
Proceedings of Machine Learning Research 102:175–184, 2019 MIDL 2019 – Full paper track

Unsupervisedly Training GANs for Segmenting Digital Pathology with
Automatically Generated Annotations

Michael Gadermayr1,2

Laxmi Gupta2

1 Salzburg University of Applied Sciences, Austria
2 Institute of Imaging and Computer Vision, RWTH Aachen University

Barbara M. Klinkhammer3

Peter Boor3

3 Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Germany

Dorit Merhof2

Abstract
Recently, generative adversarial networks exhibited excellent performances in semi-supervised im-
age analysis scenarios. In this paper, we go even further by proposing a fully unsupervised approach
for segmentation applications with prior knowledge of the objects’ shapes. We propose and inves-
tigate different strategies to generate simulated label data and perform image-to-image translation
between the image and the label domain using an adversarial model. For experimental evaluation,
we consider the segmentation of the glomeruli, an application scenario from renal pathology. Ex-
periments provide proof of concept and also confirm that the strategy for creating the simulated
label data is of particular relevance considering the stability of GAN trainings.

1. Motivation

Due to the progressing dissemination of whole slide scanners generating large amounts of digital
histological image data, image analysis in this field has recently gained significant importance (Hou
et al., 2016; BenTaieb and Hamarneh, 2016; Gadermayr et al., 2018a; Valkonen et al., 2017; Veta
et al., 2016; Gadermayr et al., 2017; Herve et al., 2011).

For segmentation applications, especially fully-convolutional networks proofed to be highly ef-
fective tools (Ronneberger et al., 2015; BenTaieb and Hamarneh, 2016; Gadermayr et al., 2017).
A major challenge in the field of digital pathology is given by a large set of different application
scenarios as well as changing underlying data distributions which is due to inter-subject variability,
different staining protocols and/or pathological modifications (Gadermayr et al., 2018b). Each in-
dividual application scenario therefore requires large amounts of annotated training data covering
the prevalent variability. The acquisition of such large amounts of labeled training data, however, is
typically time-consuming and cost-intensive and thereby constitutes a burden for the deployment of
automated segmentation techniques.

For training state-of-the-art machine learning approaches such as fully-convolutional networks,
data augmentation proved to be a highly powerful tool (Ronneberger et al., 2015; J. Ratner et al.,
2017) to keep the amount of required training data decent. A limitation of data augmentation in
combination with supervised learning approaches is given by the fact that often large non-annotated
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data is available “for free” but is not utilized for training at all. Particularly in the fields of medicine,
such as digital pathology, huge amounts of digital image data are routinely captured without any
(additional) effort whereby a complete annotation of all data is definitely not feasible. In order to
take advantage of non-annotated data as well, dedicated semi-supervised segmentation approaches
relying on adversarial models were recently proposed (Kozı́ Nski et al., 2017; Isola et al., 2017;
Hung et al., 2018).

Adversarial models were also developed for the field of image-to-image translation (Johnson
et al., 2016; Zhu et al., 2017). Recently, the so-called cycleGAN (Zhu et al., 2017) was introduced
which eliminates the restriction of corresponding image pairs for training. This architecture can also
be utilized for means of unsupervised domain adaptation (Chartsias et al., 2017; Wolterink et al.,
2017; Gadermayr et al., 2018a). The domain adaptation in these cases is performed on image-level,
i.e. “fake” images showing similar characteristics as the target domain samples are generated. This
strategy is highly flexible as it can be combined with arbitrary further segmentation or classification
approaches.

glomeruli

nuclei

Figure 1: This illustration shows an extract of a renal whole slide image with marked glomeruli
(left) as well as magnifications of single glomeruli showing precise manual annotations
(right).

Contribution: We tackle the problem of acquiring labeled training data by proposing a framework
completely bypassing the need for manually labeled objects. We focus on generating artificial anno-
tations to perform image-to-image translation on unpaired data sets. In our experimental study, we
investigate strategies for modeling the shape of the annotations and for modeling additional image
information to facilitate training the translation networks. As application scenario, we consider a
segmentation task from digital pathology, specifically the segmentation of the renal glomeruli (Ga-
dermayr et al., 2017; Kato et al., 2015; Herve et al., 2011) (Fig. 1).
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2. Methods

For the proposed method, we make use of an image-to-image translation approach. Specifically, we
utilize a generative adversarial network (GAN) which facilitates training with unpaired data (Zhu
et al., 2017). The four subnetworks consisting of two generators and two discriminators are opti-
mized based on an adversarial loss as well as a cycle consistency criterion. This formulation does
not require sample pairs, i.e. there is no need to obtain corresponding image samples for the two
domains. Instead it is sufficient to collect a set of images, individually for each domain. If anno-
tations are interpreted as label (e.g. binary) images, this approach can be utilized for segmentation
applications as well. The architecture allows to perform training based on a set of images and a
(non-corresponding) set of annotations as long as the annotations are realistic (i.e. the distribution
matches the underlying distribution of real annotations).

