
parameter estimates if it is not. We then used our algorithm to model the time-varying hidden-
states that affect the dynamics of an aerobatic helicopter. Our approach outperforms state-of-the-art
methods because it is able to fit large non-linear models to unobserved states.

8
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We aim to apply our algorithm to system identification problems in a number of domains. There has
recently been interest in characterizing the dynamics of aircraft with high aspect ratios, for which
the difficult-to-observe bending modes substantially impact dynamics. Additionally, the inability
to measure friction forces in dynamic interactions involving contact typically stands in the way of
system identification, and thus requires algorithms that are capable of identification under partial
observation.
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A APPENDIX

A.1 DATASET COLLECTION AND PREPROCESSING

In this work we use the dataset gathered by Abbeel et al. (2010) and available at http://heli.
stanford.edu/. A gas-powered helicopter was flown by a professional pilot to collect a large
dataset of 6290s of flight. There are four controls: the longitudinal and lateral cyclic pitch, the tail
rotor pitch and the collective pitch. The state is measured thanks to an accelerometer, a gyroscope,
a magnetometer and vision cameras. Abbeel et al. (2010) provide the raw data, as well as states es-
timates in the Earth reference frame obtained with extended Kalman smoothing. Following Punjani
& Abbeel (2015)’s protocol, we use the fused sensor data and downsample it from 100Hz to 50Hz.

From the Earth frame accelerations provided in the dataset, we compute body frame accelerations
(minus gyroscopic terms) which are the prediction targets for our training. Using the notations from
Punjani & Abbeel (2015), we can write the helicopter dynamics in the following form:

ṡ = F (s, δ) =

 C12v
1
2 ω̂q

C>12g − ω × v + fv(s, δ)
fω(s, δ)

 (14)

where s ∈ R13 is the helicopter state consisting of its position r, quaternion-attitude q, linear velocity
v, angular velocity ω, and δ ∈ R4 to be the control command. C12 is the rotation-matrix from the
body to Earth reference frame, and fv and fω are the linear and angular accelerations caused by
aerodynamic forces, and are what we aim to predict.

This notation connects with the one used in our paper in the following way:

• We define u as the concatenation of all inputs to the model, including the relevant state
variables v and ω and control commands δ.

• We define y as the output predicted, which would correspond to a concatenation of fv and
fω .

• We define x as the vector of unobserved flow states to be estimated and is not present in
their model.

A.2 TRAINING HELICOPTER MODELS

Neural-networks in the naive and H25 models have eight hidden layers of size 32 each, and tanh
non-linearities. We optimize these models using an Adam optimizer (Kingma & Ba, 2015) with a
harmonic learning rate decay, and mini-batch size of 512.

The neural network in the NL model has two hidden layers of size 32 each, and tanh non-linearity.
We train the NL model with SISL, using ρx = ρθ = 0.5, σw = σv = 1.0, and use an Adam
optimizer to optimize Equation (7) in the learning step. The learning rate for dynamics parameters
in θNL is 5.0 × 10−4 and observation parameters in θNL is 1.0 × 10−3. For its relative robustness,
we optimize Equation (6) using a non-linear least squares optimizer with a Trust-Region Reflective
algorithm (Jones et al., 2001–) in the smoothing step. This step can be solved very efficiently by
providing the solver with the block diagonal sparsity pattern of the Jacobian matrix.

To evaluate the test metric, running an EKF is required. The output of an EKF depends on several
user-provided parameters:

• x0: value of the initial state

• Σ0: covariance of error on initial state

• Q: covariance of process noise

• R: covariance of observation noise

In this work, we assume that Q, R and Σ0 are all set to the identity matrix. x0 is assumed to be 0 on
all dimensions.
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A well-tuned EKF with an inaccurate initial state value converges to accurate estimations in only a
few time steps of transient behavior. Since the H25 model needs 25 past inputs to predict its first
output prediction, we drop the first 25 predictions from the EKF when computing RMSE, thereby
omitting some of the transient regime.

A.3 FIGURES
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Figure 4: Test performance of optimized models on various trajectories
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