The proposed method relies on an automated generation of realistic annotation images followed
by training an image-to-image translation model which is finally able to convert original images to
annotations. The procedure is based on the following assumptions: (1) we need to understand the
underlying distribution of the annotation data and we need to be able to model this distribution (for
details, see Sect. 2.1). (2) The unpaired image-to-image translation approach needs to be effectively
applicable to translate between the image and the annotation domain. If a straight-forward transla-
tion is not effective, additional information can be added to the annotation domain to enhance the
translation process (for details, see Sect. 2.2).

2.1. Annotation Model

In the considered application scenario (Fig. 1), the underlying distribution (assumption 1) of the
objects-of-interest is rather basic and can thereby be approximately modeled quite well. The objects-
of-interest show roundish shapes which are sparsely distributed over the kidney. For training we
consider patches extracted from the whole slide images. We assume that the number of objects per
patch can be approximated by a (quantized) Gaussian distribution G# ∼N (µg, σ2

g ). The objects
are uniformly distributed over the patch with one single further assumption that the objects may
not overlap. For generating the annotations, we investigate two different approaches. Firstly, we
consider the objects-of-interest as round objects (Circular objects (C):). The objects’ radii r are
randomly sampled from a Gaussian distribution R ∼ N (µr, σ2

r ). In a second configuration, we
incorporate the fact that the objects-of-interest often show an elliptic shape (Elliptic objects (E):).
To incorporate this knowledge, r1 is drawn from the same distribution as r and r2 = r1 + rδ where
rδ models the eccentricity and is drawn from Rδ ∼N (0, σ2

e ). A further rotation parameter α is
drawn from a uniform distribution in the interval [0,2π].

2.2. Image-to-Label Translation

The straightforward approach consists of adding either circles or ellipses as binary objects into two
dimensional matrices which are interpreted as single channel images. However, for training the
image-to-image translation approach, this setting can be highly challenging due to the loss criteria:

For training the GAN (Zhu et al., 2017), two generative models, F : X → Y and G : Y →X
and two discriminators DX and DY are trained optimizing the cycle consistency loss Lc

Lc = Ex∼pdata(x)[||G(F(x))− x||1]+
Ey∼pdata(y)[||F(G(y))− y||1]

(1)
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and the adversarial loss Ld

Ld = Ex∼pdata(x)[log(DX(x))+log(1−DY (F(x)))]+

Ey∼pdata(y)[log(1−DX(G(y)))+log(DY (y))] .
(2)

F and G try to generate fake images that look similar to real images, while DX and DY aim to
distinguish between translated and real samples. The generators aim to minimize this adversarial
objective against the discriminators that try to maximize it.

Let X be the domain referring to the original images and let Y be the label domain. The cycle
criterion requires that an annotation mask can be translated to an image by the generator G. The
generator F , however, hides all low-level image details, such as nuclei and tubuli (Fig. 1) and only
preserves the high-level shapes of the glomeruli. Based on these shapes only, it will not be able to re-
construct e.g. the nuclei at the right (i.e. the same) positions leading to a high cycle-consistency loss
even though the images might look realistic. To take this into account, we propose and investigate a
second setting simulating the nuclei exhibiting low-level information as well. As for the glomeruli,
the number of nuclei is drawn from a (quantized) normal distribution N# ∼N (µn, σ2

n ). They are
uniformly distributed over the whole patch with the restriction that they may not overlap. Diameter
is fixed to dn. The additional binary matrix containing the nuclei is added as further image channel
to the annotation image. This channel is only needed to train the GAN. For testing, this further chan-
nel is simply ignored. Whereas the setting incorporating only the target labels (i.e. the glomeruli)
is referred to as single-class scenario, the setting also incorporating further low-level information is
referred to as multi-class scenario. Finally, we identified four different settings: single-class circular
objects (SC), single-class elliptical objects (SE), multi-class circular objects (MC) and multi-class
elliptical objects (ME).

To facilitate learning, Gaussian random noise (σ fn) is added to the annotation maps followed by
the application of a Gaussian filter (σ fs) to smooth the objects’ borders in all settings.

2.3. Experimental Setting

Paraffin sections (1µm) are stained with periodic acid-Schiff (PAS) reagent and counterstained with
hematoxylin. Whole slides are digitalized with a Hamamatsu NanoZoomer 2.0HT digital slide
scanner and a 20× objective lens. From each of the 23 WSIs overall, 200 patches with a size of
500×500 pixels are randomly extracted (resulting in 4600 patches overall). For evaluation purpose,
the WSIs are manually annotated under the supervision of a medical expert. Learning is performed
in a transductive setting, i.e. both training and testing is executed on all patches. This does not
introduce bias in this case, as no label data is used during training.

As large context is required to assess whether segmentations are realistic, a (rather low) res-
olution corresponding to a 2.5× magnification is utilized (original images downscaled by factor
eight).

For image-to-image translation, we make use of the cycle GAN (Zhu et al., 2017). We rely
on the provided pytorch reference implementation. Apart from the following changes, we use the
proposed standard settings. As generator model, a residual network consisting of four blocks is
utilized. As discriminator, we rely on the suggested patch-wise CNN with three layers (Zhu et al.,
2017). Learning rate is fixed to 10−6, number of training epochs is set to 15 and batch size is set
to one. The losses are equally weighted. For data augmentation, flipping, rotation and random
cropping (384×384 pixel sub-patches) is performed.
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The annotations are generated based on the following visually assessed parameters (we did
not incorporate statistical information of the data set to avoid introducing significant supervision):
µg = 7, σg = 2, µr = 18, σr = 2, σe = 2, dn = 4, µn = 5000, σn = 50, σ fn = 5 and σ fs = 2.

For evaluation, we investigate two optimization strategies. The first strategy does not incorpo-
rate any optimization and we basically report the obtained segmentation performance after training
for all 15 epochs. As GAN training is, in general, often unstable, we also optimize the epoch by
separating the testing data set into one patch for optimization and the others for testing. We use only
one patch for optimization because the approach is intended to be unsupervised.

Apart from pixel-level scores (F1-score (F), precision (P), recall(R)), we also report the corre-
sponding object-level scores (Fo, Po, Ro). That means, we distinguish between true positive objects
(i.e. the distance between the center of a detected object and a real object is smaller than 10 pixels),
objects which were missed and false positively detected objects.

All experiments are repeated four times. The obtained performances are compared with the a
supervised fully-convolutional network (Gadermayr et al., 2017).

3. Results

Fig. 2 shows quantitative results for each of the four different settings. We investigate pixel-level as
well as object-level scores. The left two columns show the testing pixel-level and object-level F1-
scores for different numbers of training epochs. The third column shows the scores obtained with
cross validation (i.e. the epoch is optimized) and the last column shows the rates corresponding to
training for 15 epochs without any further optimization.

Considering these results, we notice that the single-class settings (SC, SE) do not show any
useful results. In case of elliptical shapes (SE), at least the best configuration exhibits acceptable
outcomes, however, GAN training is highly unstable in this scenario. In case of the multi-class
settings (MC, ME), we notice a more stable behavior, as in each repetition good scores are obtained
after few training epochs. Mean pixel-level F1-scores of 0.63 (MC) and 0.62 (ME) as well as mean
object-level F-scores of 0.74 (MC and ME) are achieved. Convergence is obtained approximately
after six epochs for both settings. We notice slightly higher precision than recall, especially on
object-level. A further optimization of the number of the training epoch does not show a high
influence.

The baseline results of the supervised approach are provided in Fig. 3. We obtain F1-scores of
0.49, 0.65 and 0.71 on pixel level and 0.52, 0.68 and 0.76 on object-level for training with 2, 4 and 8
WSIs. We notice that the break-even point of the supervised approach is reached with approximately
four fully-annotated training WSIs corresponding to roughly 500 annotated glomeruli. Considering
the object-level scenario, the proposed method exhibits increased performances (comparable with
the supervised method trained on eight WSIs).

We further investigated the annotation images with respect to the shape of the masks. Comparing
the best fitting circle with the mask showed a mean F1-score of 0.92 while for the best fitting ellipse,
a F1-score of 0.95 is obtained. The difference is statistically significant (p < 0.001) and indicates
that ellipses provide better approximations for the objects-of-interest.

Example output of the image-to-image translation process is provided in Fig. 4. With the single-
class setting ((a)–(b)), we notice a tendency to segment vessel structures instead of the target objects.
This is not the case if making use of the multi-class settings ((c)–(d)).
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Figure 2: Experimental results for the four different settings (row 1 to row 4). The left columns
show pixel- and object-level F1-scores for testing after varying number of training epochs.
The right columns provide F1-scores (F), precision (P) and recall (R) as well as object-
level measures (Fo, Po, Ro) for training for 15 epochs (excl. optimization) and for opti-
mizing the epoch (incl. optimization).

4. Discussion

In this work, we investigated a concept of fully-unsupervised learning for segmentation applications
by making use of a GAN in combination with simulated annotation data.

We obtained highly divergent results for the four different settings. One substantial finding is
that a simulation of the annotations of the objects-of-interest only (referred to as single-class sce-
nario) is not sufficient to obtain proper segmentations of the glomeruli in the investigated unpaired
image-to-image translation scenario. In the majority of attempts, an unwanted translation between
the image and the label domain is observed. A major problem here is that a translation from the
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Figure 3: Baseline pixel-level (a) and object-level (b) F1-scores indicating the segmentation perfor-
mance of the supervised U-Net-based approach (Gadermayr et al., 2017) with variable
numbers of fully-annotated training WSIs. One single training WSI contains on average
120 single objects.
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Figure 4: Qualitative results of the image translation process for the four different settings (a) – (d).
While the setting SC and SE do not show any good segmentations, MC and ME perform
similarly well. Subfigure (e) shows an example segmentation extracted from a fake image
generated with setting MC.

label to the image domain cannot be performed which complicates the GAN training. The generator
G in this case has no chance to place the low-level objects (here the nuclei) in a way that the cycle
consistency loss can become small as the position of the nuclei cannot be effectively derived from
the annotation image. This behavior can also be seen in the example reconstructed images where
nuclei cannot be clearly detected (Fig. 4, third column). In the multi-class scenarios with added
simulated nuclei during GAN training, these objects are maintained during the training cycles. That
means, the nuclei are segmented during translation to the label domain followed by a reconstruction
of the nuclei based on the label domain in case of the inverse mapping.

A further interesting finding is that the distribution of the shapes of the simulated objects does
not have a major impact on final segmentation performance. We do not consider the single-class
scenarios here as they showed either completely wrong or highly unstable performance. The multi-
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class scenarios show similar performances for the setting based on circles and for the setting based
on ellipses.

Considering the multi-class settings MC and ME, we assess the obtained segmentation perfor-
mance as good and applicable for medical applications although the scores seem to be rather low.
We need to mention here that this is on the one hand due to the fact that small objects are often not
identified as glomeruli in the ground-truth but are detected by our approach. On the other hand, there
are also small objects which are in the ground-truth but are not detected. Anyway, these objects are
neglected by the medical experts and are thereby excluded from further analysis.

A comparison with a state-of-the-art supervised approach showed that the novel method is
highly competitive. Especially the detection performance (indicated by the object-level F1-scores)
is outperformed by the supervised technique only if training is performed with a large amount of
annotated data (specifically with eight WSIs corresponding to approx. 1000 single objects). Due to
the stable training process, a “slightly-supervised” optimization of the training epoch is not required
as the results are only marginally improved (Fig. 2, column 3 vs. column 4).

The most notable advantage, however, does not consist in high scores, but in a very high flex-
ibility. The method can be easily adapted e.g. to other stains without a need for collecting novel
annotated training data. An intrinsic limitation is certainly given regarding the shape of the objects-
of-interest. While rather basic shapes can be easily modeled, complex or irregular shapes are either
difficult or even impossible to model.

To conclude, we proposed and investigated a concept of fully-unsupervised learning for segmen-
tation applications by making use of a GAN trained with real images and simulated annotations. The
experimental results, in general highly promising, indicate that it is not crucial to accurately model
the underlying shape as long as a good approximation is available. This is a highly relevant finding
as the shapes of the objects-of-interest are often too complex to be modeled accurately. It is clearly
more relevant to support the GAN to fulfill the cycle consistency criterion. Adding additional infor-
mation to the label domain proved to be an effective way to facilitate the unpaired training process.
A comparison with a state-of-the-art supervised segmentation approach shows that the novel method
is only outperformed if a large amount of labeled training data is available.
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